首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
The p21-activated protein kinases (Paks) are serine/threonine protein kinases activated by binding to Rho family small GTPases, Rac and Cdc42. Recently, Pak family members have been subdivided into two groups, I and II. Group II Paks, including Pak4, Pak5, and Pak6, does not contain the highly conserved autoinhibitory domain that is found in the group I Paks members, i.e. Pak1, Pak2, and Pak3. In the present study, we have purified the glutathione S-transferase fusion form of Pak5 and shown for the first time that Pak5 autophosphorylation can be activated by GTP bound form of Cdc42. Mutation of histidine residues 19 and 22 to leucine on the p21-binding domain of Pak5 completely abolished the binding of Cdc42 and the Cdc42-mediated autophosphorylation. On the other hand, mutation of tyrosine 40 to cysteine of Cdc42 did not knockout the binding of Pak5. Analysis of C-terminal deletion mutants has identified an autoinhibitory fragment of Pak5 that is absent from other group II Pak family members. Taken together, these results suggest that Pak5, like Pak1, contains an autoinhibitory domain and its activity is regulated by Cdc42.  相似文献   

3.
4.
MAP kinases (MAPK) are serine/threonine kinases which are activated by a dual phosphorylation on threonine and tyrosine residues. Their specific upstream activators, called MAP kinase kinases (MAPKK), constitute a new family of dual-specific threonine/tyrosine kinases, which in turn are activated by upstream MAP kinase kinase kinases (MAPKKK). These three kinase families are successively stimulated in a cascade of activation described in various species such as mammals, frog, fly, worm or yeast.In mammals, the MAP kinase module lies on the signaling pathway triggered by numerous agonists such as growth factors, hormones, lymphokines, tumor promoters, stress factors, etc. Targets of MAP kinase have been characterize tin all subcellular compartments. In yeast, genetic epistasis helped to characterize the presence of several MAP kinase modules in the same system. By complementation tests, the relationships existing between phylogenetically distant members of each kinase family have been described. The roles of the MAP kinase cascade have been analyzed by engineering various mutations in the kinases of the module. The MAP kinase cascade has thus been implicated in higher eukaryotes in cell growth, cell fate and differentiation, and in low eukaryotes, in conjugation, osmotic stress, cell wall constrct and mitosis.  相似文献   

5.
Group I p21-activated kinases are a highly conserved three-member family of serine/threonine kinases that act as key effectors for the small GTPases Cdc42 and Rac. In man, these enzymes have been implicated in a wide range of biological processes and are beginning to draw the attention of the pharmaceutical industry as potential therapeutic targets in cancer and in inflammatory processes. In this review, we summarize basic properties of group I Paks and discuss recently uncovered roles for these kinases in immune function and in viral infection.  相似文献   

6.
Polo-like kinase 1 (Plk1), a well-characterized member of serine/threonine kinases Plk family, has been shown to play pivotal roles in mitosis and cytokinesis in eukaryotic cells. Recent studies suggest that Plk1 not only controls the process of mitosis and cytokinesis, but also, going beyond those previously described functions, plays critical roles in DNA replication and Pten null prostate cancer initiation. In this review, we briefly summarize the functions of Plk1 in mitosis and cytokinesis, and then mainly focus on newly discovered functions of Plk1 in DNA replication and in Ptennull prostate cancer initiation. Furthermore, we briefly introduce the architectures of human and mouse prostate glands and the possible roles of Plk1 in human prostate cancer development. And finally, the newly chemotherapeutic development of small-molecule Plk1 inhibitors to target Plk1 in cancer treatment and their translational studies are also briefly reviewed.  相似文献   

7.
p21活化激酶的生物学活性及其与肿瘤的关系   总被引:3,自引:0,他引:3  
p21活化激酶(p21-activatedkinase,PAK),为一类进化上保守的丝氨酸/苏氨酸蛋白激酶。PAK在许多组织中广泛表达,作为小G蛋白Rho家族Cdc42和Rac1的下游靶蛋白,可以被生长因子及其他胞外信号通过GTP酶依赖的信号通路或非GTP酶依赖的信号通路活化,发挥多种生物学效应。PAK作为一种重要的生物学调节因子,在哺乳动物一系列细胞功能中具有重要作用,如:细胞运动、细胞生存、细胞周期、血管生成、基因转录调节及癌细胞的侵袭转移。通过对PAK家族成员信号转导机制的研究,为癌症治疗提供分子靶标。  相似文献   

8.
极光(aurora)激酶在细胞有丝分裂和肿瘤形成中的重要功能   总被引:4,自引:0,他引:4  
极光激酶(aurora kinases)是负责调控细胞有丝分裂的一类重要的丝氨酸/苏氨酸激酶。在不同的模式生物中,极光激酶各家族成员的结构和功能都高度保守。近年来,随着极光激酶相关研究的不断深入,人们逐渐认识到极光激酶在细胞有丝分裂以及肿瘤形成中的重要功能。在细胞有丝分裂中,极光激酶参与了诸如中心体成熟分离、纺锤体组装和维持、染色体分离以及胞质分裂等多个事件。异常表达的极光激酶往往会导致细胞在有丝分裂的过程中出现大量的异常现象。此外,极光激酶还参与了肿瘤形成的过程,已经发现一些靶向作用于极光的小分子具有显著的抑癌作用。本文围绕哺乳动物的三种极光激酶,重点讨论了它们在细胞有丝分裂中的动态定位、生物学功能以及时空上的调节方式,并分析了异常表达的极光激酶参与肿瘤形成的可能途径,提出了肿瘤治疗的新思路。  相似文献   

9.
The canonical extracellular-regulated kinase (ERK) signaling cascade, consisting of the Ras-Raf-Mek-ERK module, is critically important to many cellular functions. Although the general mechanism of activation of the ERK cascade is well established, additional noncanonical components greatly influence the activity of this pathway. Here, we focus on the group A p21-activated kinases (Paks), which have previously been implicated in regulating both c-Raf and Mek1 activity, by phosphorylating these proteins at Ser(338) and Ser(298), respectively. In NIH-3T3 cells, expression of an inhibitor of all three group A Paks reduced activation of ERK in response to platelet-derived growth factor (PDGF) but not to epidermal growth factor (EGF). Similar results were obtained in HeLa cells using small interference RNA-mediated simultaneous knockdown of both Pak1 and Pak2 to reduce group A Pak function. Inhibition of Pak kinase activity dramatically decreased phosphorylation of Mek1 at Ser(298) in response to either PDGF or EGF, but this inhibition did not prevent Mek1 activation by EGF, suggesting that although Pak can phosphorylate Mek1 at Ser(298), this event is not required for Mek1 activation by growth factors. Inhibition of Pak reduced the Ser(338) phosphorylation of c-Raf in response to both PDGF and EGF; however, in the case of EGF, the reduction in Ser(338) phosphorylation was not accompanied by a significant decrease in c-Raf activity. These findings suggest that Paks are required for the phosphorylation of c-Raf at Ser(338) in response to either growth factor, but that the mechanisms by which EGF and PDGF activate c-Raf are fundamentally different.  相似文献   

10.
Protein kinases are pivotal regulators of cell signaling that modulate each other's functions and activities through site-specific phosphorylation events. These key regulatory modifications have not been studied comprehensively, because low cellular abundance of kinases has resulted in their underrepresentation in previous phosphoproteome studies. Here, we combine kinase-selective affinity purification with quantitative mass spectrometry to analyze the cell-cycle regulation of protein kinases. This proteomics approach enabled us to quantify 219 protein kinases from S and M phase-arrested human cancer cells. We identified more than 1000 phosphorylation sites on protein kinases. Intriguingly, half of all kinase phosphopeptides were upregulated in mitosis. Our data reveal numerous unknown M phase-induced phosphorylation sites on kinases with established mitotic functions. We also find potential phosphorylation networks involving many protein kinases not previously implicated in mitotic progression. These results provide a vastly extended knowledge base for functional studies on kinases and their regulation through site-specific phosphorylation.  相似文献   

11.
The germinal center kinases (GCK) constitute a large, highly conserved family of proteins that has been implicated in a wide variety of cellular processes including cell growth and proliferation, polarity, migration, and stress responses. Although diverse, these functions have been attributed to an evolutionarily conserved role for GCKs in the activation of ERK, JNK, and p38 MAP kinase pathways. In addition, multiple GCKs from different species promote apoptotic cell death. In contrast to these paradigms, we found that a C. elegans GCK, GCK-1, functions to inhibit MAP kinase activation and apoptosis in the C. elegans germline. In the absence of GCK-1, a specific MAP kinase isoform is ectopically activated and oocytes undergo abnormal development. Moreover, GCK-1- deficient animals display a significant increase in germ cell death. Our results suggest that individual germinal center kinases act in mechanistically distinct ways and that these functions are likely to depend on organ- and developmental-specific contexts.  相似文献   

12.
p21-activated kinases (Paks) have been identified in a variety of eukaryotic cells as key effectors of the Cdc42 family of guanosine triphosphatases. Pak kinases play important roles in regulating the filamentous actin cytoskeleton. In this study, we describe a function for the Schizosaccharomyces pombe Pak-related protein Pak1p/Orb2p in cytokinesis. Pak1p localizes to the actomyosin ring during mitosis and cytokinesis. Loss of Pak1p function leads to accelerated cytokinesis. Pak1p mediates phosphorylation of myosin II regulatory light chain Rlc1p at serine residues 35 and 36 in vivo. Interestingly, loss of Pak1p function or substitution of serine 35 and serine 36 of Rlc1p with alanines, thereby mimicking a dephosphorylated state of Rlc1p, leads to defective coordination of mitosis and cytokinesis. This study reveals a new mechanism involving Pak1p kinase that helps ensure the fidelity of cytokinesis.  相似文献   

13.
Kinases of the Akt family are integral and essential components in growth factor signaling pathways activated downstream of the membrane bound phospho-inositol-3 kinase. In light of strong homologies in the primary amino acid sequence, the three Akt kinases were long surmised to play redundant and overlapping roles in insulin signaling across the spectra of cell and tissue types. Over the last 10 years, work using mouse knockout models, cell specific inactivation, and more recently targeted gene inactivation, has brought into question the redundancy within Akt kinase isoforms and instead pointed to isoform specific functions in different cellular events and diseases. Here we concentrate on the differential roles played by Akt1 and Akt2 in a variety of cellular processes and in particular during cancer biogenesis. In this overview, we illustrate that while Akt1 and 2 are often implicated in many aspects of cellular transformation, the two isoforms frequently act in a complementary opposing manner. Furthermore, Akt1 and Akt2 kinases interact differentially with modulating proteins and are necessary in relaying roles during the evolution of cancers from deregulated growth into malignant metastatic killers. These different actions of the two isoforms point to the importance of treatments targeting isoform specific events in the development of effective approaches involving Akt kinases in human disease.  相似文献   

14.
15.
16.
Prostate-derived sterile 20-like kinases (PSKs) 1-α, 1-β, and 2 are members of the germinal-center kinase-like sterile 20 family of kinases. Previous work has shown that PSK 1-α binds and stabilizes microtubules whereas PSK2 destabilizes microtubules. Here, we have investigated the activation and autophosphorylation of endogenous PSKs and show that their catalytic activity increases as cells accumulate in G(2)/M and declines as cells exit mitosis. PSKs are stimulated in synchronous HeLa cells as they progress through mitosis, and these proteins are activated catalytically during each stage of mitosis. During prophase and metaphase activated PSKs are located in the cytoplasm and at the spindle poles, and during telophase and cytokinesis stimulated PSKs are present in trans-Golgi compartments. In addition, small interfering RNA (siRNA) knockdown of PSK1-α/β or PSK2 expression inhibits mitotic cell rounding as well as spindle positioning and centralization. These results show that PSK catalytic activity increases during mitosis and suggest that these proteins can contribute functionally to mitotic cell rounding and spindle centralization during cell division.  相似文献   

17.
CDC25B, one of the three members of the CDC25 dual-specificity phosphatase family, plays a critical role in the control of the cell cycle and in the checkpoint response to DNA damage. CDC25B is responsible for the initial dephosphorylation and activation of the cyclin-dependent kinases, thus initiating the train of events leading to entry into mitosis.1 The critical role played by CDC25B is illustrated by the fact that it is specifically required for checkpoint recovery2, 3 and that unscheduled accumulation of CDC25B is responsible for illegitimate entry into mitosis.3-5 Here, we report that in p53-/- colon carcinoma cells, a moderate increase in the CDC25B level is sufficient to impair the DNA damage checkpoint, to increase spontaneous mutagenesis, and to sensitize cells to ionising radiation and genotoxic agents. Using a tumour cell spheroid assay as an alternative to animal studies, we demonstrate that the level of CDC25B expression modulates growth inhibition and apoptotic death. Since CDC25B overexpression has been observed in a significant number of human cancers, including colon carcinoma, and is often associated with high grade tumours and poor prognosis1, our work suggests that the expression level of CDC25B might be a potential key parameter of the cellular response to cancer therapy.  相似文献   

18.
The p21-activated kinases (Paks) serve as effectors of the Rho family GTPases Rac and Cdc42. The six human Paks are divided into two groups based on sequence similarity. Group I Paks (Pak1 to -3) phosphorylate a number of substrates linking this group to regulation of the cytoskeleton and both proliferative and anti-apoptotic signaling. Group II Paks (Pak4 to -6) are thought to play distinct functional roles, yet their few known substrates are also targeted by Group I Paks. To determine if the two groups recognize distinct target sequences, we used a degenerate peptide library method to comprehensively characterize the consensus phosphorylation motifs of Group I and II Paks. We find that Pak1 and Pak2 exhibit virtually identical substrate specificity that is distinct from that of Pak4. Based on structural comparisons and mutagenesis, we identified two key amino acid residues that mediate the distinct specificities of Group I and II Paks and suggest a structural basis for these differences. These results implicate, for the first time, residues from the small lobe of a kinase in substrate selectivity. Finally, we utilized the Pak1 consensus motif to predict a novel Pak1 phosphorylation site in Pix (Pak-interactive exchange factor) and demonstrate that Pak1 phosphorylates this site both in vitro and in cultured cells. Collectively, these results elucidate the specificity of Pak kinases and illustrate a general method for the identification of novel sites phosphorylated by Paks.  相似文献   

19.
20.
It is becoming increasingly evident that proteins of the actin depolymerizing factor (ADF)/cofilin family are essential regulators of actin turnover required for many actin-based cellular processes, including motility. ADF can increase actin turnover by either increasing the rate of actin filament treadmilling or by severing actin filaments. In neurons ADF is highly expressed in neuronal growth cones and its activity is regulated by many signals that affect growth cone motility. In addition, increased activity of ADF causes an increase in neurite extension. ADF activity is inhibited upon phosphorylation by LIM kinases (LIMK), kinases activated by members of the Rho family of small GTPases. ADF become dephosphorylated downstream of signal pathways that activate PI-3 kinase or increase levels of intracellular calcium. The growth-regulating effects of ADF together with its ability to be regulated by a wide variety of guidance cues, suggest that ADF may regulate growth cone advance and navigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号