首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Cell movements during epiboly and gastrulation in zebrafish   总被引:12,自引:0,他引:12  
Beginning during the late blastula stage in zebrafish, cells located beneath a surface epithelial layer of the blastoderm undergo rearrangements that accompany major changes in shape of the embryo. We describe three distinctive kinds of cell rearrangements. (1) Radial cell intercalations during epiboly mix cells located deeply in the blastoderm among more superficial ones. These rearrangements thoroughly stir the positions of deep cells, as the blastoderm thins and spreads across the yolk cell. (2) Involution at or near the blastoderm margin occurs during gastrulation. This movement folds the blastoderm into two cellular layers, the epiblast and hypoblast, within a ring (the germ ring) around its entire circumference. Involuting cells move anteriorwards in the hypoblast relative to cells that remain in the epiblast; the movement shears the positions of cells that were neighbors before gastrulation. Involuting cells eventually form endoderm and mesoderm, in an anterior-posterior sequence according to the time of involution. The epiblast is equivalent to embryonic ectoderm. (3) Mediolateral cell intercalations in both the epiblast and hypoblast mediate convergence and extension movements towards the dorsal side of the gastrula. By this rearrangement, cells that were initially neighboring one another become dispersed along the anterior-posterior axis of the embryo. Epiboly, involution and convergent extension in zebrafish involve the same kinds of cellular rearrangements as in amphibians, and they occur during comparable stages of embryogenesis.  相似文献   

2.
Origin and organization of the zebrafish fate map   总被引:15,自引:0,他引:15  
We have analyzed lineages of cells labeled by intracellular injection of tracer dye during early zebrafish development to learn when cells become allocated to particular fates during development, and how the fate map is organized. The earliest lineage restriction was described previously, and segregates the yolk cell from the blastoderm in the midblastula. After one or two more cell divisions, the lineages of epithelial enveloping layer (EVL) cells become restricted to generate exclusively periderm. Following an additional division in the late blastula, deep layer (DEL) cells generate clones that are restricted to single deep embryonic tissues. The appearance of both the EVL and DEL restrictions could be causally linked to blastoderm morphogenesis during epiboly. A fate map emerges as the DEL cell lineages become restricted in the late blastula. It is similar in organization to that of an amphibian embryo. DEL cells located near the animal pole of the early gastrula give rise to ectodermal fates (including the definitive epidermis). Cells located near the blastoderm margin give rise to mesodermal and endodermal fates. Dorsal cells in the gastrula form dorsal and anterior structures in the embryo, and ventral cells in the gastrula form dorsal, ventral and posterior structures. The exact locations of progenitors of single cell types and of local regions of the embryo cannot be mapped at the stages we examined, because of variable cell rearrangements during gastrulation.  相似文献   

3.
Hensen's node is the gastrulation center in the avian embryo. It is the homologue of the amphibian dorsal blastopore lip and the zebrafish shield. It contains the progeny of all midline cells (floor plate of the neural tube, notochord and dorsal endoderm). However, microsurgical experiments on Hensen's node allow to think that organizer function is due to an extremely limited region situated in the caudal part of Hensen's node which corresponds to the boundary between prospective axial mesoderm rostrally and paraxial mesoderm caudally. This interface is essential for Hensen's node regression and organization of the caudal part of the body.  相似文献   

4.
We identified a zebrafish homologue of Dickkopf-1 (Dkk1), which was previously identified in Xenopus as a Wnt inhibitor with potent head-inducing activity. Zebrafish dkk1 is expressed in the dorsal marginal blastoderm and also in the dorsal yolk syncytial layer after mid-blastula transition. At later blastula stages, the expression expands to the entire blastoderm margin. During gastrulation, dkk1-expressing cells are confined to the embryonic shield and later to the anterior axial mesendoderm, prospective prechordal plate. Embryos, in which dkk1 was ectopically expressed, exhibited enlarged forebrain, eyes, and axial mesendoderm such as prechordal plate and notochord. dkk1 expression in the dorso-anterior mesendoderm during gastrulation was prominently reduced in zebrafish mutants bozozok (boz), squint (sqt), and one-eyed pinhead (oep), which all display abnormalities in the formation and function of the Spemann organizer and axial mesendoderm. dkk1 expression was normal in these embryos during the blastula period, indicating that zygotic functions of these genes are required for maintenance but not establishment of dkk1 expression. Overexpression of dkk1 suppressed defects in the development of forebrain, eyes, and notochord in boz mutants. Overexpression of dkk1 promoted anterior neuroectoderm development in the embryos injected with antivin RNA, which lack most of the mesoderm and endoderm, suggesting that Dkk1 can affect regionalization of neuroectoderm independently of dorso-anterior mesendoderm. These data indicate that Dkk1, expressed in dorsal mesendoderm, functions in the formation of both the anterior nervous system and the axial mesendoderm in zebrafish.  相似文献   

5.
6.
The dorso-ventral axis in zebrafish first becomes apparent at gastrulation, when the future ventral side appears thinner than the dorsal side. The exact time of establishment of the dorso-ventral axis is not known. We show here that the dorso-ventral axis is specified as early as the 32 cell stage. Using lithium as a marker for dorso-ventral asymmetry, we show that lithium-sensitivity is a characteristic of future ventral cell, but not future dorsal cells, and that there is an asymmetric lithium-sensitivity along the long axis of the 32 cell stage embryo. Consequently, the dorso-ventral axis corresponds to the long axis of the embryo. Because the effect of lithium treatment is short-lived, the dorso-ventral axis must be specified in zebrafish already at the 32 cell stage.  相似文献   

7.
Cell migration is essential to direct embryonic cells to specific sites at which their developmental fates are ultimately determined. However, the mechanism by which cell motility is regulated in embryonic development is largely unknown. Cortactin, a filamentous actin binding protein, is an activator of Arp2/3 complex in the nucleation of actin cytoskeleton at the cell leading edge and acts directly on the machinery of cell motility. To determine whether cortactin and Arp2/3 mediated actin assembly plays a role in the morphogenic cell movements during the early development of zebrafish, we initiated a study of cortactin expression in zebrafish embryos at gastrulating stages when massive cell migrations occur. Western blot analysis using a cortactin specific monoclonal antibody demonstrated that cortactin protein is abundantly present in embryos at the most early developmental stages. Immunostaining of whole-mounted embryo showed that cortactin immunoreactivity was associated with the embryonic shield, predominantly at the dorsal side of the embryos during gastrulation. In addition, cortactin was detected in the convergent cells of the epiblast and hypoblast, and later in the central nervous system. Immunofluorescent staining with cortactin and Arp3 antibodies also revealed that cortactin and Arp2/3 complex colocalized at the periphery and many patches associated with the cell-to-cell junction in motile embryonic cells. Therefore, our data suggest that cortactin and Arp2/3 mediated actin polymerization is implicated in the cell movement during gastrulation and perhaps the development of the central neural system as well.  相似文献   

8.
Cortactin, a filamentous actin (F-actin) associated protein and a prominent substrate of protein tyrosine kinase Src[1,2], is composed of several functional do-mains, including an amino terminal domain (NTA) that is rich in acidic residues, six and one half 37-amino-acid tandem repeating segments, an al-pha-helical motif, a less conserved region but rich in tyrosine, proline, serine and threonine residues, and a Src homology 3 (SH3) domain at the distal carboxyl terminus. In mammalian cells …  相似文献   

9.
Mutations at the short gastrulation locus affect the timing of certain early morphogenetic events occurring during gastrulation in Drosophila melanogaster. Specifically, the invagination and subsequent closing of the posterior midgut and the anterior midgut appear to be delayed in these embryos. In addition, their germbands do not extent the full distance anteriorly on the dorsal side of the embryo. The dorsal cells are abnormally thick and fall into extremely deep dorsal folds as the germband extends. sog embryos continue development, but form disorganized first instar larvae. Normal sog expression is required in the zygote, but not in the mother for normal embryonic development and viability. Analysis of adult and larval gynandromorphs indicates that sog expression is required only in the ventral and/or anterior and posterior ends of the embryo, arguing that the dorsal abnormalities caused by the mutation are secondary consequences of defects elsewhere in mutant embryos.  相似文献   

10.
Analysis of normal variation in quantitative morphological characters during the early embryonic development of the loach, based on observations on individual developmental trajectories of living embryos, shows that the dorsoventral differentiation of the blastoderm proceeds in two stages. Initially, at the onset of epiboly, the sagittal (short) and transverse (long) blastoderm meridians are marked off, and only then, upon germ ring (GR) formation, differentiation between the opposite poles of the sagittal meridian takes place. The embryonic shield (ES) usually appears in the segment of the blastoderm where the radius of its external curvature reaches a maximum and, therefore, the active surface tension at the blastoderm boundary with the YSL periblast) and yolk is the highest. In this case, the convergence of inner cells toward the future dorsal segment (leading to ES formation) is a mechanical consequence of surface tension anisotropy. The normal course of epiboly is associated with periodic changes in the curvature of the blastoderm external surface, with new structures (the dorsal segment, GR, and ES) are marked off only when the surface curvature becomes maximally uniform. Although the ES in most embryos appears within the initial dorsal segment, individual developmental trajectories have been traced where the GR starts to form at the dorsal pole of the blastoderm but the ES develops on its opposite site, at the point of GR closure. In both cases, GR formation is initiated at the point of convergence of centrifugal cell migration flows that arise in the marginal zone of the blastoderm upon GR initiation or closure.  相似文献   

11.
The dorsal gastrula organizer plays a fundamental role in establishment of the vertebrate axis. We demonstrate that the zebrafish bozozok (boz) locus is required at the blastula stages for formation of the embryonic shield, the equivalent of the gastrula organizer and expression of multiple organizer-specific genes. Furthermore, boz is essential for specification of dorsoanterior embryonic structures, including notochord, prechordal mesendoderm, floor plate and forebrain. We report that boz mutations disrupt the homeobox gene dharma. Overexpression of boz in the extraembryonic yolk syncytial layer of boz mutant embryos is sufficient for normal development of the overlying blastoderm, revealing an involvement of extraembryonic structures in anterior patterning in fish similarly to murine embryos. Epistatic analyses indicate that boz acts downstream of beta-catenin and upstream to TGF-beta signaling or in a parallel pathway. These studies provide genetic evidence for an essential function of a homeodomain protein in beta-catenin-mediated induction of the dorsal gastrula organizer and place boz at the top of a hierarchy of zygotic genes specifying the dorsal midline of a vertebrate embryo.  相似文献   

12.
13.
Summary In connection with studies on the effect of genetic abnormalities on development, a film was made of the normal development of theDrosophila embryo. Time-lapse motion technique was used, and this made it possible to make new observations on those phases of the development which involve large re-arrangements of the embryonic material, in particular on blastoderm formation, gastrulation and involution of the head. These new observations have been incorporated in an account of the complete development of the embryo up to the time of hatching.  相似文献   

14.
The initiation of axis, polarity, cell differentiation, and gastrulation in the very early chordate development is due to the breaking of radial symmetry. It is believed that this occurs by an external signal. We suggest instead spontaneous symmetry breaking through the agency of the Turing-Child field. Increased size or decreased diffusivity, both brought about by mitotic activity, cause the spontaneous loss of stability of the homogeneous state and the evolution of the metabolic pattern during development. The polar metabolic pattern is the cause of polar gene expression, polar morphogenesis (gastrulation), and polar mitotic activity. The Turing-Child theory explains not only the spontaneous formation of the invagination in gastrulation but also the coherent cell movement observed in convergence and extension during gastrulation and neurulation. The theory is demonstrated with respect to experimental observations on the early development of fish, amphibian, and the chick. The theory can explain a multitude of experimental details. For example, it explains the splayed polar progression of reduction in the fish blastoderm. Reduction starts on that side of the blastoderm margin, which will initiate invagination several hours later. It progresses toward the blastoderm center and somewhat laterally from this future "dorsal lip". This is precisely as predicted by a Turing-Child system in a circle. And for a fish like zebrafish with a blastoderm that is slightly oval, reduction is observed to progress along the long axis of the ellipse, which is what Turing-Child theory predicts. In general the shape and the chemical nature of the experimental patterns are the same as predicted by the Turing couple (cAMP, ATP). Embryological polarity and convergent extension are based on polar eigenfunction and saddle-shaped eigenfunction, respectively.  相似文献   

15.
Mutations at the folded gastrulation (fog) and twisted gastrulation (tsg) loci interfere with early morphogenetic movements in Drosophila melanogaster. fog embryos do not form a normal posterior midgut and although their germbands do elongate, they do not extend dorsally. As a result, when normal embryos have fully extended germbands, the germbands in mutant embryos are folded into the interior on the ventral side of the embryo. tsg embryos have abnormally deep dorsal folds during early gastrulation, associated with the failure of dorsal cells to slip laterally to make way for the expanding germband. Both fog and tsg embryos continue to develop, but form disorganized first instar larvae. fog and tsg are zygotically active genes expressed at least by 10 and 20 min after the onset of gastrulation. Both mutations are viable in homozygous germ cells and the wild-type genes need not be expressed during oogenesis for survival of heterozygous progeny. Elimination of fog+ gene product from maternal germ cells does, however, affect the extent of folding observed during gastrulation in viable heterozygotes. Analysis of fog adult and larval gynandromorphs indicates that normal folded gastrulation gene function is only required at the posterior region of the embryo, most probably in the cells giving rise to the posterior midgut or proctodeum. The relative survival of fog mosaics suggests that embryos with mosaic "lethal foci" also die during embryogenesis, although the typical fog phenotype is only produced when the entire focus is mutant. In contrast to the fog focus, no particular cell must be wild type in tsg mosaics for survival. Wild-type cells on the dorsal side of the embryo, however, are most effective in rescuing the embryo. This indicates that normal tsg gene product may be required only on the dorsal side of the embryo, potentially in the region which gives rise to the amnion serosa.  相似文献   

16.
17.
Normally developing embryos of Xenopus were fixed at various stages between the blastula and early tail bud stage, and their serial sections were examined. The marginal belt of the blastula was characterized by abundance of cells with RNA-rich peripheral cytoplasm called mesoplasm. At the early gastrula stage, the marginal belt was folded into two layers giving rise to mesodermal material and marginal ectoderm. During gastrulation, the mesodermal material, which consisted of RNA-rich cells, spread to enclose the blastocoel and the endoderm, and a large part of it was shifted to the dorsal side of the embryo. It gradually established the mesodermal layer. The notochord was formed on the dorsal lip of the blastopore by involution, separately from preformed mesodermal material. The RNA-rich cells in the marginal ectoderm became columnar, forming a broad belt in the marginal zone. This belt was deformed and shifted to the dorsal side during gastrulation, eventually establishing the neural plate showing quantitative differentiation along the head-tail axis. Possible mechanisms involved in the formation of the neural plate and mesoderm were discussed with reference to the organizer and the mesoplasm.  相似文献   

18.
During vertebrate gastrulation, the three germ layers, ectoderm, mesoderm and endoderm are formed, and the resulting progenitor cells are brought into the positions from which they will later contribute more complex tissues and organs. A core element in this process is the internalization of mesodermal and endodermal progenitors at the onset of gastrulation. Although many of the molecules that induce mesendoderm have been identified, much less is known about the cellular mechanisms underlying mesendodermal cell internalization and germ layer formation. Here we show that at the onset of zebrafish gastrulation, mesendodermal progenitors in dorsal/axial regions of the germ ring internalize by single cell delamination. Once internalized, mesendodermal progenitors upregulate E-Cadherin (Cadherin 1) expression, become increasingly motile and eventually migrate along the overlying epiblast (ectodermal) cell layer towards the animal pole of the gastrula. When E-Cadherin function is compromised, mesendodermal progenitors still internalize, but, with gastrulation proceeding, fail to elongate and efficiently migrate along the epiblast, whereas epiblast cells themselves exhibit reduced radial cell intercalation movements. This indicates that cadherin-mediated cell-cell adhesion is needed within the forming shield for both epiblast cell intercalation, and mesendodermal progenitor cell elongation and migration during zebrafish gastrulation. Our data provide insight into the cellular mechanisms underlying mesendodermal progenitor cell internalization and subsequent migration during zebrafish gastrulation, and the role of cadherin-mediated cell-cell adhesion in these processes.  相似文献   

19.
20.
The lancelet (amphioxus) embryo develops from a miolecithal egg and starts gastrulation when it is approximately 400 cells in size, in a fashion similar to that of some non-chordate deuterostomes. Throughout this type of gastrulation, the embryo develops characteristics such as the notochord and hollow nerve cord that commonly appear in chordates. beta-Catenin is an important factor in initiating body patterning. The behavior and developmental pattern of this protein in early lancelet development was examined in this study. Cytoplasmic beta-catenin was localized to the animal pole after fertilization and then was incorporated asymmetrically into the blastomeres during the first cleavage. Asymmetric distribution was observed at least until the 32-cell stage. The first nuclear localization was at the 64-cell stage, and involved all of the cells. At the initial gastrula stage, however, concentrated beta-catenin was found on the dorsal side. LiCl treatment affected the asymmetric pattern of beta-catenin during the first cleavage. LiCl also changed distribution of nuclear beta-catenin at the initial gastrula stage: distribution extended to cells on the animal side. Apparently associated with this change, expression domains of goosecoid, lhx3 and otx also changed to a radially symmetric pattern centered at the animal pole. However, LiCl-treated embryos were able to establish embryonic polarity. The present study suggests that in the lancelet embryo, polarity determination is independent of dorsal morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号