首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Earlier studies from our laboratory have demonstrated that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity could be modulated by inhibitors and inducer of cytochrome P450 (P450) in an in vitro model consisting of sagittal slices of mouse brain. To understand the molecular mechanisms underlying the role of P450 on MPTP toxicity, it was undertaken to study the effect of the modulators of P450 on the toxicity of the metabolite of MPTP, namely, 1-methyl-4-phenylpyridinium ion (MPP+). Incubation of mouse brain slices with various concentrations of MPP+ (1–100 µ M ) resulted in dose-dependent inhibition of mitochondrial enzyme NADH-dehydrogenase (NADH-DH) and leakage of the cytosolic enzyme lactate dehydrogenase from the slice into the medium. MPP+-induced toxicity was abolished by pretreatment of the slices with inhibitors of monoamine oxidase (MAO; pargyline and deprenyl) or inhibitors of P450 (piperonyl butoxide or SKF-525A) or dopamine uptake blocker (GBR-12909), as measured by the activity of NADH-DH in slices and leakage of lactate dehydrogenase from the slice into the medium. Slices prepared from mice pretreated with phenobarbital (an inducer of P450) potentiated the toxic effects of MPP+. Pretreatment of slices with MAO-inhibitor, P450 inhibitors, or dopamine uptake blocker attenuated the uptake of MPP+ into the slices. In contrast, MPP+ uptake was significantly increased in slices prepared from phenobarbital-pretreated mice. Thus, both MAO and P450 inhibitors abolish the toxicity of MPP+ in the sagittal slices of mouse brain by altering the uptake of the toxin into the slices.  相似文献   

2.
Abstract: The effects of the parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its 4-electron oxidation product 1-methyl-4-phenylpyridinium (MPP+) were studied in isolated mitochondria and in mouse brain striatal slices. ADP-stimulated oxidation of NAD-linked substrates was inhibited in a time-dependent manner by MPP+ (0.1–0.5 m M ), but not MPTP, in mitochondria prepared from rat brain, mouse brain, or rat liver. Under identical conditions, succinate oxidation was relatively unaffected. In neostriatal slices prepared from the mouse, a species susceptible to the dopaminergic neurotoxicity of MPTP, incubation with either MPP+ or MPTP caused metabolic changes consistent with inhibition of mitochondnial oxidation, i.e., an increase in the formation of lactate and accumulation of the amino acids glutamate and alanine with concomitant decreases in glutamine and aspartate levels. The changes resulting from incubation with MPTP were prevented by the monoamine oxidase inhibitor pargyline, which blocks formation of MPP+ from MPTP. The results suggest that compromise of mitochondrial function and its metabolic sequelae within dopaminergic neurons could be an important factor in the neurotoxicity observed after MPTP administration.  相似文献   

3.
Abstract: The effects of 1-methyl-4-phenylpyridinium (MPP+) on the oxygen consumption, ATP production, H2O2 production, and mitochondrial NADH-CoQ1 reductase (complex I) activity of isolated rat brain mitochondria were investigated. Using glutamate and malate as substrates, concentrations of 10–100 µ M MPP+ had no effect on state 4 (−ADP) respiration but decreased state 3 (+ADP) respiration and ATP production. Incubating mitochondria with ADP for 30 min after loading with varying concentrations of MPP+ produced a concentration-dependent decrease in H2O2 production. Incubation of mitochondria with ADP for 60 min after loading with 100 µ M MPP+ caused no loss of complex I activity after washing of MPP+ from the mitochondrial membranes. These data are consistent with MPP+ initially binding specifically to complex I and inhibiting both the flow of reducing equivalents and the production of H2O2 by the mitochondrial respiratory chain, without irreversibly damaging complex I. However, mitochondria incubated with H2O2 in the presence of Cu2+ ions showed decreased complex I activity. This study provides additional evidence that cellular damage initiated by MPP+ is due primarily to energy depletion caused by specific binding to complex I, any increased damage due to free radical production by mitochondria being a secondary effect.  相似文献   

4.
Abstract: Agmatinase, the enzyme that hydrolyzes agmatine to form putrescine and urea in lower organisms, was found in rat brain. Agmatinase activity was maximal at pH 8–8.5 and had an apparent K m of 5.3 ± 0.99 m M and a V max of 530 ± 116 nmol/mg of protein/h. After subcellular fractionation, most of the enzyme activity was localized in the mitochondrial matrix (333 ± 5 nmol/mg of protein/h), where it was enriched compared with the whole-brain homogenate (7.6–11.8 nmol/mg of protein/h). Within the CNS, the highest activity was found in hypothalamus, a region rich in imidazoline receptors, and the lowest in striatum and cortex. It is interesting that other agmatine-related molecules such as arginine decarboxylase, which synthesizes agmatine, and I2 imidazoline receptors, for which agmatine is an endogenous ligand, are also located in mitochondria. The results show the existence of rat brain agmatinase, mainly located in mitochondria, indicating possible degradation of agmatine by hydrolysis at its sites of action.  相似文献   

5.
Abstract: The ex vivo tissue concentration of nitrite and nitrate (NOx) was found to correlate closely with the activity of nitric oxide synthase (NOS; EC 1.14.13.39) in various brain regions. Systemic administration of the nonselective NOS inhibitor N ω-nitro- l -arginine ( l -NA) at doses that completely inhibited both central and peripheral NOS, depleted whole-brain and CSF NOx by up to 75% but had no effect on plasma NOx. Selective inhibition of central NOS by intracerebroventricular administration of l -NA methyl ester produced similar decreases in levels of whole-brain NOx. A residual concentration of NOx of 10–15 µ M remained in all brain regions even after complete inhibition of brain NOS. Brain NOx content decreased rapidly and in parallel with the inhibition of brain NOS. The ex vivo measurement of levels of brain NOx was found to reflect the in vivo efficacy of several different types of NOS inhibitor: l -NA, N ω-monomethyl- l -arginine, and 7-nitroindazole. Intraperitoneal administration of the NOS substrate l -arginine increased brain NOx concentrations by up to 150% of control values. These results demonstrate that the ex vivo measurement of levels of brain tissue NOx is a rapid, reliable, and straightforward technique to determine NOS activity in vivo. This method can be used to assess both the regional distribution and the degree of inhibition of NOS activity in vivo.  相似文献   

6.
Abstract: The effect of the neurotoxic nitric oxide derivative, the peroxynitrite anion (ONOO), on the activity of the mitochondrial respiratory chain complexes in cultured neurones and astrocytes was studied. A single exposure of the neurones to ONOO (initial concentrations of 0.01–2.0 m M ) caused, after a subsequent 24-h incubation, a dose-dependent decrease in succinate-cytochrome c reductase (60% at 0.5 m M ) and in cytochrome c oxidase (52% at 0.5 m M ) activities. NADH-ubiquinone-1 reductase was unaffected. In astrocytes, the activity of the mitochondrial complexes was not affected up to 2 m M ONOO. Citrate synthase was unaffected in both cell types under all conditions studied. However, lactate dehydrogenase activity released to the culture medium was increased by ONOO in a dose-dependent manner (40% at 0.5 m M ONOO) from the neurones but not from the astrocytes. Neuronal glutathione concentration decreased by 39% at 0.1 m M ONOO, but astrocytic glutathione was not affected up to 2 m M ONOO. In isolated brain mitochondria, only succinate-cytochrome c reductase activity was affected (22% decrease at 1 m M ONOO). We conclude that the acute exposure of ONOO selectively damages neurones, whereas astrocytes remain unaffected. Intracellular glutathione appears to be an important factor for ameliorating ONOO-mediated mitochondrial damage. This study supports the hypothesis that the neurotoxicity of nitric oxide is mediated through mitochondrial dysfunction.  相似文献   

7.
Abstract: l -3,4-Dihydroxyphenylalanine ( l -DOPA) is toxic for human neuroblastoma cells NB69 and its toxicity is related to several mechanisms including quinone formation and enhanced production of free radicals related to the metabolism of dopamine via monoamine oxidase type B. We studied the effect of l -DOPA on activities of enzyme complexes in the electron transport chain (ETC) in homogenate preparations from the human neuroblastoma cell line NB69. As a preliminary step we compared the activity of ETC in cellular homogenates with that of purified mitochondria from NB69 cells and rat brain. Specific activities for complex I, complex II–III, and complex IV in NB69 cells were, respectively, 65, 96, and 32% of those in brain mitochondria. Complex I activity was inhibited in a dose-dependent way by 1-methyl-4-phenylpyridinium ion with an EC50 of ∼150 µ M . Treatment with 0.25 m M l -DOPA for 5 days reduces complex IV activity to 74% of control values but does not change either complex I or citrate synthase. Ascorbic acid (1 m M ), which protects NB69 cells from l -DOPA-induced neurotoxicity, increases complex IV activity to 133% of the control and does not change other ETC complexes. Ascorbic acid also reverses l -DOPA-induced reduction of complex IV activity in NB69 cells. This observation might indicate that the protection observed with ascorbic acid is related to complex IV activation. In vitro incubation with l -DOPA (0.125–4 m M ) for 2 min produced a dose-dependent reduction of complex IV without change in complex I and II–III activities.  相似文献   

8.
Abstract: The development of the thymidine phosphorylating systems was studied in various regions of brain. Brain slices from cerebellum, brain stem, and forebrain of rabbits 2, 7, 14, 30, 90, 500, and 2500 days of age were incubated for various times in artificial CSF containing 3 nM-[3H]thymidine at 37°C under 95% O2-5% CO2. When slices from all brain regions of 2-day-old rabbits were incubated in [3H]thymidine for 30 min, tissue-to-medium ratios of 3H were between 2 and 4 and declined with age, and the percentages of the total 3H in perchloric acid homogenates of brain slices as [3H]DNA were 26–29%, declining to low levels with age. However, at all ages and in all regions studied, 41 -88% of the 3H within the slices was phosphorylated. After homogenization and subcellular fractionation of the brain slices incubated in [3H]thymidine for 30 min, the highest percentage of [3H]thymidine phosphates plus [3H]DNA was present in the nuclear (crude and purified) and mitochondrial fractions of all brain regions. The [3H]DNA content in the nuclear and mitochondrial fractions declined with age, but the percentage of [3H]thymidine phosphates did not. Thymidine phosphates were synthesized from thymidine in all brain regions tested throughout the entire life span.  相似文献   

9.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

10.
Abstract: The effect of tetanus toxin on the uptake and release of radiolabelled transmitters from slices prepared from substantia nigra (SN) and striatum of rats has been investigated. Tetanus toxin-500–750 mouse lethal doses (MLD)-injected into the SN 6 h before preparing the slices significantly reduced the calcium-dependent, potassium-evoked release of [3H]GABA. Endogenous GABA levels in the SN and [3H]GABA uptake by nigral slices were unaffected by pretreatment with the toxin. Injections of tetanus toxin (1000–2000 MLD) into the striatum significantly reduced the calcium-dependent, potassium-evoked release of [14C]GABA and also [3H]dopamine, but had no effect on the K+-evoked release of [3H]5-hydroxytryptamine or [14C]acetylcholine. It is concluded that tetanus toxin inhibits GABA release directly and not by interference with synthesis or inactivation processes.  相似文献   

11.
Hydrogen Peroxide Production by Rat Brain In Vivo   总被引:13,自引:6,他引:7  
Abstract: H2 O2 production by rat brain in vivo was observed with a method based on the measurement of brain catalase. The administration to the rat of 3-amino-1, 2, 4-triazole, an H2 O2- dependent inhibitor of catalase, caused progressive inhibition of brain catalase activity in both the supernatant and pellet fractions of homogenates of the striatum and prefrontal cortex. The prevention of catalase inhibition by prior administration of ethanol confirmed that catalase inhibition in vivo was dependent upon H2 O2. A significant portion of the catalase (30-33%) appeared in the supernatant fraction from a slow-speed homogenization procedure and was not significantly contaminated by either erythrocytes or capillaries. In the whole homogenate, less than 6% of the catalase activity was attributed to erythrocytes. Modification of intracellular monoamine oxidase activity by either pargyline or reserpine did not change the rate of inhibition of catalase by aminotriazole. A probable interpretation of these data is that H2 O2 generated by mitochondrial monoamine oxidase does not reach the catalase compartment; the catalase is contained in particles described by other investigators as the microperoxisomes of brain. In studies in vitro , the production of H2 O2 by rat brain mitochondria with either dopamine or serotonin as substrate was confirmed.  相似文献   

12.
Abstract: In this study we have examined (1) the integrated function of the mitochondrial respiratory chain by polarographic measurements and (2) the activities of the respiratory chain complexes I, II–III, and IV as well as the ATP synthase (complex V) in free mitochondria and synaptosomes isolated from gerbil brain, after a 30-min period of graded cerebral ischaemia. These data have been correlated with cerebral blood flow (CBF) values as measured by the hydrogen clearance technique. Integrated functioning of the mitochondrial respiratory chain, using both NAD-linked and FAD-linked substrates, was initially affected at CBF values of ∼35 ml 100 g−1 min−1, and declined further as the CBF was reduced. The individual mitochondrial respiratory chain complexes, however, showed differences in sensitivity to graded cerebral ischaemia. Complex I activities decreased sharply at blood flows below ∼30 ml 100 g−1 min−1 (mitochondria and synaptosomes) and complex II–III activities decreased at blood flows below 20 ml 100 g−1 min−1 (mitochondria) and 35–30 ml 100 g−1 min−1 (synaptosomes). Activities declined further as CBF was reduced below these levels. Complex V activity was significantly affected only when the blood flow was reduced below 15–10 ml 100 g−1 min−1 (mitochondria and synaptosomes). In contrast, complex IV activity was unaffected by graded cerebral ischaemia, even at very low CBF levels.  相似文献   

13.
Abstract: Two samples of the peptide tyrosine-melanocyte-stimulating hormone release-inhibiting factor-1 (Tyr-MIF-1; Tyr-Pro-Leu-Gly-NH2) were tritiated on different amino acids (Tyr or Pro) and incubated together at 37°C with fractions of rat brain. The amount of intact tetrapeptide remaining was determined by HPLC. By 3 min, most of the Tyr-MIF-1 was degraded. Because similar amounts of [3H]Pro and [3H]Tyr appeared after incubation of the Tyr-MIF-1 peptides in brain homogenate, even as early as 30 s, examination of only this crude preparation would misleadingly indicate that Tyr-MIF-1 is not a precursor of melanocyte-stimulating hormone release-inhibiting factor-1 (MIF-1; Pro-Leu-Gly-NH2) in brain tissue. However, incubation of the mitochondrial fractions of brain under the same conditions resulted in more than three times as much [3H]Tyr being formed as [3H]Pro, with accompanying accumulation of MIF-1. Addition of excess MIF-1 to the mitochondrial fraction completely suppressed the formation of MIF-1 and more than doubled the amount of Tyr-MIF-1 remaining intact. When Tyr-MIF-1 tritiated only on the Tyr was added to the mitochondrial fraction, the main peaks of radioactivity appeared only at the positions of Tyr and Tyr-MIF-1, not at the position of Tyr-Pro. The results indicate that Tyr-MIF-1 can serve as a precursor of MIF-1 in brain mitochondria, an effect not evident when crude brain homogenate is used.  相似文献   

14.
Synaptic train stimulation (10 Hz × 25 s) in hippocampal slices results in a biphasic response of NAD(P)H fluorescence indicating a transient oxidation followed by a prolonged reduction. The response is accompanied by a transient tissue PO2 decrease indicating enhanced oxygen utilization. The activation of mitochondrial metabolism and/or glycolysis may contribute to the secondary NAD(P)H peak. We investigated whether extracellular lactate uptake via monocarboxylate transporters (MCTs) contributes to the generation of the NAD(P)H response during neuronal activation. We measured the effect of lactate uptake inhibition [using the MCT inhibitor α-cyano-4-hydroxycinnamate (4-CIN)] on the NAD(P)H biphasic response, tissue PO2 response, and field excitatory post-synaptic potential in hippocampal slices during synaptic stimulation in area CA1 (stratum radiatum). The application of 4-CIN (150–250 μmol/L) significantly decreased the reduction phase of the NAD(P)H response. When slices were supplemented with 20 mmol/L lactate in 150–250 μmol/L 4-CIN, the secondary NAD(P)H peak was restored; whereas 20 mmol/L pyruvate supplementation did not produce a recovery. Similarly, the tissue PO2 response was decreased by MCT inhibition; 20 mmol/L lactate restored this response to control levels at all 4-CIN concentrations. These results indicate that lactate uptake via MCTs contributes significantly to energy metabolism in brain tissue and to the generation of the delayed NAD(P)H peak after synaptic stimulation.  相似文献   

15.
Abstract: Expression of the neurotoxicity of 1-methyl-4-phenyl-1.2,3,6-tetrahydropyridine, following oxidation to l-methyl-4-phenylpyridinium ion (MPP+), is believed to involve inhibition of mitochondrial electron transport from NADH dehydrogenase (complex l) to ubquinone. MPP+ and its analogues have been shown to Mock electron transport at or near the same site as two powerful inhibitors of mitochondrial respiration, rotenone and piericidin A. All three types of inhibitors combine at two sites on NADH dehydrogenase, a hydrophilic and hydrophobic one, and occupancy of both sites is required for complete inhibition. Tetraphenylboron anion (TPB) in catalytic amounts is known to increase the effectiveness of positively charged MPP+ analogues in blodclng mitochondrial respiration. A part of this effect involves facitation of the entry of MPP+ oongeners into the hydrophobic site by ion pairing, as has been demonstrated in studies with submitochondrial particles (electron transport particles). This communication documents the fact that TPB, when present in molar excess over the MPP+ analogues, reverses the inhibition. This seems to involve again strong ion pairing. removal of the inhibitory analogue from one to the two binding sites, and concentration of the inhibitor in the membrane, so that only the hydrophobic binding site remains occupied, resulting in lowering of the inhibiti to 30–40%.  相似文献   

16.
Abstract: Kinetic studies suggested the presence of several forms of NAD-dependent aldehyde dehydrogenase (ALDH) in rat brain. A subcellular distribution study showed that low- and high- K m activities with acetaldehyde as well as the substrate-specific enzyme succinate semialdehyde dehydrogenase were located mainly in the mitochondrial compartment. The low- K m activity was also present in the cytosol (<20%). The low- K m activity in the homogenate was only 10–15% of the total activity with acetaldehyde as the substrate. Two K m values were obtained with both acetaldehyde (0.2 and 2000 μ m ) and 3,4-dihydroxyphenylacetaldehyde (DOPAL) (0.3 and 31 μ m ), and one K m value with succinate semialdehyde (5 μ m ). The main part of the aldehyde dehydrogenase activities with acetaldehyde, DOPAL, and succinate semialdehyde, but only little activity of the marker enzyme for the outer membrane (monoamine oxidase, MAO), was released from a purified mitochondrial fraction subjected to sonication. Only small amounts of the ALDH activities were released from mitochondria subjected to swelling in a hypotonic buffer, whereas the main part of the marker enzyme for the intermembrane space (adenylate kinase) was released. These results indicate that the ALDH activities with acetaldehyde, DOPAL and succinate semialdehyde are located in the matrix compartment. The low- K m activity with acetaldehyde and DOPAL, but not the high- K m activities and succinate semialdehyde dehydrogenase, was markedly stimulated by Mg2+ and Ca2+ in phosphate buffer. The low- and high- K m activities with acetaldehyde showed different pH optima in pyrophosphate buffer.  相似文献   

17.
A procedure was developed to obtain intact and purified mitochondria from mesophyll and bundle sheath tissues of Zea mays L. cv. I.N.R.A. 180, an NADP+-malic enzyme type C4 plant. There was little cross-contamination between the two mitochondrial fractions.
Both types of mitochondria oxidized NADH, succinate and malate with respiratory control. In mesophyll mitochondria malate oxidation was highly sensitive to KCN (85–90% inhibition of first state 3) and showed good respiratory control. In bundle sheath mitochondria malate oxidation was less sensitive to cyanide (75-80% inhibition) and showed poor respiratory control. Malate and NADH appeared to be the best substrates for respiratory activity. Mesophyil mitochondria could not oxidize glycine, whereas bundle sheath mitochondria could.
The results indicate that mesophyll and bundle sheath mitochondria of Zea mays are differentiated, not only with respect to the decarboxylation of malate but also with respect to the decarboxylation phase of photorespiration.  相似文献   

18.
The exposure of detached leaves of C3 plants (pea, barley) and C4 plant (maize) to 5 m M Pb (NO3)2 for 24 h caused a reduction of their photosynthetic activity by 40–60%, whereas the respiratory rate was stimulated by 20–50%. Mitochondria isolated from Pb2+-treated pea leaves oxidized substrates (glycine, succinate, malate) at higher rates than mitochondria from control leaves. The respiratory control (RCR) and the ADP/O ratio were not affected. Pb2+ caused an increase in ATP content and the ATP/ADP ratio in pea and maize leaves. Rapid fractionation of barley protoplasts incubated at low and high CO2 conditions, indicated that the increased ATP/ADP ratio in Pb2+-treated leaves resulted mainly from the production of mitochondrial ATP. The measurements of membrane potential of mitochondria with a TPP+-sensitive electrode further showed that mitochondria isolated from Pb2+-treated leaves had at least as high membrane potential as mitochondria from control leaves. The activity of NAD-malate dehydrogenase in the protoplasts from barley leaves treated with Pb2+ was 3-fold higher than in protoplasts from control leaves. The activities of photorespiratory enzymes NADH-hydroxypyruvate reductase and glycolate oxidase as well as of NAD-malic enzyme were not affected. The presented data indicate that stimulation of respiration in leaves treated by lead is in a close relationship with activation of malate dehydrogenase and stimulation of the mitochondrial ATP production. Thus, respiration might fulfil a protective role during heavy metal exposure.  相似文献   

19.
Abstract: Al complexes are known to accumulate in extra- and intracellular compartments of the brain in the course of different encephalopathies. In this study possible effects of Al accumulation in the cytoplasmic compartment on mitochondrial metabolism were investigated. Al, like Ca, inhibited pyruvate utilization as well as citrate and oxoglutarate accumulation by whole brain mitochondria. Potencies of Ca2+total effects were 10–20 times stronger than those of Al. Al decreased mitochondrial acetyl-CoA content in a concentration-dependent manner, along with an equivalent rise of free CoA level, whereas Ca caused loss of both intermediates from mitochondria. In the absence of Pi in the medium, Ca had no effect on mitochondrial metabolism, whereas Al lost its ability to suppress pyruvate utilization and acetyl-CoA content in Ca-free conditions. Verapamil potentiated, whereas ruthenium red reversed, Ca-evoked suppression of mitochondrial metabolism. On the other hand, in Ca-supplemented medium, Al partially overcame the inhibitory influence of verapamil. Accordingly, verapamil increased mitochondrial Ca levels much more strongly than Al. However, Al partially reversed the verapamil-evoked rise of Ca2+total level. These data indicate that Al accumulated in cytoplasm in the form of the Al(PO4)OH complex may inhibit mitochondrial functions by an increase of intramitochondrial [Ca2+]total resulting from the Al-evoked rise of cytoplasmic [Ca2+]free, as well as from inhibitory interference with the verapamil binding site on the Na+/Ca2+ antiporter.  相似文献   

20.
Uptake and Release of N-Methyl-d-Aspartate by Rat Brain Slices   总被引:2,自引:0,他引:2  
Abstract: The excitant amino acid, N -methyl- d -aspartate, was actively taken up by slices of rat cerebral cortex. This uptake was Na+ - and temperature-dependent, but was relatively inefficient (Km 3 MM, Vmax 0.07 μmol/g/min) compared with that of other acidic amino acids. The uptake of N -methyl- d -aspartate does not appear to have a rate-limiting influence on the time course of N -methyl- d -aspartate-induced excitation since potent uptake inhibitors, such as threo-3-hydroxy- l -aspartate, do not influence the excitant action of N -methyl- d -aspartate. The relatively prolonged excitant action of this acidic amino acid may be the result of relatively slow dissociation of the activated receptor complex. Reloaded N -methyl- d -aspartate can be released from rat brain slices by stimulation with K+ ions. Such K+-stimulated release appeared to be Ca2+-independent, unlike the K+-stimulated release of preloaded d -aspartate. These findings suggest that N -methyl- d -aspartate may be a weak but selective substrate for a glial acidic amino acid uptake system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号