首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liposomes survive exposure to biological fluids poorly, extruding trapped enzymes, drugs, or solutes upon interaction with serum or plasma constituents. We have quantified the disruptive effects of human serum on liposomes and have studied whether various modifications in their phospholipid composition might produce liposomes with an increased carrier potential for applications in vivo. Multilamellar liposomes (phosphatidylcholine 70:dicetyl phosphate 20: cholesterol 10) were prepared with 3H-labeled phosphatidylcholine as the lipid phase marker and [14C]inulin and horseradish peroxidase as aqueous phase markers. Gel exclusion chromatography showed that 32 ± 3% of [14C]inulin and 27 ± 7% of horseradish peroxidase were lost after 1 h incubation with 10% (v/v) human serum. Loss of aqueous solutes was reduced to 20 ± 5%/h and 17 ± 2%/h, respectively, after treatment with decomplemented serum (56°C, 30 min). Loss induced by serum was concentration and time dependent: to 57 ± 2% at 1 h and 67 ± 14% at 24 h, with 50% serum; plasma was slightly less perturbing whereas human serum albumin was not at all disruptive. By incorporating sphingomyelin (35 mol%) into multilamellar liposomes, the leakage of [14C]-inulin in the presence of 10% serum was reduced to 12 ± 4%/h; increasing the molar percentage of cholesterol to 35% also stabilized the lipid bilayers, reducing leakage to 20 ± 7%/h. Both small and large unilamellar vesicles could not be stabilized against serum-mediated leakage by the incorporation of sphingomyelin. The data suggest that cholesterol and sphingomyelin enhance liposomal integrity in the presence of serum or plasma and promise to yield enhanced survival of drug-laden lipid vesicles in biological fluids in vivo.  相似文献   

2.
Presynaptic nerve terminals when depolarized are sensitive to morphological and functional alteration by horseradish peroxidase. Mouse brain slices, 0.1 mm, depolarized by a K+-HEPES buffer and exposed to horseradish peroxidase exhibited alterations in both synaptic vesicle membrane structure and in high-affinity [14C]γ-aminobutyric acid uptake. The post stimulatory retrieval of synaptic vesicles from the nerve terminal plasma membrane in the presence of horseradish peroxidase resulted in a decrease in the synaptic vesicle population with a concurrent increase in non-synaptic vesicle membrane structures. High-affinity [14C]γ-aminobutyric acid uptake into 0.1-mm slices of mouse cerebral cortex and ponsmedulla-spinal cord was inhibited by 31% and 24%, respectively, after incubation for 60 min in K+-HEPES buffer containing horseradish peroxidase. Superoxide dismutase protected both the synaptic vesicle membrane and the high-affinity uptake system from the deleterious effects of horseradish peroxidase, pointing to the possible involvement of superoxide anion radicals in the horseradish peroxidase-related effects. These horseradish peroxidase induced alterations appear to be directed towards the exposed synaptic vesicle membrane, since non-stimulated brain slices exposed to horseradish peroxidase do not exhibit a reduction in either high- or low-affinity [14C]γ-aminobutyric acid uptake. Low-affinity uptake of [14C]γ-aminobutyric acid and [14C]α-aminoisobutyric acid into cortical slices was not affected after incubation in K+-HEPES with horseradish peroxidase. Low-affinity uptake, however, is reduced by the high-K+/Na+-free stimulatory incubation prior to uptake. It appears, thus, that high- and low-affinity uptake are distinct and different systems, with the high-affinity transport system structurally associated with synaptic vesicle membrane.  相似文献   

3.
The surface of the HeLa cell is composed of a heterogeneous population of sialogly coproteins which undergo lectin-mediated endocytosis (Kramer and Canellakis, Biochim Biophys Acta 551:328, 1979). One such sialoglyco-protein, gamma protein, is the major periodate-Schiff-reactive and [3H]-glucosamine-labeled component of the plasma membrane; it has an apparent molecular weight of 165,000. Gamma protein is also the major [125I]-wheat germ agglutinin-binding component in sodium dodecyl sulfate gels. Neuraminidase digestion of HeLa cells abolishes binding of [125I]-wheat germ agglutinin to gamma protein, and pretreatment of cells with wheat germ agglutinin protects gamma protein from desialation by neuraminidase. suggesting that wheat germ agglutinin binds to the sialic acid residues of gamma protein at the cell surface. Gamma protein can be extracted with various detergents but not with high-salt, chelating, or chaotropic agents. Intact inside-out plasma membrane vesicles have been prepared from HeLa cells that had phagocytosed latex particles. Treatment of these isolated vesicles with trypsin reduces the molecular weight of gamma protein. These results suggest that gamma protein is an integral membrane protein that spans the plasma membrane. Gamma protein can be purified to homogeneity by sequential lithium diiodosalicylate-phenol extraction, wheat germ agglutinin-agarose affinity chromatography, and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

4.
The transport of sterols incorporated into the lecithin bilayer of small unilamellar liposomes through a model membrane was studied. A two-chamber diffusion cell containing liposomes with incorporated [4-14C]cholesterol or β-[4-14C]sitosterol in the donor chamber and liposomes with unlabeled cholesterol in the receiver chamber was used. The permeability coefficients of the sterols through silastic rubber membranes which served as a model membrane were measured. The permeability for cholesterol incorporated into liposomes in a phosphatidyl choline/cholesterol molar ratio of 1 : 1, produced by sonication for 1 h, and subsequent centrifugation at 100000 × g for 1 h, was 1.6 · 10?8 cm sec?1. Dilution of the liposome suspension did not change the permeability coefficient significantly. The permeability coefficient of sitosterol incorporated into liposomes was about 4-times smaller than that of cholesterol. These results suggest that the sterols were delivered to the silastic membrane by the intact liposomes and that free solute was not involved in the transport to the membrane to a significant degree. The large differences in the permeability coefficients between cholesterol and sitosterol indicate that an aqueous interfacial barrier was crossed by the sterol during the delivery to the membrane.  相似文献   

5.
Lactoperoxidase-catalyzed iodination of intact cells, is known to label predominantly, if not exclusively, the exposed tyrosine residues of cell surface proteins. The present study demonstrates that during this iodination process surface membrane lipids are also iodinated through an enzyme-dependent step. Phosphatidylcholine, cholesterol-phosphatidylcholine liposomes and confluent secondary cultures of chick embryo cells were iodinated by the lactoperoxidase-glucose oxidase-glucose [125I] procedure. Liposomes were efficiently labeled. In the cells, 20–30% of the radioactivity was found in proteins and 20–30% in the lipids. Both neutral and polar lipids were found to bind [125I] covalently. Controls in which lactoperoxidase was omitted showed < 6% of the radioactivity found in liposomes or cells labeled with the enzyme.  相似文献   

6.
Liposomes containing entrapped horsedish peroxidase were incubated with three human cell lines in vitro. Although these cells did not ingest latex particles, and took up less than 1 minut of free peroxidase/5 · 106 from the medium, significant amounts (41–164 munits/5 · 106) of peroxidase became cell-associated by 30 min if the enzyme was presented in negatively charged liposomes (phosphatidylchloline/dicetyl phosphate/cholesterol, 70 : 20 : 10 molar ratio). Uptake of liposome-entrapped peroxidase by lymphocytes or fibroblasts was enhanced 2–5-fold if one molar percent of lysophosphatidylcholine was incorporated as a “fusogen”, and was not appreciately diminished by cytochalasin B, an inhibitor of phagocytosis. Lysophosphatidylcholine containing liposomes did not release trapped peroxidase into the medium during incubation, and studies employing the metallochromic dye, arsenazo III demonstrated lack of access of external Ca2+ to the internal, enzyme-laden, aqueous compartments; liposome-liposome fusion was also excluded by similar means. Ultrastructural cytochemstry demonstrated peroxidase within liposomes in the free cytosol of cultured cells 15–90 min after apparent liposome-cell fusion. Data provide evidence that multilamellar liposomes can be as vectors for the introjection of missing enzymes into non-phagocytic human cells.  相似文献   

7.
Positive liposomes consisting of phosphatidylcholine, cholesterol and stearylamine and negatively charged liposomes consisting of phosphatidylcholine, cholesterol and phosphatidylserine, were double labelled with either 3H-labelled dipalmitoyl phosphatidylcholine and [14C]cholesterol or with [14C]cholesterol and [3H]methotrexate entrapped in the aqueous phase. The plasma levels and urinary excretion of radioactivity from sonicated and non-sonicated liposomes were then compared with the levels of radioactivity from free [3H]methotrexate during a 4 h experimental period after an initial intravenous injection in cynomolgous monkeys. Tissue uptake at the completion of the 4 h experimental period was also measured.It was found that plasma radioactivity from [3H]methotrexate and [14C]cholesterol in sonicated positive liposomes was cleared more slowly than from comparable non-sonicated liposomes, and considerably slower than from free [3H]methotrexate. Radioactivity from sonicated negative liposomes was cleared more rapidly than from positive sonicated liposomes. Positive liposomes captured considerably more [3H]methotrexate than negative liposomes and showed very low permeability to [3H]methotrexate in in vitro studies, even in the presence of high concentrations of serum.[14C]Cholesterol radioactivity was cleared more rapidly from plasma than 3H-radioactivity from liposome-entrapped [3H]methotrexate for double-labelled sonicated liposomes and generally showed greater uptake into tissues and red blood cells. 3H-labelled dipalmitoyl phosphatidylcholine in sonicated positive liposomes was cleared faster than [14C]cholesterol during the first 3 h. The more rapid disappearance of [14C]cholesterol from the plasma was complemented by greater uptake into a number of tissues, and positive non-sonicated liposomes were taken up to a greater extent by the spleen than equivalent sonicated liposomes.Renal excretion of 3H from liposome-entrapped [3H]methotrexate was considerably less than that of 3H from free [3H]methotrexate. There was insignificant excretion, however, of 14C from cholesterol in the urine.Entrapment in liposomes completely prevented the otherwise considerable breakdown of free methotrexate to 3H-containing products in plasma and partially prevented its breakdown in tissues.These studies indicate marked differences in the distribution of liposomes in vivo due to surface charge and size, and some degree of exchange of the lipid components of the liposome bilayer independent of the distribution of the entrapped species. They also show that entrapment in liposomes can reduce metabolic degradation of a drug, maintain high plasma levels and reduce its renal excretion.  相似文献   

8.
Positive liposomes consisting of phosphatidylcholine, cholesterol and stearylamine and negatively charged liposomes consisting of phosphatidylcholine, cholesterol and phosphatidylserine, were double labelled with either 3H-labelled dipalmitoyl phosphatidylcholine and [14C]cholesterol or with [14C]cholesterol and [3H]methotrexate entrapped in the aqueous phase. The plasma levels and urinary excretion of radioactivity from sonicated and non-sonicated liposomes were then compared with the levels of radioactivity from free [3H]methotrexate during a 4 h experimental period after an initial intravenous injection in cynomolgous monkeys. Tissue uptake at the completion of the 4 h experimental period was also measured.It was found that plasma radioactivity from [3H]methotrexate and [14C]cholesterol in sonicated positive liposomes was cleared more slowly than from comparable non-sonicated liposomes, and considerably slower than from free [3H]methotrexate. Radioactivity from sonicated negative liposomes was cleared more rapidly than from positive sonicated liposomes. Positive liposomes captured considerably more [3H]methotrexate than negative liposomes and showed very low permeability to [3H]methotrexate in in vitro studies, even in the presence of high concentrations of serum.[14C]Cholesterol radioactivity was cleared more rapidly from plasma than 3H-radioactivity from liposome-entrapped [3H]methotrexate for double-labelled sonicated liposomes and generally showed greater uptake into tissues and red blood cells. 3H-labelled dipalmitoyl phosphatidylcholine in sonicated positive liposomes was cleared faster than [14C]cholesterol during the first 3 h. The more rapid disappearance of [14C]cholesterol from the plasma was complemented by greater uptake into a number of tissues, and positive non-sonicated liposomes were taken up to a greater extent by the spleen than equivalent sonicated liposomes.Renal excretion of 3H from liposome-entrapped [3H]methotrexate was considerably less than that of 3H from free [3H]methotrexate. There was insignificant excretion, however, of 14C from cholesterol in the urine.Entrapment in liposomes completely prevented the otherwise considerable breakdown of free methotrexate to 3H-containing products in plasma and partially prevented its breakdown in tissues.These studies indicate marked differences in the distribution of liposomes in vivo due to surface charge and size, and some degree of exchange of the lipid components of the liposome bilayer independent of the distribution of the entrapped species. They also show that entrapment in liposomes can reduce metabolic degradation of a drug, maintain high plasma levels and reduce its renal excretion.  相似文献   

9.
Liposomes prepared with cholesterol and dipalmitoyl phosphatidylcholine were incubated with a clone of normal rat kidney fibroblast of cells in culture. The cells took up [14C]cholesterol in proportion to the concentration of liposomes in the incubation medium, and the uptake increased with time over the four hours of study. Two cell membrane enzymes, adenylate cyclase and (Na+ + K+)-ATPase, exhibited decreased activity after treatment with cholesterol-containing liposomes. The decrease in adenylate cyclase activity was directly proportional to the uptake of [14C]cholesterol. When a variety of subclones of NRK 5W were examined some were found to respond to cholesterol treatment and some did not. These data are consistent with the view that membrane cholesterol content plays a role in controlling the activity of some plasma membrane enzymes.  相似文献   

10.
Liposomes survive exposure to biological fluids poorly, extruding trapped enzymes, drugs, or solutes upon interaction with serum or plasma constituents. We have quantified the disruptive effects of human serum on liposomes and have studied whether various modifications in their phospholipid composition might produce liposomes with an increased carrier potential for application in vivo. Multilamellar liposomes (phosphatidycholine 70:dicetyl phosphate 20:cholesterol 10) were prepared with 3H-labeled phosphatidylcholine as the lipid phase marker and [14C]inulin and horseradish peroxidase as aqueous phase markers. Gel exclusion chromatography showed that 32 +/- 3% of [14C]inulin and 27 +/- 7% of horseradish peroxidase were lost after 1 h incubation with 10% (v/v) human serum. Loss of aqueous solutes was reduced to 20 +/- 5%/h and 17 +/- 2%/h, respectively, after treatment with decomplemented serum (56 degrees C, 30 min). Loss induced by serum was concentration and time dependent: to 57 +/- 2% at 1 h and 67 +/- 14% at 24 h, with 50% serum; plasma was slightly less perturbing whereas human serum albumin was not at all disruptive. By incorporating sphingomyelin (35 mol%) into multilamellar liposomes, the leakage of [14c]-inulin in the presence of 10% serum was reduced to 12 +/- 4%/h; increasing the molar percentage of cholesterol to 35% also stabilized the lipid bilayers, reducing leakage to 20 +/- 7%/h. Both small and large unilamellar vesicles could not be stablilized against serum-mediated leakage by the incorporation of sphingomyelin. The data suggest that cholesterol and sphingomyelin enhance liposomal integrity in the presence of serum or plasma and promise to yield enhanced survival of drug-laden lipid vesicles in biological fluids in vivo.  相似文献   

11.
We describe a method by which horseradish peroxidase may be attached covalently to the surface of liposomes under conditions which permit minimal non-covalent association of the enzyme with the lipids. The coupling method adopted does not allow the formation of homopolymers of liposomes or peroxidase. For phosphatidylethanolamine/phosphatidylcholine and stearylamine/phosphatidylcholine vesicles, minimal disruption of vesicular structure is observed, whilst for phosphatidylserine vesicles, the lipid-protein complex appears to form structures much smaller than 25 nm in diameter. Stearylamine/phosphatidylcholine vesicles have been shown to retain entrapped inulin, and activity measurements for the peroxidase suggest that it is located exclusively on the external surface of the liposome membrane. Peroxidase can be localized histochemically which has permitted the morphological study of the coated liposomes and their interactions with cells.  相似文献   

12.
The in vitro interactions between negatively charged multilamellar liposomes and purified rat liver parenchymal and non-parenchymal cells were studied. The liposomes were labelled with [14C]cholesterol and contained [3H]methotrexate. For both cell types the time course of liposomal attachment to the cells slowed down gradually after a rapid initial phase lasting ca 90 min. The rate of attachment at 4 °C was 3–7 times lower than that at 37 °C, and the metabolic inhibitors dinitrophenol and iodoacetic acid caused reduction of 20–30%. Up to 45% of the cell-associated liposomal radioactivity could be detached within 1 h incubation with unlabelled liposomes. Whereas liver parenchymal cell suspension seemed to exhibit similar characteristics in vitro as in vivo, the non-parenchymal cells in vitro showed a 20–50-fold reduction in the rate of liposomal attachment compared to in vivo.  相似文献   

13.
A particulate enzyme preparation from horseradish root tissue was shown to catalyze the transfer of 2-acetamido-2-deoxy-d-[14C1]glucose from uridine diphosphate 2-acetamido-2-deoxy-d-[14C1]glucose to an exogenous acceptor molecule derived from horseradish peroxidase. The acceptor was produced from purified peroxidase by the action of a mixture of glycoside hydrolases covalently bound to Sepharose. The membrane preparation containing the transferase was purified approximately 12-fold by aqueous two phase distribution and by discontinuous sucrose density gradient centrifugation.Hydrolysis of the reaction product yielded glucosamine as the only radiolabeled substance. Precipitation of the reaction product by antiserum against peroxidase showed that the label was incorporated into peroxidase. The transferase utilized the acceptor most efficiently when only 12% of the 2-acetamido-2-deoxy-d-glucose was removed from the acceptor. The acceptor lost no accepting capabilities when heated to 100°C for 3 min prior to assay. Trypsin treatment caused a 14% decrease in label incorporated while pronase treatment caused a 93% decrease.  相似文献   

14.
The energetics of interactions of cholesterol with phospholipid in simple liposome bilayers were compared with those in the bilayer of the human erythrocyte membrane, by measuring cholesterol distribution between erythrocytes and liposomes prepared from their whole phospholipid extract. With liposomes of a range of initial cholesterol contents, the equilibrium value for r, the ratio of cholesterol/phospholipid in the liposomes to that in the cells, is in the range 1.1–1.2. The closeness of this value to 1.0 indicates that overall cholesterol-phospholipid interaction in the cell membrane is similar to that in liposomes. However, while the deviation from 1.0 is small, and could arise from average cholesterol-phospholipid interactions in the membrane being only 0.06 to 0.1 kcal · mol?1 weaker than in liposomes, it could also result from 10 to 20% of the cell membrane phospholipid being unavailable to mix with cholesterol.  相似文献   

15.
125I-labeled albumin or poly(vinyl pyrrolidone) encapsulated in intermediate size multilamellar or unilamellar liposomes with 30–40% of cholesterol were injected intravenously into rats. In other experiments liposomes containing phosphatidyl[Me-14C]choline were injected. 1 h after injection parenchymal or non-parenchymal cells were isolated. Non-parenchymal cells were separated by elutriation centrifugation into a Kupffer cell fraction and an endothelial cell fraction. From the measurements of radioactivities in the various cell fractions it was concluded that the liposomes are almost exclusively taken up by the Kupffer cells. Endothelial cells did not contribute at all and hepatocytes only to a very low extent to total hepatic uptake of the 125I-labels. Of the 14C-label, which orginates from the phosphatidylcholine moiety of the liposomes, much larger proportions were recovered in the hepatocytes. A time-dependence study suggested that besides the involvement of phosphatidylcholine exchange between liposomes and high density lipoprotein, a process of intercellular transfer of lipid label from Kupffer cells to the hepatocytes may be involved in this phenomenon. Lanthanum or gadolinium salts, which effectively block Kupffer cell activity, failed to accomplish an increase in the fraction of liposomal material recovered in the parenchymal cells. This is compatible with the notion that liposomes of the type used in these experiments have no, or at most very limited, access to the liver parenchyma following their intravenous administration to rats.  相似文献   

16.
The role of lipid composition in the interaction of purified protein kinase C with large unilamellar vesicles was determined by the extent of photolabelling of the enzyme with 5-[125I]iodonaphthalene-I-azide. The protein kinase C was only slightly labelled when exposed to phosphatidylcholine (PC) liposomes. The addition of phorbol 12-myristate 13-acetate (PMA) or of diacylglycerol to the PC liposomes enhanced significantly the labelling of the protein kinase C at low calcium concentrations. A further enhancement in the photolabelling of the protein kinase C was observed in liposomes containing 2% phosphatidylserine (PS). At low calcium concentrations, the binding of the enzyme to these liposomes increased in the presence of added PMA or diacylglycerol. Raising the levels of PS beyond 2% in the liposomes did not enhance the binding of the protein kinase C. However, when the enzymatic activity of the protein kinase C was measured using basic histones as substrates, maximum phosphorylation was obtained in liposomes with a PC to PS ratio of 1. The fact that the translocation of the protein kinase C from solution to the surface of the liposomes could be monitored by its labelling with 5-iodonaphthalene 1-azide prompted us to determine whether other cytoplasmic proteins might share this property. The interaction of cytoplasmic proteins from HeLa cells with PC liposomes gave trace labelling irrespective of whether calcium was added. When the HeLa cell cytoplasmic proteins were allowed to interact with liposomes containing PS, selective 5-iodonaphthalene-1-azide photolabelling was observed in distinct proteins. Addition of calcium and of PMA or diacylglycerol modified the labelling of some but not all of these proteins. These results suggest that the methodology developed might serve to identify proteins that move to the membrane during stimulation of cells by phorbol esters or by growth factors which induce the generation of diacylglycerol. These results also suggest a role for the phospholipid composition of the plasma membrane (or any intracellular membrane) in the modulation of the activation processes of specific phospholipid-dependent proteins, in particular protein kinase C.  相似文献   

17.
Plasma membrane sphingomyelin in baby hamster kidney (BHK-21) cells was hydrolyzed with sphingomyelinase (Staphylococcus aureus) and the effects on membrane cholesterol translocation and the properties of membrane bound adenylate cyclase and Na+/K(+)-ATPase were determined. Exposure of confluent BHK-21 cells to 0.1 U/ml of sphingomyelinase led to the degradation (at 37 degrees C) of about 60% of cell sphingomyelin. No simultaneous hydrolysis of phosphatidylcholine occurred. The hydrolysis of sphingomyelin subsequently led to the translocation (within 40 min) of about 50-60% of cell [3H]cholesterol from a cholesterol oxidase susceptible pool to an oxidase resistant compartment. The translocation of [3H]cholesterol from the cell surface to intracellular membranes was accompanied by a paralleled increase in [3H]cholesterol ester formation. When cells were first exposed to sphingomyelinase (to degrade sphingomyelin) and then incubated without the enzyme in serum-free media, the mass of cell sphingomyelin decreased initially (by 60%), but then began to increase and reached control levels within 3-4 h. The rapid re-synthesis of sphingomyelin was accompanied by an equally rapid normalization of cell [3H]cholesterol distribution. The re-formation of cell sphingomyelin also led to a decreased content of cellular [3H]cholesterol esters, indicating that unesterified [3H]cholesterol was pulled out of the cholesterol ester cycle and transported to the cell surface. Exposure of BHK-21 cells to sphingomyelinase further led to a dramatically decreased activity of ouabain-sensitive Na+/K(+)-ATPase, whereas forskolin-stimulated adenylate cyclase activity was not affected. The activity of Na+/K(+)-ATPase returned to normal in parallel with the normalization of cell sphingomyelin mass and cholesterol distribution. We conclude that sphingomyelin has profound effects on the steady-state distribution of cell cholesterol, and that manipulations of cell sphingomyelin levels directly and reversibly affects the apparent distribution of cholesterol. Changes in the lipid composition of the plasma membrane also appears to selectively affect important metabolic reactions in that compartment.  相似文献   

18.
With the onset of vitellogenesis, the follicular epithelium overlying the oocyte in stick insect ovarioles becomes highly polarized and patent by formation of wide intercellular spaces. The aim of the present study was to provide experimental support to the notion that the follicular epithelium in this insect species may be involved in transcytosis. Data demonstrate that the follicular epithelium carries out sulfo-conjugation of a 85 kDa fat body derived protein by allowing it to transit from one cell pole to another. Along the basal end, follicle cells branch into a number of cytoplasmic finger-like projections. At the opposite end facing the oocyte they taper off into lance-head shapes. Different vesicular elements are evident at both these extremities. In vivo exposure to horseradish peroxidase shows that the vesicular elements present along the apical end provide an endocytic entry. In contrast, those present along the basal end are labeled with sodium [35S]-sulfate, suggesting that they may be exocytic vesicles containing a sulfo-conjugated secretory product. In vivo exposure to sodium [35S]-sulfate caused radioactivity to appear over the Golgi apparatus and some nearby vesicles of the follicle cell cytoplasm, including the exocytic vesicles. The intracellular pathway of the follicle cells was also examined by immunogold labeling using a monoclonal antibody raised against a 85 kDa fat body derived protein. Under these conditions, gold particles were consistently detected over the Golgi apparatus and the vesicular elements lying along both poles of the follicle cell membrane. Based on this evidence, it is concluded that follicular cells in stick insect ovarioles are endowed with the ability to undergo transcytosis by providing an endocytic entry along the apical end and by releasing exocytically a sulfo-conjugated 85 kDa protein along the baso-lateral domain of the follicle cell membrane.  相似文献   

19.
Liposomes prepared with cholesterol and dipalmitoyl phosphatidylcholine were incubated with a clone of normal rat kidney fibroblast of cells in culture. The cells took up [14C]cholesterol in proportion to the concentration of liposomes in the incubation medium, and the uptake increased with time over the four hours of study. Two cell membrane enzymes, adenylate cyclase and (Na+ + K+)-ATPase, exhibited decreased activity after treatment with cholesterol-containing liposomes. The decrease in adenylate cyclase activity was directly proportional to the uptake of [14C]cholesterol. When a variety of subclones of NRK 5W were examined some were found to respond to cholesterol treatment and some did not. These data are consistent with the view that membrane cholesterol content plays a role in controlling the activity of some plasma membrane enzymes.  相似文献   

20.
We have investigated the relationship between the total amount of cell-bound concanavalin A (con A), as determined in binding experiments with 3H-conA, and the amount of cell-bound conA detected with horseradish peroxidase on normal murine fibroblasts (3T3). By comparing prefixed and non-prefixed cell membranes a discrepancy was found between the amount of cell-bound conA and the amount of cytochemically detected conA. This discrepancy was interpreted to substantiate the theory that conA binding sites can move within the membrane. Incubation of non-prefixed cells with conA induced redistribution of binding sites on the cell membrane. The redistribution resulted in changes in detectability of conA by horseradish peroxidase. The use and limitations of horseradish peroxidase in the study of cell transformation and of changes in agglutinability by conA are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号