首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitory effect of green tea polyphenols viz., catechin and epigallocatechin gallate (EGCG) on the action of collagenase against collagen has been probed in this study. Catechin and EGCG treated collagen exhibited 56 and 95% resistance, respectively, against collagenolytic hydrolysis by collagenase. Whereas direct interaction of catechin and EGCG with collagenase exhibited 70 and 88% inhibition, respectively, to collagenolytic activity of collagenase against collagen and the inhibition was found to be concentration dependent. The kinetics of inhibition of collagenase by catechin and EGCG has been deduced from the extent of hydrolysis of (2-furanacryloyl-L-leucyl-glycyl-L-prolyl-L-alanine), FALGPA. Both catechin and EGCG exhibited competitive mode of inhibition against collagenase. The change in the secondary structure of collagenase on treatment with catechin and EGCG has been monitored using circular dichroism spectropolarimeter. CD spectral studies showed significant changes in the secondary structure of collagenase on treatment with higher concentration of catechin and EGCG. Higher inhibition of EGCG compared to catechin has been attributed to the ability of EGCG to exhibit better hydrogen bonding and hydrophobic interaction with collagenase.  相似文献   

2.
To amplify the antioxidant activity, we synthesized poly(catechin) by the enzyme-catalyzed oxidative coupling using horseradish peroxidase as a catalyst. The poly(catechin) showed great improvement in antioxidant activity such as radical scavenging activity against the superoxide anion and inhibition effects against free radical induced-oxidation of low-density lipoprotein, compared with a catechin monomer. In addition, poly(catechin) showed very high inhibition effects on xanthine oxidase activity, whereas the catechin monomer showed very less inhibition effects. The amplified activities might offer a high potential as a therapeutic agent for prevention of various free radicals and/or enzyme-related diseases.  相似文献   

3.
Catechin exhibits numerous biological and pharmacological effects attributed to antioxidant action. The synthetic poly(catechin)s condensed through acetaldehyde with different molecular weights were assessed in terms of antioxidant activity and enzyme inhibitory activity on the basis of a catechin repeating unit and compared with monomeric catechin. The poly(catechin)s showed great amplification of superoxide scavenging activity, xanthine oxidase (XO) inhibitory activity, and inhibition effects on human low-density lipoprotein oxidation initiated by 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) as a radical generator on the catechin unit level, compared to monomeric catechin: these activities were proportional to their molecular weights. The reducing power of the polymer was lower than that of monomeric catechin, which decreased with increasing the molecular weight. The polymer also protected endothelial cells from oxidative injury induced by AAPH, with a greater effect expressed on a catechin unit basis than that of the monomer. These results demonstrate that the poly(catechin)s are more potent antioxidant agents and enzyme inhibitors.  相似文献   

4.
Gelatin-catechin conjugate was synthesized by the laccase-catalyzed oxidation of catechin in the presence of gelatin. The conjugate had a good scavenging activity against superoxide anion radicals. Moreover, the conjugate showed an amplified inhibition effect on human low density lipoprotein oxidation initiated by 2,2'-azobis(2-amidinopropane)dihydrochloride as a radical generator.  相似文献   

5.
The novel flavonoid, leucocyanidin-3-O-beta-D-glucoside, possessing a 4,2'-glycosidic linkage was isolated from green mature acerola (Malpighia emarginata DC.) puree and given the trivial name "aceronidin." To examine the functions of aceronidin, its antioxidative activity and both its alpha-glucosidase and alpha-amylase inhibition activities, as a potential inhibitor of the sugar catabolic enzyme, were evaluated against those of taxifolin, catechin, isoquercitrin and quercitrin which each have a similar structure. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical quenching activity of aceronidin was stronger than that of alpha-tocopherol and comparable to that of flavonoids. In the yeast alpha-glucosidase inhibitory assay, aceronidin showed significantly greater inhibition than the other flavonoids tested. In the human salivary alpha-amylase inhibitory assay, aceronidin showed inhibition activity. Taken together, these results indicate aceronidin to be a potent antioxidant that may be valuable as an inhibitor of sugar catabolic enzymes.  相似文献   

6.
In vitro released products of adult Setaria cervi females, microfilariae and extracts showed considerable amounts of collagenase activity. On the basis of per mg protein released in vitro, the products of both microfilariae and adult females exhibited comparable activity but this was much higher than that of extract of microfilariae and adult females. Two collagenase enzymes with molecular masses of 50 kDa and 70 kDa were separated using DEAE-sepharose CL6B and Sephadex G-100 column chromatography. The 50 kDa and 70 kDa collagenase exhibited pH optima of 5.2 and 7.0, respectively. Considering specific activity, the 50 kDa enzyme was found to contribute about ten times more collagenase activity as compared to the 70 kDa enzyme. An inhibition study revealed obvious differences between them. Thiol group inhibitors such as N-ethylmaleimide and leupeptin inhibited the 50 kDa enzyme but this was strongly activated by dithiothreitol, a thiol group stabilizer. Alternatively, the 70 kDa enzyme showed a sensitivity to a metal chelator and a serine group inhibitor indicating its metalloserine protease nature. The antifilarial drug diethylcarbamazine did not demonstrate any inhibition under in vitro conditions. Both enzymes were significantly inhibited by antibody IgG separated from Wuchereria bancrofti infected human sera, showing a possible immunoprotective role.  相似文献   

7.
Connective-tissue cells produce a family of metalloproteinases which, once activated, can degrade all the components of the extracellular matrix. These potent enzymes are all inhibited by the tissue inhibitor of metalloproteinases (TIMP), and it was thought that the levels of this inhibitor controlled the extracellular activity of these enzymes. We recently detected a new metalloproteinase inhibitor present in culture media of WI-38 fibroblasts. The inhibitor, named 'large inhibitor of metalloproteinases' (LIMP), can be separated from TIMP by gel filtration on Ultrogel AcA 44, where it is eluted with an apparent Mr of 76,000. A portion of this inhibitor-containing peak binds to concanavalin A-Sepharose, indicating that at least some of the inhibitor contains carbohydrate. LIMP inhibits collagenase (MMP-1), stromelysin (MMP-3) and gelatinase (MMP-2) in a dose-dependent fashion. Collagenase forms tight-binding complexes with LIMP, which can be separated from free collagenase on gel-filtration columns. The complex is eluted with Mr 81,600 (AcA 44) or Mr 60,000 (Superose 12). This complex is larger than that formed between collagenase and TIMP, which has Mr 52,800 (Aca 44) or 41,000 (Superose 12). Polyclonal antibody to TIMP does not recognize LIMP by immunoblotting, and will not block the inhibition of collagenase by LIMP, showing that LIMP is not a multimeric form of TIMP. The role of this new inhibitor in connective-tissue breakdown studies and its relationship to previously described inhibitors of metalloproteinases is discussed.  相似文献   

8.
Root pulps from bovine unerupted wisdom teeth produce a potent collagenase inhibitor together with latent collagenase when cultured in Eagle's minimal essential medium (Biochem. Int. 5, 763, 1982). The inhibitor was purified more than 700-fold from the explant medium using Con A-Sepharose, Ultrogel AcA 44 and DE-52 cellulose columns. It showed a single band (MW = 36,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but showed multiple bands on basic (pH 8.3) polyacrylamide gel electrophoresis and electrofocusing. The inhibitor is a sialo-glycoprotein containing approx. 20% carbohydrate by weight and its composition suggests that it contains complex-type oligosaccharides. The electrophoretic heterogeneity of the inhibitor was proved to be due to the attachment of different numbers of sialic acid residues. All the SH groups were demonstrated to exist as six disulfide linkages which might be involved in the inhibitory activity. The bovine pulp inhibitor does not combine with collagen. The addition of the inhibitor to activated collagenase resulted in dose-dependent inhibition of the enzyme activity, but the interaction between the inhibitor and activated collagenase is not tight enough for the complex to remain intact during gel filtration column chromatography. A rabbit antiserum was prepared against the inhibitor, and immunoglobulin purified from the antiserum can completely abolish the inhibitory activity of the inhibitor.  相似文献   

9.
Myrrh (guggulu) oleoresin from the Commiphora mukul tree is an important component of antiarthritic drugs in Ayurvedic medicine. Clinical data suggest that elevated levels of hyaluronidase and collagenase type 2 enzymes contribute significantly to cartilage degradation. Triphala guggulu (TG) is a guggulu-based formulation used for the treatment of arthritis. We assessed the chondroprotective potential of TG by examining its effects on the activities of pure hyaluronidase and collagenase type 2 enzymes. Triphala shodith guggulu (TSG), an intermediate in the production of TG, was also examined. A spectrophotometric method was used to assay Hyaluronidase activity, and to detect potential Hyaluronidase inhibitors. Aqueous and hydro-alcoholic extracts of TSG showed weak but dose-dependent inhibition of hyaluronidase activity. In contrast, the TG formulation was 50 times more potent than the TSG extract with respect to hyaluronidase inhibitory activity. A validated X-ray film-based assay was used to measure the gelatinase activity of pure collagenase type 2. Hydro-alcoholic extracts of the TG formulation were 4 times more potent than TSG with respect to collagenase inhibitory activity. Components of Triphala were also evaluated for their inhibitory activities on hyaluronidase and collagenase. This is the first report to show that the T2 component of Triphala (T. chebula) is a highly potent hyaluronidase and collagenase inhibitor. Thus, the TG formulation inhibits two major enzymes that can degrade cartilage matrix. Our study provides the first in vitro preclinical evidence of the chondroprotective properties of TG.  相似文献   

10.
1. Collagenase from bovine nasal hyaline cartilage was extracted with 1 and 3 M NaCl in Tris-CaCl2 buffer. 2. Two peaks of collagenase activity were revealed on DE52 ion exchange column, collagenase 1 and collagenase 2. 3. The apparent mol. wt of collagenase 1 and 2 as determined by SDS-PAGE were 68 and 43 kDa, respectively. 4. Both enzymes degrade native collagen type II into two characteristic products, TCA(3/4) and TCB(1/4), at 25 degrees C and pH 7.6. 5. Trypsin and aminophenylmercuric acetate were capable of increasing the collagenase 1 activity. 6. The two enzymes can be characterized as metalloproteinases since they were inhibited by EGTA and 1,10-phenanthroline. The use of proteinase inhibitors (N-ethylmaleimide, iodoacetic acid, phenylmethylsulphonyl fluoride, soybean trypsin inhibitor, pepstatin, dithiothreitol) showed that the enzymes do not contain serine, cysteine or aspartic acid in their active sites.  相似文献   

11.
Inhibition effects of (+)-catechin-aldehyde polycondensates against the activity of proteinases, Clostridium histolyticum collagenase (ChC) and human neutrophil elastase (HNE) causing proteolytic degradation of extracellular matrix (ECM), have been investigated. In normal tissues, a balance is reached between the formation and destruction of ECM, leading to a state of homeostasis. However, uncontrolled destruction of ECM contributes to tumor invasion and metastasis. In the measurement of the inhibition activity on ChC and HNE, the polycondensates exhibited superior effects compared to the catechin monomer. Kinetic assays of ChC and HNE inhibition by the polycondensate clearly showed a mixed-type inhibition. These data demonstrate that the polycondensates are a new class of proteinase inhibitors useful for a potent therapeutic agent.  相似文献   

12.
The novel flavonoid, leucocyanidin-3-O-β-D-glucoside, possessing a 4,2″-glycosidic linkage was isolated from green mature acerola (Malpighia emarginata DC.) puree and given the trivial name “aceronidin.” To examine the functions of aceronidin, its antioxidative activity and both its α-glucosidase and α-amylase inhibition activities, as a potential inhibitor of the sugar catabolic enzyme, were evaluated against those of taxifolin, catechin, isoquercitrin and quercitrin which each have a similar structure. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical quenching activity of aceronidin was stronger than that of α-tocopherol and comparable to that of flavonoids. In the yeast α-glucosidase inhibitory assay, aceronidin showed significantly greater inhibition than the other flavonoids tested. In the human salivary α-amylase inhibitory assay, aceronidin showed inhibition activity. Taken together, these results indicate aceronidin to be a potent antioxidant that may be valuable as an inhibitor of sugar catabolic enzymes.  相似文献   

13.
Selective inhibition of ADAMTS-1, -4 and -5 by catechin gallate esters.   总被引:3,自引:0,他引:3  
Three mammalian ADAMTS enzymes, ADAMTS-1, -4 and -5, are known to cleave aggrecan at certain glutamyl bonds and are considered to be largely responsible for cartilage aggrecan catabolism observed during the development of arthritis. We have previously reported that certain catechins, polyphenolic compounds found in highest concentration in green tea (Camellia sinensis), are capable of inhibiting cartilage aggrecan breakdown in an in vitro model of cartilage degradation. We have now cloned and expressed recombinant human ADAMTS-1, -4 and -5 and report here that the catechin gallate esters found in green tea potently inhibit the aggrecan-degrading activity of these enzymes, with submicromolar IC50 values. Moreover, the concentration needed for total inhibition of these members of the ADAMTS group is approximately two orders of magnitude lower than that which is needed to partially inhibit collagenase or ADAM-10 activity. Catechin gallate esters therefore provide selective inhibition of certain members of the ADAMTS group of enzymes and could constitute an important nutritional aid in the prevention of arthritis as well as being part of an effective therapy in the treatment of joint disease and other pathologies involving the action of these enzymes.  相似文献   

14.
A fluorogenic substrate for vertebrate collagenase and gelatinase, Dnp-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH2, was designed using structure-activity data obtained from studies with synthetic inhibitors and other peptide substrates of collagenase. Tryptophan fluorescence was efficiently quenched by the NH2-terminal dinitrophenyl group, presumably through resonance energy transfer. Increased fluorescence accompanied hydrolysis of the peptide by collagenase or gelatinase purified from culture medium of porcine synovial membranes or alkali-treated rabbit corneas. Amino acid analysis of the two product peptides showed that collagenase and gelatinase cleaved at the Gly-Leu bond. The peptide was an efficient substrate for both enzymes, with kcat/Km values of 5.4 microM-1 h-1 and 440 microM-1 h-1 (37 degrees C, pH 7.7) for collagenase and gelatinase, respectively. Under the same conditions, collagenase gave kcat/Km of about 46 microM-1 h-1 for type I collagen from calf skin. Since both enzymes exhibited similar Km values for the synthetic substrate (3 and 7 microM, respectively), the higher catalytic efficiency of gelatinase reflects predominantly an increase in kcat. Both enzymes were inhibited by HSCH2(R,S)CH[CH2CH(CH3)2]CO-L-Phe-L-Ala-NH2 in this assay (50% inhibition at 20 nM and less than 1 nM for collagenase and gelatinase, respectively). Soluble type I collagen was a competitive inhibitor of peptide hydrolysis by collagenase (KI = 0.8 microM) and exhibited mixed inhibition of gelatinase (KI = 0.3 microM).  相似文献   

15.
In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG) was prepared and its chemically antioxidant, cellular antioxidant (CAA) and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL) in comparison to catechin (IC50 value, 239.27 μg/mL). Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes.  相似文献   

16.
The separation and further purification of human polymorphonuclear-leucocyte collagenase and gelatinase, using modifications of the method of Cawston & Tyler [(1979) Biochem J. 183, 647-656], are described. The final preparations yielded collagenase of specific activity 260 units/mg and gelatinase of specific activity 13 000 units/mg. Gelatinase was purified to apparent homogeneity in a latent form, and analysis of the activation of 125I-labelled latent enzyme by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel-filtration techniques suggested that no peptide material was lost on conversion into the active form. The purified natural inhibitors alpha 2-macroglobulin, tissue inhibitor of metalloproteinases ('TIMP') and amniotic-fluid inhibitor of metalloproteinases all inhibited the two polymorphonuclear-leucocyte metalloproteinases, but the last two inhibitors were slow to act and complete inhibition was difficult to attain. Collagenase degraded soluble types I and III collagen equally efficiently, but soluble type II collagen less well. Gelatinase alone had little activity on these substrates, although it enhanced the action of collagenase. Gelatinase was capable of degrading soluble types IV and V collagen at 25 degrees C, whereas collagenase was only active at higher temperatures when the collagens were susceptible to trypsin activity. By using tissue preparations of insoluble collagens (type I, II or IV) the activity of leucocyte collagenase was low and gelatinase activity was negligible, as measured by the solubilization of hydroxyproline-containing material. The two enzymes together were two or three times more effective in the degradation of these insoluble collagens.  相似文献   

17.
Bone explants from foetal and newborn rabbits synthesize and release a collagenase inhibitor into culture media. Inhibitor production in the early days of culture is followed first by latent collagenase and subsequently active collagenase in the culture media. A reciprocal relationship exists between the amounts of free inhibitor and latent collagenase in culture media, suggesting strongly that the inhibitor is a component of the latent form of the enzyme. Over 90% of the inhibitory activity of culture media is associated with a fraction of apparent mol.wt. 30000 when determined by gel filtration on Ultrogel AcA 44. The inhibitor blocks the action of rabbit collagenase on both reconstituted collagen fibrils and collagen in solution. It inhibits the action of either active collagenase or latent collagenase activated by 4-aminophenylmercuric acetate. Latent collagenase activated by trypsin is usually much less susceptible to inhibition. The activity of the inhibitor is destroyed by heat, by incubation with either trypsin or chymotrypsin and by 4-aminophenylmercuric acetate. Collagenase activity can be recovered from complexes of enzyme (activated with 4-aminophenylmercuric acetate) with free inhibitor by incubation with either trypsin or 4-aminophenylmercuric acetate, at concentrations similar to those that activate latent collagenase from culture media. The rabbit bone inhibitor does not affect the activity of bacterial collagenase, but blocks the action of collagenases not only from a variety of rabbit tissues but also from other mammalian species.  相似文献   

18.
Recombinant human interstitial collagenase, an N-terminal truncated form, delta 243-450 collagenase, recombinant human stromelysin-1, and an N-terminal truncated form, delta 248-460 stromelysin, have been stably expressed in myeloma cells and purified. The truncated enzymes were similar in properties to their wild-type counterparts with respect to activation requirements and the ability to degrade casein, gelatin, and a peptide substrate, but truncated collagenase failed to cleave native collagen. Removal of the C-terminal domain from collagenase also modified its interaction with tissue inhibitor of metalloproteinases-1. Hybrid enzymes consisting of N-terminal (1-242) collagenase.C-terminal (248-460) stromelysin and N-terminal (1-233) stromelysin.C-terminal (229-450) collagenase, representing an exchange of the complete catalytic and C-terminal domains of the two enzymes, were expressed in a transient system using Chinese hamster ovary cells and purified. Both proteins showed similar activity to their N-terminal parent and neither was able to degrade collagen. Analysis of the ability of the different forms of recombinant enzyme to bind to collagen by ELISA showed that both pro and active stromelysin and N-terminal collagenase.C-terminal stromelysin bound to collagen equally well. In contrast, only the active forms of collagenase and N-terminal stromelysin.C-terminal collagenase bound well to collagen, as compared with their pro forms.  相似文献   

19.
The antioxidant activity of catechin was amplified by conjugation with amine-terminated polyhedral oligomeric silsesquioxane (POSS) using horseradish peroxidase as catalyst. Compared to intact catechin, the scavenging activity of the POSS-catechin conjugate against superoxide anion was greatly improved. In addition, the conjugate strongly inhibited xanthine oxidase activity.  相似文献   

20.
A rat osteosarcoma cell clone (ROS 17/2), and osteoblast-enriched populations from rat calvaria cultured in the presence of concanavalin A, have been shown to produce latent collagenase and collagenase inhibitors. The enzymes and inhibitor activities from the ROS 17/2 cells were concentrated by ammonium sulphate precipitation and separated by gel filtration on AcA 54 resin. The size of the latent collagenase (Mr approximately equal to 58000) was reduced on conversion to active enzyme (Mr approximately equal to 48000) by p-aminophenylmercuric acetate. Latent and active forms of gelatinase activity, similar in size to the corresponding forms of collagenase, were also resolved. The collagenase inhibitor activity, which was sensitive to organomercurials, was recovered in two peaks (Mr approximately equal to 68000 and 30000). The active collagenase cleaved interstitial collagens (type I = III greater than II) producing typical 3/4 and 1/4 fragments. This activity was inhibited by the metal ion chelators ethylenediaminetetraacetic acid and o-phenanthroline. Additional specific cleavages of native collagen were also observed which, from the susceptibility of this activity to phenylmethylsulphonyl fluoride, leupeptin and antipain, suggested the presence of a second collagenolytic enzyme. This synthesis of collagenolytic enzymes by these osteoblast-like cells suggests that individual osteoblasts, like fibroblasts, are capable of both synthesizing and degrading their respective organic matrices in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号