首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物间的相互作用对种群动态和群落结构有着重要的影响。大量的野外实验已经揭示了正相互作用(互利)在群落中的普遍存在及其重要性。为了弥补野外实验方法的不足, 模型方法被越来越多地应用于正相互作用及其生态学效应的研究中。该文基于个体模型研究, 探讨了植物间正相互作用对种群动态和群落结构的影响。介绍了植物间正相互作用的定义和发生机制、植物间相互作用与环境梯度的关系。正相互作用是指发生在相邻的植物个体之间, 至少对其中一个个体有益的相互作用。植物通过直接(生境改善或资源富集)或间接(协同防御等)作用使局部环境有利于邻体而发生正相互作用。胁迫梯度假说认为互利的强度或重要性随着环境胁迫度的增加而增加, 但是越来越多的经验研究认为胁迫梯度假说需要改进。以网格模型和影响域模型为例, 介绍了基于个体的植物间相互作用模型方法。基于个体模型, 对近年来国内外正相互作用对种群时间动态(如生物量-密度关系)、空间分布格局和群落结构(如群落生物量-物种丰富度关系)影响的研究进行了总结。指出未来的研究应集中在对正相互作用概念和机制的理解, 新的模型, 新的种群、群落, 甚至生态系统问题, 以及在全球变化背景下进行相关的研究。  相似文献   

2.
植物邻体间的正相互作用   总被引:1,自引:0,他引:1  
张炜平  王根轩 《生态学报》2010,30(19):5371-5380
植物间的正负相互作用是构建植被群落的重要因素,也是群落生态学研究的中心内容之一。近20a来,植物间正相互作用的研究得到快速发展。综述了正相互作用的定义,不同植物群落中的直接、间接正相互作用及其发生机制,正相互作用研究的实验和模型方法,正负相互作用随胁迫梯度的变化及正相互作用对群落构建的影响。探讨了正相互作用研究前景:(1)进一步理解正负相互作用的平衡及其对群落构建的影响;(2)加深对全球变暖背景下的正相互作用的认识;(3)需把正相互作用研究同进化联系起来;(4)充分发挥正相互作用在生态系统中的推动力作用,把正相互作用应用到生态恢复中,为恢复退化生态系统服务。  相似文献   

3.
The population and community level consequences of positive interactions between plants remain poorly explored. In this study we incorporate positive resource-mediated interactions in classic resource competition theory and investigate the main consequences for plant population dynamics and species coexistence. We focus on plant communities for which water infiltration rates exhibit positive dependency on plant biomass and where plant responses can be improved by shading, particularly under water limiting conditions. We show that the effects of these two resource-mediated positive interactions are similar and additive. We predict that positive interactions shift the transition points between different species compositions along environmental gradients and that realized niche widths will expand or shrink. Furthermore, continuous transitions between different community compositions can become discontinuous and bistability or tristability can occur. Moreover, increased infiltration rates may give rise to a new potential coexistence mechanism that we call controlled facilitation.  相似文献   

4.
The role of positive interactions has become widely accepted as a mechanism shaping community dynamics. Most empirical evidence comes from plant communities and sessile marine organisms. However, evidence for the relative role of positive interactions in organizing terrestrial animal communities is more limited, and a general framework that includes positive interactions among animals is lacking. The ‘stress gradient hypothesis’ (SGH) developed by plant ecologists predicts that the balance between positive and negative interactions will vary along gradients of biotic and abiotic stress, with positive interactions being more important in stressful environments. Paralleling the SGH, stress gradients for terrestrial herbivores could be equated to inverse primary productivity gradients, so we would expect positive interactions to prevail in more stressful, low productivity environments. However, this contradicts the typical view of terrestrial animal ecology that low primary productivity systems will foster intense competition for resources among consumers. Here we use alpine herbivores as a case study to test one of the predictions of the SGH in animal communities, namely the prevalence of positive interactions in low productivity environments. We identify potential mechanisms of facilitation and review the limited number of examples of interspecific interactions among alpine herbivores to assess the role of positive and negative interactions in structuring their communities. A meta‐analysis showed no clear trend in the strength and direction of interactions among alpine herbivores. Although studies were biased towards reporting significant negative inter actions, we found no evidence of competition dominating in harsh environments. Thus, our results only partially support the SGH, but directly challenge the dominant view among animal ecologists. Clearly, a sound theoretical framework is needed to include competition, positive and neutral interactions as potential mechanisms determining the structure of animal communities under differing environmental conditions, and the stress‐gradient hypothesis can provide a solid starting point.  相似文献   

5.
Steven J. Presley 《Oikos》2011,120(6):832-841
Patterns of aggregation of species or individuals may result from combinations of interspecific interactions such as competition, facilitation, or apparent facilitation, as well as from equivalent responses to environmental factors. Host–parasite systems are ideal for the investigation of mechanisms that structure assemblages. Interspecific aggregation is documented for multiple groups that are ectoparasitic on mammals and host‐mediated apparent facilitation has been suggested to explain these aggregation patterns. To investigate the generality of this pattern and to determine likely structuring mechanisms, I analyzed species co‐occurrence, correlations of abundances, and nestedness for ectoparasite assemblages from each of 11 species of Neotropical bat. Ectoparasite assemblages on four of 11 host species exhibited significant positive co‐occurrence for the entire assemblage or for at least one pair of species in the assemblage; ectoparasites on two host species exhibited positive co‐occurrence that approached significance. There was no evidence of negative co‐occurrence. Nine species‐pairs exhibited positive abundance correlations, including seven of the eight species‐pairs that exhibited positive co‐occurrence. No species‐pair exhibited a negative correlation of abundances (i.e. density compensation). Ectoparasite assemblages from five of 11 host species exhibited nestedness, including all three assemblages that exhibited assemblage‐wide positive co‐occurrence. Multiple mechanisms associated with host characteristics may contribute to host aggregation in ectoparasite assemblages, including host body size, vagility, home range size, burrow or roost size and complexity, immunocompetence and social structure. In general, data in this study and elsewhere are not consistent with interspecific interactions among ectoparasites, including apparent facilitation, being primary structuring mechanisms of ectoparasite assemblages on mammalian hosts. Rather, host behavior and ecology are likely to affect the frequency of host–ectoparasite encounters and of conspecific host interactions that facilitate transfer of ectoparasites, thereby, molding patterns of ectoparasite co‐occurrence, abundance and species composition on mammalian hosts. Combinations of characteristics that are primarily responsible for molding ectoparasite assemblage composition likely are host‐taxon specific.  相似文献   

6.
Mark Vellend 《Oikos》2008,117(7):1075-1085
Diversity in one group of species or genotypes is often correlated with diversity in a second group – prominent examples including native vs exotic species, and genetic diversity in a focal species vs species diversity in the rest of the community. I used simulation models to investigate the roles of competition and facilitation among species or genotypes in creating diversity–diversity relationships, with a focus on facilitation, which has received little theoretical attention. When competitive interactions dominate, increasing diversity in one group reduces diversity in the second group via filling of available niche space. Facilitation can create positive diversity–diversity relationships via a sampling effect, whereby a strong facilitator of the second group is more likely to be present as diversity increases in the first group, and also via one group acting as a source of biotic heterogeneity (i.e. diversifying selection) on the second group. However, the biotic heterogeneity effect is expected only under restricted conditions – with asymmetric facilitation, only during a transient period, or only over a small range of species diversity levels – and therefore seems unlikely to operate within trophic levels in natural communities. More generally, the simultaneous operation of competition and facilitation results in several different diversity–diversity relationships and underlying mechanisms. The results clarify the potential roles of positive and negative interactions in creating diversity–diversity relationships, and in determining the outcome of community dynamics in general. This study also highlights some important difficulties in incorporating facilitation into ecological theory for communities with many species.  相似文献   

7.
Andrew Wilby  Moshe Shachak 《Oikos》2004,106(2):209-216
Compensatory population dynamics among species stabilise aggregate community variables. Inter-specific competition is thought to be stabilising as it promotes asynchrony among populations. However, we know little about other inter-specific interactions, such as facilitation and granivory. Such interactions are also likely to influence population synchrony and community stability, especially in harsh environments where they are thought to have relatively strong effects in plant communities. We use a manipulative experiment to test the effects of granivores (harvester ants) and nurse plants (dwarf shrubs) on annual plant community dynamics in the Negev desert, Israel. We present evidence for weak and inconsistent effects of harvester ants on plant abundance and on population and community stability. By contrast, we show that annual communities under shrubs were more species rich, had higher plant density and were temporally less variable than communities in the inter-shrub matrix. Species richness and plant abundance were also more resistant to drought in the shrub under-storey compared with the inter-shrub matrix, although population dynamics in both patch types were synchronised. Hence, we show that inter-specific interactions other than competition affect community stability, and that hypothesised mechanisms linking compensatory dynamics and community stability may not operate to the same extent in arid plant communities.  相似文献   

8.
9.
Ecological network studies are providing important advances about the organization, stability and dynamics of ecological systems. However, the ecological networks approach is being integrated very slowly in plant community ecology, even though the first studies on plant facilitation networks (FNs) were published more than a decade ago. The study of interaction networks between established plants and plants recruiting beneath them, which we call Recruitment Networks (RNs), can provide new insights on mechanisms driving plant community structure and dynamics. RNs basically describe which plants recruit under which others, so they can be seen as a generalisation of the classic FNs since they do not imply any particular effect (positive, negative or neutral) of the established plants on recruiting ones. RNs summarise information on the structure of sapling banks. More importantly, the information included in RNs can be incorporated into models of replacement dynamics to evaluate how different aspects of network structure, or different mechanisms of network assembly, may affect plant community stability and species coexistence. To allow an efficient development of the study of FNs and RNs, here we unify concepts, synthesise current knowledge, clarify some conceptual issues, and propose basic methodological guidelines to standardise sampling methods that could make future studies of these networks directly comparable.  相似文献   

10.
The invasion of natural habitats by nonnative species is affected by both native biodiversity and environmental conditions; however few tests of facilitation between native community members and nonnative species have been conducted along disturbance and stress gradients. There is strong evidence for an increase in facilitation between native plant species with increasing levels of natural environmental stress, however it is unknown whether these same positive interactions occur between nonnative invaders and native communities. I investigated the effects of natural stress on community interactions between native heathland species and nonnative species with two field studies conducted at the landscape and community scale. At the landscape scale of investigation, nonnative species richness was positively related to native species richness. At the community level, nonnative invaders experienced facilitation with natives in the most stressful zones, whereas they experienced competition with native plants in the less stressful zones of the heathlands. Due to the observational nature of the landscape scale data, it is unclear whether nonnative diversity levels are responding positively to extrinsic factors or to native biodiversity. The experimental component of this research suggests that native community members may ameliorate stressful environmental conditions and facilitate invasion into high stress areas. I present a conceptual model which is a modification of the Shea and Chesson diversity-invasibility model and includes both facilitation as well as competition between the native community and nonnative invaders at the community level, summing to an overall positive relationship at the landscape scale.  相似文献   

11.
The hypotheses suggesting that the nature and strength of species interactions should be determined by phylogenetic relatedness have important implications for the understanding of community structure. However, to date, there is limited empirical evidence to support them. At least two basic conditions need to be met in order to expect species interactions to be determined by evolutionary relatedness: a phylogenetic signal in the traits involved in the interactions and changes in the interactions as species are more ecologically similar. Here, we report results of a removal experiment in the Chinese Tibetan plateau in which we directly assessed if the nature and/or strength of interactions among twelve alpine meadow plant species were influenced by their phylogenetic relatedness and/or their functional dissimilarity. For each plant species, we compared its biomass production when grown alone to its biomass in presence of another species and used it as a measure of species interactions. Competition between pairs of species was more frequent than facilitation, with 60% of interactions resulting in plants producing less biomass when a second species was present. We found no effect of phylogenetic relatedness on the prevalence or intensity of competition or facilitation, presumably as none of the studied traits showed phylogenetic signal. Functional dissimilarity based on maximum plant height alone was the best predictor of both the prevalence and strength of competition and facilitation, followed by functional dissimilarity using all five functional traits. Our results pinpoint the limited capacity of phylogenetic relatedness as predictor of species interactions; underlining the limitations of using phylogenetic dispersion patterns to infer mechanisms of community assembly. On the contrary, when the right functional traits are used, functional dissimilarity among species can predict both the nature and strength of their interactions; accentuating the relevance of trait‐based approaches in community ecology research.  相似文献   

12.
Positive or negative patterns of co‐occurrence might imply an influence of biotic interactions on community structure. However, species may co‐occur simply because of shared environmental responses. Here, we apply two complementary modelling methodologies – a probabilistic model of significant pairwise associations and a hierarchical multivariate probit regression model – to 1) attribute co‐occurrence patterns in 100 river bird communities to either shared environmental responses or to other ecological mechanisms such as interaction with heterospecifics, and 2) examine the strength of evidence for four alternative models of community structure. Species co‐occurred more often than would be expected by random community assembly and the species composition of bird communities was highly structured. Co‐occurrence patterns were primarily explained by shared environmental responses; species’ responses to the environmental variables were highly divergent, with both strong positive and negative environmental correlations occurring. We found limited evidence for behaviour‐driven assemblage patterns in bird communities at a large spatial scale, although statistically significant positive associations amongst some species suggested the operation of facilitative mechanisms such as heterospecific attraction. This lends support to an environmental filtering model of community assembly as being the principle mechanism shaping river bird community structure. Consequently, species interactions may be reduced to an ancillary role in some avifaunal communities, meaning if shared environmental responses are not quantified studies of co‐occurrence may overestimate the role of species interactions in shaping community structure.  相似文献   

13.
Question. Competitive and facilitative interactions among plant species in different abiotic environments potentially link productivity, vegetation structure, species composition and functional diversity. We investigated these interactions among four alpine communities along an environmental productivity gradient in a generally harsh climate. We hypothesised that the importance of competition would be higher in more productive sites. Location. Mt. M. Khatipara (43°27′N, 41°41′E, altitude 2750 m), NW Caucasus, Russia. Communities ranged from low‐productivity alpine lichen heath (ALH) and snowbed communities (SBC), to intermediate productivity Festuca grassland (FVG), and high‐productivity Geranium‐Hedysarum meadow (GHM). Methods. We quantified the relative influence of competition and facilitation on community structure by expressing biomass of target species within each natural community proportionally to biomass of the species in a “null community” with experimental release from interspecific competition by removing all other species (for 6 years). An overall index of change in community composition due to interspecific interactions was calculated as the sum of absolute or proportional differences of the component species. Results. Species responses to neighbour removal ranged from positive to neutral. There was no evidence of facilitation among the selected dominant species. As expected, competition was generally most important in the most productive alpine community (GHM). The intermediate position for low‐productivity communities of stressful environments (ALH, SBC) and the last position of intermediately productive FVG were unexpected. Conclusions. Our results appear to support the Fretwell‐Oksanen hypothesis in that competition in communities of intermediate productivity was less intense than in low‐ or high‐productive communities. However, the zero net effect of competition and facilitation in FVG might be the result of abiotic stress due to strong sun exposure and high soil temperatures after neighbour removal. Thus, non‐linear relationships between soil fertility, productivity and different abiotic stresses may also determine the balance between competition and facilitation.  相似文献   

14.
Individual forager behaviors should affect per capita intakerates and thereby population and consumer-resource properties.We consider and incorporate conspecific facilitation and interferenceduring the separate foraging-cycle stages in a functional responsemodel that links individual behavioral interactions with consumer-resourceprocesses. Our analyses suggest that failing to properly considerand include all effects of behavioral interactions on foraging-cyclestage performances may either over- or underestimate effectsof interactions on the shape of both functional responses andpredator zero-growth isoclines. Incorporation of prey- and predator-dependentinteractions among foragers in the model produces predator isoclineswith potentials for highly complex consumer-resource dynamics.Facilitation and interference during the foraging cycle aretherefore suggested as potent behavioral mechanisms to causepatterns of community dynamics. We emphasize that correct estimationsof interaction-mediated foraging-cycle efficiencies should beconsidered in empirical and theoretical attempts to furtherour understanding of the mechanistic link between social behaviorsand higher order processes.  相似文献   

15.
There is increasing recognition that both competition and facilitation are important drivers of plant community dynamics in arid and semi-arid environments. Decades of research have provided a litany of examples of the potential for shrubs as nurse plants for establishment of desirable species, especially in water-limited environments. However, interactions with the existing understory community may alter the outcome of interactions between shrubs and understory plants. A manipulative experiment was conducted to disentangle interactions between a native forb species (Penstemon palmeri A. Gray), a native shrub (Artemisia tridentata Nutt.), and a diverse understory of exotic and native forbs and grasses in a semi-arid shrubland of Northern Utah, USA. Seedlings of P. palmeri were transplanted in a factorial design: (1) beneath shrub canopies or into their interspaces and (2) with understory interactions retained or removed. Transplant survival was tracked for roughly 1 year. Shrubs appeared to facilitate P. palmeri survival while interactions with the existing understory community were equivalently negative, leading to overall neutral interactions. Further, positive shrub interactions and negative understory interactions appeared to operate independently and simultaneously. While the debate over the importance of facilitation and competition in driving plant community dynamics continues, our observations strongly suggest that both have considerable effects on plant establishment in A. tridentata communities. Furthermore, our results inform the conservation and restoration of P. palmeri populations, and suggest the utility of nurse shrubs and/or understory thinning as strategies for increasing the diversity of desirable species in the arid and semi-arid western United States shrublands.  相似文献   

16.
There is currently considerable evidence support that plant community structures are driven by plant-plant interactions (e.g., competition and facilitation). In contrast, there is also evidence demonstrating that plant community structure is affected by the impact of consumer pressure (e.g., grazing). In this study, 15 and 10 Acacia gerrardii nurse plants were selected inside and outside Sudyrah natural reserve (protected) area in western Saudi Arabia, respectively. The understory vegetation abundance (e.g. cover and density) was measured among quadrats around the nurse trees in both protected and unprotected areas to examine the impact of grazing and the positive interaction on the understory species. I found that understory vegetation associated with nurse trees (A. gerrardii) has been driven by both the positive impact of nurse plant and the grazing. Although the understory vegetation was positively affected by the impact of facilitation, the composition of such vegetation has been changed due to the impact of herbivory.  相似文献   

17.
Interactions among species, which range from competition to facilitation, have profound effects on ecosystem functioning. Large carnivores are of particular importance in shaping community structure since they are at the top of the food chain, and many efforts are made to conserve such keystone species. Despite this, the mechanisms of carnivore interactions are far from understood, yet they are key to enabling or hindering their coexistence and hence are highly relevant for their conservation. The goal of this review is thus to provide detailed information on the extents of competition and facilitation between large carnivores and their impact in shaping their life histories. Here, we use the example of spotted hyaenas (Crocuta crocuta) and lions (Panthera leo) and provide a comprehensive knowledge of their interactions based on meta‐analyses from available literature (148 publications). Despite their strong potential for both exploitation and interference competition (range and diet overlap, intraguild predation and kleptoparasitism), we underline some mechanisms facilitating their coexistence (different prey‐age selection and scavenging opportunities). We stress the fact that prey abundance is key to their coexistence and that hyaenas forming very large groups in rich ecosystems could have a negative impact on lions. We show that the coexistence of spotted hyaenas and lions is a complex balance between competition and facilitation, and that prey availability within the ecosystem determines which predator is dominant. However, there are still many gaps in our knowledge such as the spatio‐temporal dynamics of their interactions. As both species' survival becomes increasingly dependent on protected areas, where their densities can be high, it is critical to understand their interactions to inform both reintroduction programs and protected area management.  相似文献   

18.
It has recently been proposed that many communities are structured by a hierarchy of interactions in which facilitation by foundation species is of primary importance. We conducted the first explicit experimental test of this hypothesis by investigating the organization of positive interactions on New England cobblestone beaches. In this midintertidal community, wave-generated substrate instability and solar stress largely limit marine organisms to the shelter of cordgrass beds. Cordgrass, which can establish and persist without the aid of other foundation species, facilitates a dense assemblage of inhabitants (e.g., mussels, snails, seaweeds) with roots/rhizomes that stabilize substrate and a dense canopy that baffles waves and provides shade. Within the cordgrass bed community, ribbed mussels further enhance physical conditions and densities of other species (e.g., amphipods, barnacles) by providing crevice space and hard substrate. We conclude that cordgrass bed communities are hierarchically organized: secondary interactions (e.g., facilitation by ribbed mussels) play a key role within an assemblage dependent on primary facilitation by the independently successful foundation species cordgrass. Our results identify emergent indirect positive interactions in the form of facilitation cascades, have broad implications for conservation, and help unify existing models of community organization that were developed without considering the fundamental role of positive interactions.  相似文献   

19.
The search for general mechanisms of community assembly is a major focus of community ecology. The common practice so far has been to examine alternative assembly theories using dichotomist approaches of the form neutrality versus niche, or compensatory dynamics versus environmental forcing. In reality, all these mechanisms will be operating, albeit with different strengths. While there have been different approaches to community structure and dynamics, including neutrality and niche differentiation, less work has gone into separating out the temporal variation in species abundances into relative contributions from different components. Here we use a refined statistical machinery to decompose temporal fluctuations in species abundances into contributions from environmental stochasticity and inter-/intraspecific interactions, to see which ones dominate. We apply the methodology to community data from a range of taxa. Our results show that communities are largely driven by environmental fluctuations, and that member populations are, to different extents, regulated through intraspecific interactions, the effects of interspecific interactions remaining broadly minor. By decomposing the temporal variation in this way, we have been able to show directly what has been previously inferred indirectly: compensatory dynamics are in fact largely outweighed by environmental forcing, and the latter tends to synchronize the population dynamics.  相似文献   

20.
Local-regional species richness relationships have been used to infer relative contributions of local and regional forces to determining the richness of local communities. Although most previous research assumed competition as major local species interactions, growing empirical evidence suggests that facilitation is also an important driver of local community dynamics. Here, I explore how facilitation affects the shape of local-regional richness relationships, by incorporating local facilitation into a patch-occupancy model of metacommunity dynamics. I find that facilitation can generate local-regional richness relationships with the alternative stable states of mean local richness at intermediate to high levels of regional richness. These alternative stable states tend to occur in a metacommunity in moderately harsh environments. This result cautions against assuming that only competition can be primarily important local interactions when interpreting the shapes of local-regional richness relationships. Moreover, the possibility of alternative stable states suggests that gradual decline of regional species diversity might cause a sudden collapse of metacommunities with local facilitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号