共查询到20条相似文献,搜索用时 15 毫秒
1.
Ontogenetic shifts in interactions among annual plants 总被引:4,自引:2,他引:4
2.
Predator-mediated interactions among the seeds of desert plants 总被引:2,自引:0,他引:2
J. A. Veech 《Oecologia》2000,124(3):402-407
In theory, seed predators are capable of inducing indirect interactions among the seeds they consume. However, empirical evidence of predator-mediated interactions among seeds is rare. Rodents in the Heteromyidae are highly granivorous and therefore likely to induce indirect interactions among the seeds of desert plants. The indirect interactions may be in the form of apparent competition and apparent mutualism between seeds within a patch. Apparent competition exists when the survival of seeds of a focal species is lessened because of the presence of additional seeds of other species in the patch. Apparent mutualism exists when the presence of the other seeds results in an increase in survival of seeds of the focal species. By measuring seed removal from trays placed in the field, apparent competition between the seeds of several plant species was detected. Apparent mutualism might also exist, but there was no strong evidence of it. Apparent competition appeared most likely to occur among the species whose seeds were the most heavily predated. For instance, predation on seeds of Astragalus cicer, Oryzopsis hymenoides, and Sphaeralcea coccinea was substantial with more than 50% of the seeds removed from the trays, on average. The intensity of apparent competition (measured by the indirect effect, IS) between these species and two others was significant; IS ranged from –0.02 to –0.39 on a scale of 0 to –1. This indicates that, in some communities, indirect effects are most likely to exist when direct effects are strong. Received: 5 August 1999 / Accepted: 2 March 2000 相似文献
3.
Carnivorous arthropods exhibit complex intraspecific and interspecific behaviour among themselves when they share the same niche or habitat and food resources. They should simultaneously search for adequate food for themselves and their offspring and in the meantime avoid becoming food for other organisms. This behaviour is of great ecological interest in conditions of low prey availability. We examined by means of an olfactometer, how volatile chemicals from prey patches with conspecific or heterospecific predators might contribute to shaping the structure of predator guilds. To test this, we used the exotic predatory mites Typhlodromalus manihoti and T. aripo, and the native predatory mite Euseius fustis, with Mononychellus tanajoa as the common prey species for the three predatory mite species. We used as odour sources M. tanajoa-infested cassava leaves or apices with or without predators. T. manihoti avoided patches inhabited by the heterospecifics T. aripo and E. fustis or by conspecifics when tested against a patch without predators. Similarly, both T. aripo and E. fustis females avoided patches with con- or heterospecifics when tested against a patch without predators. When one patch contained T. aripo and the other T. manihoti, females of the latter preferred the patch with T. aripo. Thus, T. manihoti is able to discriminate between odours from patches with con- and heterospecifics. Our results show that the three predatory mite species are able to assess prey patch profitability using volatiles. Under natural conditions, particularly when their food sources are scarce, the three predatory mite species might be involved in interspecific and/or intraspecific interactions that can substantially affect population dynamics of the predators and their prey. 相似文献
4.
Positive interactions in communities 总被引:2,自引:0,他引:2
Current concepts of the role of interspecific interactions in communities have been shaped by a profusion of experimental studies of interspecific competition over the past few decades. Evidence for the importance of positive interactions - facilitations - in community organization and dynamics has accrued to the point where it warrants formal inclusion into community ecology theory, as it has been in evolutionary biology. 相似文献
5.
6.
Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes 总被引:21,自引:0,他引:21
CONSTANS (CO) promotes flowering of Arabidopsis in response to long photoperiods. Transgenic plants carrying CO fused with the cauliflower mosaic virus 35S promoter (35S::CO) flowered earlier than did the wild type and were almost completely insensitive to length of day. Genes required for CO to promote flowering were identified by screening for mutations that suppress the effect of 35S::CO. Four mutations were identified that partially suppressed the early-flowering phenotype caused by 35S::CO. One of these mutations, suppressor of overexpression of CO 1 (soc1), defines a new locus, demonstrating that the mutagenesis approach is effective in identifying novel flowering-time mutations. The other three suppressor mutations are allelic with previously described mutations that cause late flowering. Two of them are alleles of ft, indicating that FT is required for CO to promote early flowering and most likely acts after CO in the hierarchy of flowering-time genes. The fourth suppressor mutation is an allele of fwa, and fwa soc1 35S::CO plants flowered at approximately the same time as co mutants, suggesting that a combination of fwa and soc1 abolishes the promotion of flowering by CO. Besides delaying flowering, fwa acted synergistically with 35S::CO to repress floral development after bolting. The latter phenotype was not shown by any of the progenitors and was most probably caused by a reduction in the function of LEAFY. These genetic interactions suggest models for how CO, FWA, FT, and SOC1 interact during the transition to flowering. 相似文献
7.
8.
Fukao Y 《Plant & cell physiology》2012,53(4):617-625
The study of protein-protein interactions (PPIs) is essential to uncover unknown functions of proteins at the molecular level and to gain insight into complex cellular networks. Affinity purification and mass spectrometry (AP-MS), yeast two-hybrid, imaging approaches and numerous diverse databases have been developed as strategies to analyze PPIs. The past decade has seen an increase in the number of identified proteins with the development of MS and large-scale proteome analyses. Consequently, the false-positive protein identification rate has also increased. Therefore, the general consensus is to confirm PPI data using one or more independent approaches for an accurate evaluation. Furthermore, identifying minor PPIs is fundamental for understanding the functions of transient interactions and low-abundance proteins. Besides establishing PPI methodologies, we are now seeing the development of new methods and/or improvements in existing methods, which involve identifying minor proteins by MS, multidimensional protein identification technology or OFFGEL electrophoresis analyses, one-shot analysis with a long column or filter-aided sample preparation methods. These advanced techniques should allow thousands of proteins to be identified, whereas in-depth proteomic methods should permit the identification of transient binding or PPIs with weak affinity. Here, the current status of PPI analysis is reviewed and some advanced techniques are discussed briefly along with future challenges for plant proteomics. 相似文献
9.
10.
João A. Madeira G. Wilson Fernandes Antonio González-Rodríguez Pablo Cuevas-Reyes 《Arthropod-Plant Interactions》2013,7(4):403-413
The defensive role against seed predation of a set of plant traits in 13 congeneric sympatric taxa (Chamaecrista: Leguminosae), and the influence of the third trophic level on seed predators’ performance and host range were investigated. Taxa co-occur in rupestrian grasslands in Serra do Cipó, Brazil, and belong to three taxonomic sections. Fruit production, fruit pubescence, and seed size were analyzed. Measures of these traits in the 13 taxa were regressed separately against seed predation rates by endophagous and ectophagous insects. Time of seed production and fruit pubescence showed no influence on seed predation rates by either predator type. Seed size was positively correlated to bruchid seed predation, but negatively related to ectophagous seed predation. There was a negative correlation between glandular fruit trichome length and parasitism rates of bruchids, suggesting that seed predation pressure may have produced evolutionary responses from plants (fruit trichome reduction), which should facilitate parasitoid action. 相似文献
11.
Bryophyte interactions with other plants 总被引:14,自引:0,他引:14
HEIN J. DURING BART F. VAN TOOREN 《Botanical journal of the Linnean Society. Linnean Society of London》1990,104(1-3):79-98
Bryophytes live in microhabitats determined by the physical environment, usually modified by the vascular plant vegetation, and seemingly in 'ecological isolation' from other plants.
However, bryophytes are involved in a variety of competitive, parasitic, symbiotic, mutualistic and as yet unspecifiable interactions with vascular plants, algae, fungi, lichens, cyanobactcria and autotrophic and heterotrophic bacteria. In only very few cases have these interactions been analysed functionally. Yet, such information may be essential for a better understanding of (1) such aspects of bryophyte ecology as mineral nutrition, carbon economy, herbivory, and growth and development of the gametophyte, and (2) the ecological role of bryophytes in terrestrial ecosystems. 相似文献
However, bryophytes are involved in a variety of competitive, parasitic, symbiotic, mutualistic and as yet unspecifiable interactions with vascular plants, algae, fungi, lichens, cyanobactcria and autotrophic and heterotrophic bacteria. In only very few cases have these interactions been analysed functionally. Yet, such information may be essential for a better understanding of (1) such aspects of bryophyte ecology as mineral nutrition, carbon economy, herbivory, and growth and development of the gametophyte, and (2) the ecological role of bryophytes in terrestrial ecosystems. 相似文献
12.
Plant cells interact during development through diverse mechanisms that range from genetically encoded signals to physical stresses. Pollen self-incompatibility is the best understood cell interaction in plants. Analysis of genes that appear to be involved in specific developmental signals, such as liguleless1 from maize and GLABROUS1 from Arabidopsis, will provide clues as to the nature of cell interactions in plant development. Recent data suggest that intercellular connections may be more similar in plants and animals than previously thought. 相似文献
13.
14.
N. M. van Dam 《Plant biology (Stuttgart, Germany)》2009,11(1):1-5
In their natural environment, plants interact with many different organisms. The nature of these interactions may range from positive, for example interactions with pollinators, to negative, such as interactions with pathogens and herbivores. In this special issue, the contributors provide several examples of how plants manage both positive and negative biotic interactions. This review aims to relate their findings to what we know about the complex natural environments in which plants have evolved. Molecular analyses of plant genomes and expression profiles have shown how intricately plants may regulate responses to single or multiple biotic interactions. Plant responses are fine-tuned by signalling hormone interactions. When multiple organisms interact with a single plant this may result in antagonistic or synergistic effects. The emerging fields of ecogenomics and metabolomics undoubtedly will refine our understanding of the multilayered regulation that plants use to manage relationships with their biotic environment. However, we can only understand why plants have such an intricate regulatory apparatus if we consider the ecological context of plant biotic interactions. 相似文献
15.
Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes 总被引:3,自引:0,他引:3
Most organisms engage in beneficial interactions with other species; however, little is known regarding how individuals balance the competing demands of multiple mutualisms. Here we examine three-way interactions among a widespread grass, Schedonorus phoenix , a protective fungal endophyte aboveground, Neotyphodium coenophialum , and nutritional symbionts (arbuscular mycorrhizal fungi) belowground. In a greenhouse experiment, we manipulated the presence/absence of both fungi and applied a fertilizer treatment to individual plants. Endophyte presence in host plants strongly reduced mycorrhizal colonization of roots. Additionally, for plants with the endophyte, the density of endophyte hyphae was negatively correlated with mycorrhizal colonization, suggesting a novel role for endophyte abundance in the interaction between the symbionts. Endophyte presence increased plant biomass, and there was a positive correlation between endophyte hyphal density and plant biomass. The effects of mutualists were asymmetric: mycorrhizal fungi treatments had no significant impact on the endophyte and negligible effects on plant biomass. Fertilization affected all three species – increasing plant biomass and endophyte density, but diminishing mycorrhizal colonization. Mechanisms driving negative effects of endophytes on mycorrhizae may include inhibition via endophyte alkaloids, altered nutritional requirements of the host plant, and/or temporal and spatial priority effects in the interactions among plants and multiple symbionts. 相似文献
16.
Aluminium/silicon interactions in higher plants 总被引:11,自引:0,他引:11
Aluminium and silicon are usually abundant in soil mineral matter,but their availability for plant uptake is limited by low solubilityand, in the case of Al, high soil pH causes precipitation ofthe element in insoluble forms. Al toxicity is a major problemin naturally occurring acid soils and in soils affected by acidicprecipitation. Al has no known role in higher plants, and isgenerally known as a toxic element, whereas Si is generallyregarded as a beneficial element. Recently, it has been suggestedthat Al toxicity can be ameliorated by Si in a variety of animalsystems. In this review the evidence that amelioration of Altoxicity by Si can also occur in plants is assessed. At presentsuch amelioration has been shown in sorghum, barley, teosinte,and soybean, but not in rice, wheat, cotton, and pea. Plantspecies vary considerably in the amounts of Al and Si that theytransport into their tissues, and it seems that very high Siaccumulation and very high Al accumulation are mutually exclusive.The mechanisms considered for amelioration are: solution effects;codeposition of Al and Si within the plant; effects in the cytoplasmand on enzyme activity; and indirect effects. Key words: Aluminium, silicon, biomineralization, codeposition, toxicity, tolerance 相似文献
17.
Coexistence of woody and herbaceous plants may be governed by a complex set of direct and indirect interactions, whose relative importance have been rarely assessed. We experimentally studied woody species establishment in a mixed plant community by disentangling the potential role of such biotic interactions and the effect of environmental variations on them. Seedling establishment of the common eastern Mediterranean shrub species Sarcopoterium spinosum was investigated under different rainfall and light conditions, combined with the effect of the presence of adult shrubs and annual neighbors. We predicted that seedlings will be directly affected by competition with annuals with increasing water availability, while direct effects of adult shrubs will be positive via amelioration of water stress. Indirect effects were expected beneath shrub canopies due to reduced water stressed and light availability for both annuals and shrub seedlings, which may intensify competition between annuals and shrub seedlings. To test these predictions we performed field and garden experiments in which we combined manipulation of shrub and annual presence with manipulations of water availability and light conditions to simulate the effect of shrub canopy. In contrast to our prediction, shrub seedling establishment was not facilitated but inhibited by adult shrubs because of light limitation. As expected, annuals had direct negative effects on shrub seedlings under wet conditions, which shifted to neutral or positive effects under dry conditions. Thus, interactions among shrubs and annuals, and in particular the release from competition during drought years, leads to a counterintuitive positive effect of drought on shrub seedling establishment. Our findings point to the importance of experimentally studying multidimensional interactions for coexistence of different life forms and to the underestimated role of light for success in water‐limited ecosystems. 相似文献
18.
Genetic and epigenetic interactions in allopolyploid plants 总被引:34,自引:0,他引:34
Comai L 《Plant molecular biology》2000,43(2-3):387-399
Allopolyploid plants are hybrids that contain two copies of the genome from each parent. Whereas wild and cultivated allopolyploids are well adapted, man-made allopolyploids are typically unstable, displaying homeotic transformation and lethality as well as chromosomal rearrangements and changes in the number and distribution of repeated DNA sequences within heterochromatin. Large increases in the length of some chromosomes has been documented in allopolyploid hybrids and could be caused by the activation of dormant retrotransposons, as shown to be the case in marsupial hybrids. Synthetic (man-made) allotetraploids of Arabidopsis exhibit rapid changes in gene regulation, including gene silencing. These regulatory abnormalities could derive from ploidy changes and/or incompatible interactions between parental genomes, although comparison of auto- and allopolyploids suggests that intergenomic incompatibilities play the major role. Models to explain intergenomic incompatibilities incorporate both genetic and epigenetic mechanisms. In one model, the activation of heterochromatic transposons (McClintock's genomic shock) may lead to widespread perturbation of gene expression, perhaps by a silencing interaction between activated transposons and euchromatic genes. Qualitatively similar responses, of lesser intensity, may occur in intraspecific hybrids. Therefore, insight into genome function gained from the study of allopolyploidy may be applicable to hybrids of any type and may even elucidate positive interactions, such as those responsible for hybrid vigor. 相似文献
19.
Summary Zn and P contents of the different parts of maize and wheat plants, grown under controlled conditions in two diverse soil types of Maharashtraviz Vertisol and Ultisol, were determined and correlated so also the mobility ratios of Zn and P in both crops worked out. Increase in the negativity of r values from roots to the leaves and the depression in the mobility of Zn and P due to their reciprocal applications, revealed that the Zn-P interactions originate in the plant roots, thereby retarding the translocation of each other to upper plant parts. 相似文献
20.
Protein-protein interactions in pathogen recognition by plants 总被引:3,自引:0,他引:3
Bogdanove AJ 《Plant molecular biology》2002,50(6):981-989
Protein-protein interactions have emerged as key determinants of whether plant encounters with pathogens result in disease or successful plant defense. Genetic interactions between plant resistance genes and pathogen avirulence genes enable pathogen recognition by plants and activate plant defense. These gene-for-gene interactions in some cases have been shown to involve direct interactions of the products of the genes, and have indicated plant intracellular localization for certain avirulence proteins. Incomplete specificity of some of the interactions in laboratory assays suggests that additional proteins might be required to confer specificity in the plant. In many cases, resistance and avirulence protein interactions have not been demonstrable, and in some cases, other plant components that interact with avirulence proteins have been found. Investigation to date has relied heavily on biochemical and cytological methods including in vitrobinding assays and immunoprecipitation, as well as genetic tools such as the yeast two-hybrid system. Observations so far, however, point to the likely requirement for multiple, interdependent protein associations in pathogen recognition, for which these techniques can be insufficient. This article reviews the protein-protein interactions that have been described in pathogen recognition by plants, and provides examples of how rapid future progress will hinge on the adoption of new and developing technologies. 相似文献