首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Phosphate acetyltransferase (PTA) and acetate kinase (AK) of the hyperthermophilic eubacterium Thermotoga maritima have been purified 1,500- and 250-fold, respectively, to apparent homogeneity. PTA had an apparent molecular mass of 170 kDa and was composed of one subunit with a molecular mass of 34 kDa, suggesting a homotetramer (alpha4) structure. The N-terminal amino acid sequence showed significant identity to that of phosphate butyryltransferases from Clostridium acetobutylicum rather than to those of known phosphate acetyltransferases. The kinetic constants of the reversible enzyme reaction (acetyl-CoA + Pi -->/<-- acetyl phosphate + CoA) were determined at the pH optimum of pH 6.5. The apparent Km values for acetyl-CoA, Pi, acetyl phosphate, and coenzyme A (CoA) were 23, 110, 24, and 30 microM, respectively; the apparent Vmax values (at 55 degrees C) were 260 U/mg (acetyl phosphate formation) and 570 U/mg (acetyl-CoA formation). In addition to acetyl-CoA (100%), the enzyme accepted propionyl-CoA (60%) and butyryl-CoA (30%). The enzyme had a temperature optimum at 90 degrees C and was not inactivated by heat upon incubation at 80 degrees C for more than 2 h. AK had an apparent molecular mass of 90 kDa and consisted of one 44-kDa subunit, indicating a homodimer (alpha2) structure. The N-terminal amino acid sequence showed significant similarity to those of all known acetate kinases from eubacteria as well that of the archaeon Methanosarcina thermophila. The kinetic constants of the reversible enzyme reaction (acetyl phosphate + ADP -->/<-- acetate + ATP) were determined at the pH optimum of pH 7.0. The apparent Km values for acetyl phosphate, ADP, acetate, and ATP were 0.44, 3, 40, and 0.7 mM, respectively; the apparent Vmax values (at 50 degrees C) were 2,600 U/mg (acetate formation) and 1,800 U/mg (acetyl phosphate formation). AK phosphorylated propionate (54%) in addition to acetate (100%) and used GTP (100%), ITP (163%), UTP (56%), and CTP (21%) as phosphoryl donors in addition to ATP (100%). Divalent cations were required for activity, with Mn2+ and Mg2+ being most effective. The enzyme had a temperature optimum at 90 degrees C and was stabilized against heat inactivation by salts. In the presence of (NH4)2SO4 (1 M), which was most effective, the enzyme did not lose activity upon incubation at 100 degrees C for 3 h. The temperature optimum at 90 degrees C and the high thermostability of both PTA and AK are in accordance with their physiological function under hyperthermophilic conditions.  相似文献   

2.
Strijbis K  Distel B 《Eukaryotic cell》2010,9(12):1809-1815
Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier carnitine and a (peroxisomal) citrate synthase-dependent pathway. In the carnitine-dependent pathway, carnitine acetyltransferases exchange the CoA group of acetyl-CoA for carnitine, thereby forming acetyl-carnitine, which can be transported between subcellular compartments. Citrate synthase catalyzes the condensation of oxaloacetate and acetyl-CoA to form citrate that can be transported over the membrane. Since essential metabolic pathways such as fatty acid β-oxidation, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle are physically separated into different organelles, shuttling of acetyl units is essential for growth of fungal species on various carbon sources such as fatty acids, ethanol, acetate, or citrate. In this review we summarize the current knowledge on the different systems of acetyl transport that are operational during alternative carbon metabolism, with special focus on two fungal species: Saccharomyces cerevisiae and Candida albicans.  相似文献   

3.
Corynebacterium glutamicum is an aerobic, Gram-positive microorganism, well known as a pro-ducer of several amino acids. Amino acid products are used on a large scale for food industry flavouring, feed additive, pharmaceutical and cosmetic purpose[1,2]. The organism is able to grow not only on glucose, fructose and lactose, but also on acetate, lactate as its sole carbon source. The growth on acetate requires its activation to acetyl-CoA. In C. glutamicum, acetate is activated in a two-step …  相似文献   

4.
The aim of this work was to understand the steps controlling the biotransformation of trimethylammonium compounds into L(-)-carnitine by Escherichia coli. The high-cell density reactor steady-state levels of carbon source (glycerol), biotransformation substrate (crotonobetaine), acetate (anaerobiosis product) and fumarate (as an electron acceptor) were pulsed by increasing them fivefold. Following the pulse, the evolution of the enzyme activities involved in the biotransformation process of crotonobetaine into L(-)-carnitine (crotonobetaine hydration), in the synthesis of acetyl-CoA (ACS: acetyl-CoA synthetase and PTA: ATP: acetate phosphotransferase) and in the distribution of metabolites for the tricarboxylic acid (ICDH: isocitrate dehydrogenase) and glyoxylate (ICL: isocitrate lyase) cycles was monitored. In addition, the levels of carnitine, the cell ATP content and the NADH/NAD(+) ratio were measured in order to assess the importance and participation of these energetic coenzymes in the catabolic system. The results provided an experimental demonstration of the important role of the glyoxylate shunt during biotransformation and the need for high levels of ATP to maintain metabolite transport and biotransformation. Moreover, the results obtained for the NADH/NAD(+) pool indicated that it is correlated with the biotransformation process at the NAD(+) regeneration and ATP production level in anaerobiosis. More importantly, a linear correlation between the NADH/NAD(+) ratio and the levels of the ICDH and ICL (carbon and electron flows) and the PTA and ACS (acetate and ATP production and acetyl-CoA synthesis) activity levels was assessed. The main metabolic pathway operating during cell metabolic perturbation with a pulse of glycerol and acetate in the high-cell density membrane reactor was that related to ICDH and ICL, both regulating the carbon metabolism, together with PTA and ACS enzymes (regulating ATP production).  相似文献   

5.
In this report, a novel zymogram assay and coupled phosphoketolase assay were employed to demonstrate that Clostridium acetobutylicum gene CAC1343 encodes a bi-functional xylulose-5-P/fructose-6-P phosphoketolase (XFP). The specific activity of purified recombinant XFP was 6.9?U/mg on xylulose-5-P and 21?U/mg on fructose-6-P, while the specific activity of XFP in concentrated C. acetobutylicum whole-cell extract was 0.094 and 0.52?U/mg, respectively. Analysis of crude cell extracts indicated that XFP activity was present in cells grown on arabinose but not glucose and quantitative PCR was used to show that CAC1343 mRNA expression was induced 185-fold during growth on arabinose when compared to growth on glucose. HPLC analysis of metabolites revealed that during growth on xylose and glucose more butyrate than acetate was formed with final acetate:butyrate ratios of 0.72 and 0.83, respectively. Growth on arabinose caused a metabolic shift to more oxidized products with a final acetate:butyrate ratio of 1.95. The shift towards more oxidized products is consistent with the presence of an XFP, suggesting that arabinose is metabolized via a phosphoketolase pathway while xylose is probably metabolized via the pentose phosphate pathway.  相似文献   

6.
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.  相似文献   

7.
During growth ofCorynebacterium glutamicum on acetate as its carbon and energy source, the expression of theptaack operon is induced, coding for the acetate-activating enzymes, which are phosphotransacetylase (PTA) and acetate kinase (AK). By transposon rescue, we identified the two genesamrG1 andamrG2 found in the deregulated transposon mutant C.glutamicum G25. TheamrG1 gene (NCBI-accession: AF532964) has a size of 732 bp, encoding a polypeptide of 243 amino acids and apparently is partially responsible for the regulation of acetate metabolism in C.glutamicum. We constructed an in-frame deletion mutant and an overexpressing strain ofamrG1 in the C.glutamicum ATCC13032 wildtype. The strains were then analyzed with respect to their enzyme activities of PTA and AK during growth on glucose, acetate and glucose or acetate alone as carbon sources. Compared to the parental strain, theamrG1 deletion mutant showed higher specific AK and PTA activities during growth on glucose but showed the same high specific activities of AK and PTA on medium containing acetate plus glucose and on medium containing acetate. In contrast to the gene deletion, overexpression of theamrG1 gene in C.glutamicum 13032 had the adverse regulatory effect. These results indicate that theamrG1 gene encodes a repressor or co-repressor of theptaack operon.  相似文献   

8.
During growth ofCorynebacterium glutamicum on acetate as its carbon and energy source, the expression of theptaack operon is induced, coding for the acetate-activating enzymes, which are phosphotransacetylase (PTA) and acetate kinase (AK). By transposon rescue, we identified the two genesamrG1 andamrG2 found in the deregulated transposon mutant C.glutamicum G25. TheamrG1 gene (NCBI-accession: AF532964) has a size of 732 bp, encoding a polypeptide of 243 amino acids and apparently is partially responsible for the regulation of acetate metabolism in C.glutamicum. We constructed an in-frame deletion mutant and an overexpressing strain ofamrG1 in the C.glutamicum ATCC13032 wildtype. The strains were then analyzed with respect to their enzyme activities of PTA and AK during growth on glucose, acetate and glucose or acetate alone as carbon sources. Compared to the parental strain, theamrG1 deletion mutant showed higher specific AK and PTA activities during growth on glucose but showed the same high specific activities of AK and PTA on medium containing acetate plus glucose and on medium containing acetate. In contrast to the gene deletion, overexpression of theamrG1 gene in C.glutamicum 13032 had the adverse regulatory effect. These results indicate that theamrG1 gene encodes a repressor or co-repressor of theptaack operon.  相似文献   

9.
Genetic manipulation in cyanobacteria enables the direct production of valuable chemicals from carbon dioxide. However, there are still very few reports of the production of highly effective photosynthetic chemicals. Several synthetic metabolic pathways (e.g., isopropanol, acetone, isoprene, and fatty acids) have been constructed by branching from acetyl-CoA and malonyl-CoA, which are key intermediates for photosynthetic chemical production downstream of pyruvate decarboxylation. Recent reports of the absolute determination of cellular metabolites in Synechococcus elongatus PCC 7942 have shown that its acetyl-CoA levels corresponded to about one hundredth of the pyruvate levels. In short, one of the reasons for lower photosynthetic chemical production from acetyl-CoA and malonyl-CoA was the smaller flux to acetyl-CoA. Pyruvate decarboxylation is a primary pathway for acetyl-CoA synthesis from pyruvate and is mainly catalyzed by the pyruvate dehydrogenase complex (PDHc). In this study, we tried to enhance the flux toward acetyl-CoA from pyruvate by overexpressing PDH genes and, thus, catalyzing the conversion of pyruvate to acetyl-CoA via NADH generation. The overexpression of PDH genes cloned from S. elongatus PCC 7942 significantly increased PDHc enzymatic activity and intracellular acetyl-CoA levels in the crude cell extract. Although growth defects were observed in overexpressing strains of PDH genes, the combinational overexpression of PDH genes with the synthetic metabolic pathway for acetate or isopropanol resulted in about 7-fold to 9-fold improvement in its production titer, respectively (9.9 mM, 594.5 mg/L acetate, 4.9 mM, 294.5 mg/L isopropanol). PDH genes overexpression would, therefore, be useful not only for the production of these model chemicals, but also for the production of other chemicals that require acetyl-CoA as a key precursor.  相似文献   

10.
SIR2 proteins have NAD(+)-dependent histone deacetylase activity, but no metabolic role has been assigned to any of these proteins. In Salmonella enterica, SIR2 function was required for activity of the acetyl-CoA synthetase (Acs) enzyme. A greater than two orders of magnitude increase in the specific activity of Acs enzyme synthesized by a sirtuin-deficient strain was measured after treatment with homogeneous S. enterica SIR2 protein. Human SIR2A and yeast SIR2 proteins restored growth of SIR2-deficient S. enterica on acetate and propionate, suggesting that eukaryotic cells may also use SIR2 proteins to control the synthesis of acetyl-CoA by the level of acetylation of acetyl-CoA synthetases. Consistent with this idea, growth of a quintuple sir2 hst1 hst2 hst3 hst4 mutant strain of the yeast Saccharomyces cerevisiae on acetate or propionate was severely impaired. The data suggest that the Hst3 and Hst4 proteins are the most important for allowing growth on these short-chain fatty acids.  相似文献   

11.
Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium, producing butyrate and acetate as its main fermentation products. In order to decrease acetate and increase butyrate production, integrational mutagenesis was used to disrupt the gene associated with the acetate formation pathway in C. tyrobutyricum. A nonreplicative integrational plasmid containing the phosphotransacetylase gene (pta) fragment cloned from C. tyrobutyricum by using degenerate primers and an erythromycin resistance cassette were constructed and introduced into C. tyrobutyricum by electroporation. Integration of the plasmid into the homologous region on the chromosome inactivated the target pta gene and produced the pta-deleted mutant (PTA-Em), which was confirmed by Southern hybridization. SDS-PAGE and two-dimensional protein electrophoresis results indicated that protein expression was changed in the mutant. Enzyme activity assays using the cell lysate showed that the activities of PTA and acetate kinase (AK) in the mutant were reduced by more than 60% for PTA and 80% for AK. The mutant grew more slowly in batch fermentation with glucose as the substrate but produced 15% more butyrate and 14% less acetate as compared to the wild-type strain. Its butyrate productivity was approximately 2-fold higher than the wild-type strain. Moreover, the mutant showed much higher tolerance to butyrate inhibition, and the final butyrate concentration was improved by 68%. However, inactivation of pta gene did not completely eliminate acetate production in the fermentation, suggesting the existence of other enzymes (or pathways) also leading to acetate formation. This is the first-reported genetic engineering study demonstrating the feasibility of using a gene-inactivation technique to manipulate the acetic acid formation pathway in C. tyrobutyricum in order to improve butyric acid production from glucose.  相似文献   

12.
Coenzyme A (CoA) and its thioester derivative acetyl-Coenzyme A (acetyl-CoA) participate in over 100 different reactions in intermediary metabolism of microorganisms. Earlier results indicated that overexpression of upstream rate-limiting enzyme pantothenate kinase with simultaneous supplementation of precursor pantothenic acid to the culture media increased intracellular CoA levels significantly ( approximately 10-fold). The acetyl-CoA levels also increased ( approximately 5-fold) but not as much as that of CoA, showing that the carbon flux from the pyruvate node is rate-limiting upon an increase in CoA levels. In this study, pyruvate dehydrogenase was overexpressed under elevated CoA levels to increase carbon flux from pyruvate to acetyl-CoA. This coexpression did not increase intracellular acetyl-CoA levels but increased the accumulation of extracellular acetate. The production of isoamyl acetate, an industrially useful compound derived from acetyl-CoA, was used as a model reporter system to signify the beneficial effects of this metabolic engineering strategy. In addition, a strain was created in which the acetate production pathway was inactivated to relieve competition at the acetyl-CoA node and to efficiently channel the enhanced carbon flux to the ester production pathway. The synergistic effect of cofactor CoA manipulation and pyruvate dehydrogenase overexpression in the acetate pathway deletion mutant led to a 5-fold increase in isoamyl acetate production. Under normal growth conditions the acetate pathway deletion mutant strains accumulate intracellular pyruvate, leading to excretion of pyruvate. However, upon enhancing the carbon flux from pyruvate to acetyl-CoA, the excretion of pyruvate was significantly reduced.  相似文献   

13.
Although the bacterium E. coli is chosen as the host in many bioprocesses, products derived from the central aerobic metabolic pathway often compete with the acetate-producing pathways poxB and ackA-pta for glucose as the substrate. As such, a significant portion of the glucose may be excreted as acetate, wasting substrate that could have otherwise been used for the desired product. The production of the ester isoamyl acetate from acetyl-CoA by ATF2, a yeast alcohol acetyl transferase, was used as a model system to demonstrate the beneficial effects of reducing acetate production. All strains tested for ester production also overexpressed panK, a native E. coli gene that previous studies have shown to increase free intracellular CoA levels when fed with pantothenic acid. A recombinant E. coli strain with a deletion in ackA-pta produces less acetate and more isoamyl acetate than the wild-type E. coli strain. When both acetate-producing pathways were deleted, the acetate production was greatly reduced. However, pyruvate began to accumulate, so that the overall ester production remained largely unchanged. To produce more ester, a previously established strategy of increasing the flux from pyruvate to acetyl-CoA was adopted by overexpressing pyruvate dehydrogenase. The ester production was then 80% higher in the poxB, ackA-pta strain (0.18 mM) than that found in the single ackA-pta mutant (0.10 mM), which also overexpressed PDH.  相似文献   

14.
Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main end product of their energy metabolism, whereas acetate formation does not occur in their mammalian hosts. Acetate production might therefore harbour novel targets for the development of new anti-parasitic drugs. In parasites, acetate is produced from acetyl-CoA by two different reactions, both involving substrate level phosphorylation, that are catalysed by either a cytosolic acetyl-CoA synthetase (ACS) or an organellar acetate:succinate CoA-transferase (ASCT). The ACS reaction is directly coupled to ATP synthesis, whereas the ASCT reaction yields succinyl-CoA for ATP formation via succinyl-CoA synthetase (SCS). Based on recent work on the ASCTs of F. hepatica, T. vaginalis and Trypanosoma brucei we suggest the existence of three subfamilies of enzymes within the CoA-transferase family I. Enzymes of these three subfamilies catalyse the ASCT reaction in eukaryotes via the same mechanism, but the subfamilies share little sequence homology. The CoA-transferases of the three subfamilies are all present inside ATP-producing organelles of parasites, those of subfamily IA in the mitochondria of trypanosomatids, subfamily IB in the mitochondria of parasitic worms and subfamily IC in hydrogenosome-bearing parasites. Together with the recent characterisation among non-parasitic protists of yet a third route of acetate formation involving acetate kinase (ACK) and phosphotransacetylase (PTA) that was previously unknown among eukaryotes, these recent developments provide a good opportunity to have a closer look at eukaryotic acetate formation.  相似文献   

15.
Coenzyme A (CoA) and its thioester derivatives are important precursor molecules for many industrially useful compounds such as esters, PHBs, lycopene and polyketides. Previously, in our lab we could increase the intracellular levels of CoA and acetyl-Coenzyme A (acetyl-CoA) by overexpressing one of the upstream rate-controlling enzymes pantothenate kinase with a concomitant supplementation of the precursor pantothenic acid to the cell culture medium. In this study, we showed that the CoA/acetyl-CoA manipulation system could be used to increase the productivity of industrially useful compounds derived from acetyl-CoA. We chose the production of isoamyl acetate as a model system. Isoamyl acetate is an important flavor component of sake yeast and holds a great commercial value. Alcohol acetyl transferase (AAT) condenses isoamyl alcohol and acetyl-CoA to produce isoamyl acetate. The gene ATF2, coding for this AAT was cloned and expressed in Escherichia coli. This genetic engineered E. coli produces isoamyl acetate, an ester, from intracellular acetyl-CoA when isoamyl alcohol is added externally to the cell culture medium. In the current study, we showed that in a strain bearing ATF2 gene, an increase in intracellular CoA/acetyl-CoA by overexpressing panK leads to an increase in isoamyl acetate production. Additionally, the cofactor manipulation technique was combined with more traditional approach of competing pathway deletions to further increase isoamyl acetate production. The acetate production pathway competes with isoamyl acetate production for the common intracellular metabolite acetyl-CoA. Earlier we have shown that acetate pathway deletion (ackA-pta) increases isoamyl acetate production. The acetate production pathway was inactivated under elevated CoA/acetyl-CoA conditions, which lead to a further increase in isoamyl acetate production.  相似文献   

16.
Liu X  Zhu Y  Yang ST 《Biotechnology progress》2006,22(5):1265-1275
Clostridium tyrobutyricum produces butyrate, acetate, H(2), and CO(2) as its main fermentation products from glucose and xylose. To improve butyric acid and hydrogen production, integrational mutagenesis was used to create a metabolically engineered mutant with inactivated ack gene, encoding acetate kinase (AK) associated with the acetate formation pathway. A non-replicative plasmid containing the acetate kinase gene (ack) fragment was constructed and introduced into C. tyrobutyricum by electroporation. Integration of the plasmid into the homologous region on the chromosome should inactivate the target ack gene and produce ack-deleted mutant, PAK-Em. Enzyme activity assays showed that the AK activity in PAK-Em decreased by approximately 50%; meanwhile, phosphotransacetylase (PTA) and hydrogenase activities each increased by approximately 40%. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the expression of protein with approximately 32 kDa molecular mass was reduced significantly in the mutant. Compared to the wild type, the mutant grew more slowly at pH 6.0 and 37 degrees C, with a lower specific growth rate of 0.14 h(-1) (vs 0.21 h(-1) for the wild type), likely due to the partially impaired PTA-AK pathway. However, the mutant produced 23.5% more butyrate (0.42 vs 0.34 g/g glucose) at a higher final concentration of 41.7 g/L (vs 19.98 g/L) as a result of its higher butyrate tolerance as indicated in the growth kinetics study using various intial concentrations of butyrate in the media. The mutant also produced 50% more hydrogen (0.024 g/g) from glucose than the wild type. Immobilized-cell fermentation of PAK-Em in a fibrous-bed bioreactor (FBB) further increased the final butyric acid concentration (50.1 g/L) and the butyrate yield (0.45 g/g glucose). Furthermore, in the FBB fermentation at pH 5.0 with xylose as the substrate, only butyric acid was produced by the mutant, whereas the wild type produced large amounts of acetate (0.43 g/g xylose) and lactate (0.61 g/g xylose) and little butyrate (0.05 g/g xylose), indicating a dramatic metabolic pathway shift caused by the ack deletion in the mutant.  相似文献   

17.
Most central metabolic pathways such as glycolysis, fatty acid synthesis, and the TCA cycle have complementary pathways that run in the reverse direction to allow flexible storage and utilization of resources. However, the glyoxylate shunt, which allows for the synthesis of four-carbon TCA cycle intermediates from acetyl-CoA, has not been found to be reversible to date. As a result, glucose can only be converted to acetyl-CoA via the decarboxylation of the three-carbon molecule pyruvate in heterotrophs. A reverse glyoxylate shunt (rGS) could be extended into a pathway that converts C4 carboxylates into two molecules of acetyl-CoA without loss of CO2. Here, as a proof of concept, we engineered in Escherichia coli such a pathway to convert malate and succinate to oxaloacetate and two molecules of acetyl-CoA. We introduced ATP-coupled heterologous enzymes at the thermodynamically unfavorable steps to drive the pathway in the desired direction. This synthetic pathway in essence reverses the glyoxylate shunt at the expense of ATP. When integrated with central metabolism, this pathway has the potential to increase the carbon yield of acetate and biofuels from many carbon sources in heterotrophic microorganisms, and could be the basis of novel carbon fixation cycles.  相似文献   

18.
Metabolic engineering is used to improve titers, yields and generation rates for biochemical products in host microbes such as Escherichia coli. A wide range of biochemicals are derived from the central carbon metabolite acetyl-CoA, and the largest native drain of acetyl-CoA in most microbes including E. coli is entry into the tricarboxylic acid (TCA) cycle via citrate synthase (coded by the gltA gene). Since the pathway to any biochemical derived from acetyl-CoA must ultimately compete with citrate synthase, a reduction in citrate synthase activity should facilitate the increased formation of products derived from acetyl-CoA. To test this hypothesis, we integrated into E. coli C ΔpoxB twenty-eight citrate synthase variants having specific point mutations that were anticipated to reduce citrate synthase activity. These variants were assessed in shake flasks for growth and the production of acetate, a model product derived from acetyl-CoA. Mutations in citrate synthase at residues W260, A267 and V361 resulted in the greatest acetate yields (approximately 0.24 g/g glucose) compared to the native citrate synthase (0.05 g/g). These variants were further examined in controlled batch and continuous processes. The results provide important insights on improving the production of compounds derived from acetyl-CoA.  相似文献   

19.
Increasing demand for the production of renewable fuels has recently generated a particular interest in microbial production of butanol. Anaerobic bacteria, such as Clostridium spp., can naturally convert carbohydrates into a variety of primary products, including alcohols like butanol. The genetics of microorganisms like Clostridium acetobutylicum have been well studied and their solvent-producing metabolic pathways characterized. In contrast, less is known about the genetics of Clostridium spp. capable of converting syngas or its individual components into solvents. In this study, the type of strain of a new solventogenic Clostridium species, C. carboxidivorans, was genetically characterized by genome sequencing. C. carboxidivorans strain P7(T) possessed a complete Wood-Ljungdahl pathway gene cluster, involving CO and CO(2) fixation and conversion to acetyl-CoA. Moreover, with the exception of an acetone production pathway, all the genetic determinants of canonical ABE metabolic pathways for acetate, butyrate, ethanol and butanol production were present in the P7(T) chromosome. The functionality of these pathways was also confirmed by growth of P7(T) on CO and production of CO(2) as well as volatile fatty acids (acetate and butyrate) and solvents (ethanol and butanol). P7(T) was also found to harbour a 19 Kbp plasmid, which did not include essential or butanol production related genes. This study has generated in depth knowledge of the P7(T) genome, which will be helpful in developing metabolic engineering strategies to improve C. carboxidivorans's natural capacity to produce potential biofuels from syngas.  相似文献   

20.
The eukaryotic biodiversity in historical air-dried samples of Dutch agricultural soil has been assessed by random sequencing of an 18S rRNA gene library and by denaturing gradient gel electrophoresis. Representatives of nearly all taxa of eukaryotic soil microbes could be identified, demonstrating that it is possible to study eukaryotic microbiota in samples from soil archives that have been stored for more than 30 years at room temperature. In a pilot study, 41 sequences were retrieved that could be assigned to fungi and a variety of aerobic and anaerobic protists such as cercozoans, ciliates, xanthophytes (stramenopiles), heteroloboseans, and amoebozoans. A PCR-denaturing gradient gel electrophoresis analysis of samples collected between 1950 and 1975 revealed significant changes in the composition of the eukaryotic microbiota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号