首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Both animals and plants use steroids to regulate their growth and development, but their mechanisms for steroid perception are different. Animal steroids are mainly recognized by intracellular steroid receptors, whereas plant steroids are perceived by cell-surface receptors that contain a transmembrane receptor serine/threonine kinase. Recent studies suggest that heterodimerization between two receptor kinases might be a key step in steroid perception and signaling in plants.  相似文献   

3.
Brassinosteroid Signal Transduction: A Mix of Conservation and Novelty   总被引:3,自引:0,他引:3  
Brassinosteroids (BRs) are a unique class of plant steroids that are structurally similar to animal steroid hormones and play important roles in plant growth and development. Unlike the animal steroids, which bind to classical intracellular steroid receptors that directly modulate gene activities after translocation into the nucleus, the plant steroids rely on transmembrane receptor kinases to activate a phosphorylation cascade to regulate gene expression. Recent genetic and biochemical studies have identified several critical BR signaling components and revealed a striking mechanistic similarity between the plant steroid signaling pathway and several well-studied animal signaling cascades involving a receptor kinase and glycogen synthase kinase 3 (GSK3). A working model for BR signal transduction proposes that BR initiates its signaling pathway by promoting heterodimerization of two transmembrane receptor-like kinases at the cell surface, leading to inhibition of a GSK3 kinase and subsequent stabilization and nuclear accumulation of two GSK3 substrates that regulate BR-responsive genes. Such a simple model provides a framework for continued investigation of molecular mechanism(s) of plant steroid signaling.  相似文献   

4.
5.
6.
7.
Small signaling molecules that mediate cell-cell communication are essential for developmental regulation in multicellular organisms. Among them are the steroids and peptide hormones that regulate growth in both plants and animals. In plants, brassinosteroids (BRs) are perceived by the cell surface receptor kinase BRI1, which is distinct from the animal steroid receptors. Identification of components of the BR signaling pathway has revealed similarities to other animal and plant signal transduction pathways. Recent studies demonstrated that tomato BRI1 (tBRI1) perceives both BR and the peptide hormone systemin, raising new questions about the molecular mechanism and evolution of receptor-ligand specificity.  相似文献   

8.
Regulation of brassinosteroid signaling   总被引:2,自引:0,他引:2  
  相似文献   

9.
Plants might use a markedly different mechanism for steroid signaling than animals. In animals, steroid hormone signals are generally mediated by receptors inside the cell. However, a recent report by He et al. indicates that, in plants, steroids appear to be perceived at the plasma membrane rather than by intracellular receptors.  相似文献   

10.
Unlike animal steroids, which rely on intracellular steroid receptors to directly alter gene activities, plant steroids use transmembrane receptor kinases to initiate a phosphorylation-mediated signaling cascade to convey their signals into the nucleus. Recent studies have begun to unravel the biochemical details of individual steps of the brassinosteroid signal transduction pathway, including ligand binding and receptor dimerization at the cell surface, signal transmission across the cell membrane, the phosphorylation of cellular targets in the cytosol, and gene regulation inside the nucleus.  相似文献   

11.
Alzamora R  Harvey BJ 《Steroids》2008,73(9-10):885-888
The non-genomic action of steroid hormones regulates a wide variety of cellular responses including regulation of ion transport, cell proliferation, migration, death and differentiation. In order to achieve such plethora of effects steroid hormones utilize nearly all known signal transduction pathways. One of the key signalling molecules regulating the non-genomic action of steroid hormones is protein kinase C (PKC). It is thought that rapid action of steroids hormones results from the activation of plasma membrane receptors; however, their molecular identity remains elusive. In recent years, an increasing number of studies have pointed at the selective binding and activation of specific PKC isoforms by steroid hormones. This has led to the hypothesis that PKC could act as a receptor as well as a transducer of the non-genomic effects of these hormones. In this review we summarize the current knowledge of the direct binding and activation of PKC by steroid hormones.  相似文献   

12.
13.
Recent findings on the noncanonical positions of some well-known extracellular mediators and their receptors are reviewed. Peptide hormones (insulin) and/or their binding sites (cell membrane insulin receptor, nuclear insulin receptor); steroid hormones (corticosteroids and estrogens) and their putative membrane receptors are in the scope of this paper. The possible roles of these unusually located receptors in the intracellular signal propagation and physiological responses are also discussed.  相似文献   

14.
Neuropsychopharmacological properties of neuroactive steroids.   总被引:4,自引:0,他引:4  
R Rupprecht  F Holsboer 《Steroids》1999,64(1-2):83-91
In addition to the well-known genomic effects of steroid molecules via intracellular steroid receptors, certain steroids rapidly alter neuronal excitability through interaction with neurotransmitter-gated ion channels. Several of these steroids accumulate in the brain after local synthesis or after metabolism of adrenal steroids. The 3alpha-hydroxy ring A-reduced pregnane steroids allopregnanolone and tetrahydrodeoxycorticosterone have been thought not to interact with intracellular receptors, but enhance gamma-aminobutyric acid (GABA)-mediated chloride currents, whereas pregnenolone sulfate and dehydroepiandrosterone (DHEA) sulfate display functional antagonistic properties at GABA(A) receptors. We demonstrated that these neuroactive steroids can regulate also gene expression via the progesterone receptor after intracellular oxidation. Thus, in physiological concentrations these neuroactive steroids regulate neuronal function through their concurrent influence on transmitter-gated ion channels and gene expression. When administered in animal studies, memory-enhancing effects have been shown for pregnenolone sulfate and DHEA. The 3alpha-hydroxy ring A-reduced neuroactive steroids predominantly display anxiolytic, anticonvulsant, and hypnotic activities. Sleep studies evaluating the effects of progesterone as a precursor molecule for these neuroactive steroids revealed a sleep electroencephalogram pattern similar to that obtained by the administration of benzodiazepines. These findings extend the concept of a "cross-talk" between membrane and nuclear hormone effects and provide a new role for the therapeutic application of these steroids in neurology and psychiatry.  相似文献   

15.
A Maggi  J Perez 《Life sciences》1985,37(10):893-906
  相似文献   

16.
17.
18.
19.
In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号