首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ji Y  Clark DV 《Genetics》2006,172(3):1621-1631
PRAT (phosphoribosylamidotransferase; E.C. 2.4.2.14) catalyzes the first reaction in de novo purine nucleotide biosynthesis. In Drosophila melanogaster, the Prat and Prat2 genes are both highly conserved with PRAT sequences from prokaryotes and eukaryotes. However, Prat2 organization and expression during development is different from Prat. We used RNA interference (RNAi) to knock down expression of both Prat and Prat2 to investigate their functions. Using the GAL4-UAS system, Prat RNAi driven by Act5c-GAL4 or tubP-GAL4 causes variable pupal lethality (48-100%) and approximately 50% female sterility, depending on the transgenic strains and drivers used. This observation agrees with the phenotype previously observed for Prat EMS-induced mutations. Prat2 RNAi driven by Act5C-GAL4 or tubP-GAL4 also results in variable pupal lethality (61-93%) with the different transgenic strains, showing that Prat2 is essential for fly development. However, Prat2 RNAi-induced arrested pupae have a head eversion defect reminiscent of the "cryptocephal" phenotype, whereas Prat RNAi-induced arrested pupae die later as pharate adults. We conclude that Prat2 is required during the prepupal stage while Prat is more important for the pupal stage. In addition, Prat and Prat2 double RNAi results in more severe pupal lethal phenotypes, suggesting that Prat and Prat2 have partially additive functions during Drosophila metamorphosis.  相似文献   

3.
4.
O'Donnell AF  Tiong S  Nash D  Clark DV 《Genetics》2000,154(3):1239-1253
Steps 6 and 7 of de novo purine synthesis are performed by 5-aminoimidazole ribonucleotide carboxylase (AIRc) and 4-[(N-succinylamino)carbonyl]-5-aminoimidazole ribonucleotide synthetase (SAICARs), respectively. In vertebrates, a single gene encodes AIRc-SAICARs with domains homologous to Escherichia coli PurE and PurC. We have isolated an AIRc-SAICARs cDNA from Drosophila melanogaster via functional complementation with an E. coli purC purine auxotroph. This cDNA encodes AIRc yet is unable to complement an E. coli purE mutant, suggesting functional differences between Drosophila and E. coli AIRc. In vertebrates, the AIRc-SAICARs gene shares a promoter region with the gene encoding phosphoribosylamidotransferase, which performs the first step in de novo purine synthesis. In Drosophila, the AIRc-SAICARs gene maps to section 11B4-14 of the X chromosome, while the phosphoribosylamidotransferase gene (Prat) maps to chromosome 3; thus, the close linkage of these two genes is not conserved in flies. Three EMS-induced X-linked adenine auxotrophic mutations, ade4(1), ade5(1), and ade5(2), were isolated. Two gamma-radiation-induced (ade5(3) and ade5(4)) and three hybrid dysgenesis-induced (ade5(5), ade5(6), and ade5(8)) alleles were also isolated. Characterization of the auxotrophy and the finding that the hybrid dysgenesis-induced mutations all harbor P transposon sequences within the AIRc-SAICARs gene show that ade5 encodes AIRc-SAICARs.  相似文献   

5.
6.
7.
The gene ade6 is located on chromosome III of the fission yeast Schizosaccharomyces pombe. It codes for the enzyme phosphoribosylaminoimidazole carboxylase involved in purine biosynthesis. A DNA fragment of 3043 nucleotides has been sequenced. It complements ade6 mutations when present on plasmids. An uninterrupted open reading frame of 552 amino acid residues was identified. A method for the cloning of chromosomal mutations by repair of gapped replication vectors in vivo has been developed. Twelve ade6 mutant alleles have been isolated. The sequence alterations of four mutant alleles have been determined. Among them are the ade6-M26 recombination hot spot mutation and the nearby ade6-M375 control mutation. Both are G to T base substitutions, converting adjacent glycine codons to TGA termination codons. They are suppressed by defined tRNA nonsense suppressors of the UGA type. The ade6-M26 mutation leads to a tenfold increase of the occurrence of conversion tetrads in comparison with other ade6 mutations. Possible explanations for the M26-induced increase of recombination frequency are discussed in relation to specific features of the nucleotide sequence identified in the region of the M26 mutation.  相似文献   

8.
9.
10.
Most of the nitrogen transported from the nodules of nitrogen-fixing soybean plants is in the form of the ureides allantoin and allantoic acid. Recent work has shown that ureides are formed in the plant fraction of the nodule from de novo purine biosynthesis and purine oxidation. 5-Phosphoribosylpyrophosphate amidotransferase (PRAT), which catalyzes the first committed step of purine biosynthesis, has been purified 1500-fold from soybean root nodules. The enzyme had an apparent Mr of 8 X 10(6), but this estimate may have been for an aggregation of several purine biosynthetic activities. PRAT showed a pH optimum of pH 8.0, and Km values were 18 and 0.4 mM for glutamine and 5-phosphoribosyl-1-pyrophosphate (PRPP), respectively. The reaction required Mg2+, and PRPPMg3- was shown to be the reactive molecular species of PRPP. Ammonia could replace glutamine as a substrate, and the Vm with ammonia was twice that obtained when glutamine was the substrate. The initial-rate kinetics showed sequential addition of substrates to the enzyme. Product inhibition data was consistent with the order of product release being phosphoribosylamine, PPi, and glutamate. The enzyme was subject to regulation by end products of the purine biosynthetic pathway. IMP and GMP inhibited competitively with PRPP and promoted cooperativity in the binding of this substrate; there was no cooperativity in the binding of IMP to the enzyme. XMP was a linear competitive inhibitor with PRPP. The results are discussed in terms of the key regulatory point occupied by PRAT in the pathway of ureide biogenesis.  相似文献   

11.
The Punch locus of Drosophila melanogaster which encodes the pteridine biosynthetic enzyme, GTP cyclohydrolase, is genetically complex. Lethal alleles of the locus resolve into an array of interallelic complementation groups, and at least one class of mutations is developmentally specific, affecting GTP cyclohydrolase activity only in the heads of adults. All previously isolated Punch alleles were identified on the basis of a mutant eye color phenotype. By screening mutagenized chromosomes over Punch region deficiencies, we have now isolated new alleles on the basis of lethal and visible phenotypes. Most of these alleles fall into previously identified genetic classes, but two new classes of mutations were also found. One class contains two alleles that behave as dominant lethal mutations in some genetic backgrounds. The other class represents a second developmentally specific set of alleles that affect the function of the Punch locus only during embryogenesis.  相似文献   

12.
SYK. Tiong  D. Nash 《Genetics》1990,124(4):889-897
The Gart gene of Drosophila melanogaster is known, from molecular biological evidence, to encode a polypeptide that serves three enzymatic functions in purine biosynthesis. It is located in polytene chromosome region 27D. One mutation in the gene (ade3(1)) has been described previously. We report here forty new ethyl methanesulfonate-induced mutations selected aga!nst a synthetic deficiency of the region from 27C2-9 to ++28B3-4. The mutations were characterized cytogenetically and by complementation analysis. The analysis apparently identifies 12 simple complementation groups. In addition, two segments of the chromosome exhibit complex complementation behavior. The first, the 28A region, gave three recessive lethals and also contains three known visible mutants, spade (spd), Sternopleural (Sp) and wingless (wg); a complex pattern of genetic interaction in the region incorporates both the new and the previously known mutants. The second region is at 27D, where seven extreme semilethal mutations give a complex complementation pattern that also incorporates ade3(1). Since ade3(1) is defective in one of the enzymatic functions encoded in the Gart gene, we assume the other seven also affect the gene. The complexity of the complementation pattern presumably reflects the functional complexity of the gene product. The phenotypic effects of the mutants at 27D are very similar to those described for ade2 mutations, which also interrupt purine biosynthesis.  相似文献   

13.
Molecular analysis of the para locus, a sodium channel gene in Drosophila   总被引:26,自引:0,他引:26  
K Loughney  R Kreber  B Ganetzky 《Cell》1989,58(6):1143-1154
  相似文献   

14.
Tensin is an actin-binding protein that is localized in focal adhesions. At focal adhesion sites, tensin participates in the protein complex that establishes transmembrane linkage between the extracellular matrix and cytoskeletal actin filaments. Even though there have been many studies on tensin as an adaptor protein, the role of tensin during development has not yet been clearly elucidated. Thus, this study was designed to dissect the developmental role of tensin by isolating Drosophila tensin mutants and characterizing its role in wing development. The Drosophila tensin loss-of-function mutations resulted in the formation of blisters in the wings, which was due to a defective wing unfolding process. Interestingly, by(1)-the mutant allele of the gene blistery (by)-also showed a blistered wing phenotype, but failed to complement the wing blister phenotype of the Drosophila tensin mutants, and contains Y62N/T163R point mutations in Drosophila tensin coding sequences. These results demonstrate that by encodes Drosophila tensin protein and that the Drosophila tensin mutants are alleles of by. Using a genetic approach, we have demonstrated that tensin interacts with integrin and also with the components of the JNK signaling pathway during wing development; overexpression of by in wing imaginal discs significantly increased JNK activity and induced apoptotic cell death. Collectively, our data suggest that tensin relays signals from the extracellular matrix to the cytoskeleton through interaction with integrin, and through the modulation of the JNK signal transduction pathway during Drosophila wing development.  相似文献   

15.
16.
T Furukawa  S Maruyama  M Kawaichi  T Honjo 《Cell》1992,69(7):1191-1197
The J kappa RBP binds to the immunoglobulin recombination signal sequence flanking the kappa-type J segment. We previously isolated the highly conserved homolog of the J kappa RBP gene from D. melanogaster, which is not thought to have immunoglobulin molecules. Using many deficiency mutants and in situ hybridization, we mapped the Drosophila J kappa RBP gene in a region containing two recessive lethal mutations, i.e., br26 and br7, which shows the dominant Suppressor of Hairless (Su(H)) phenotype in heterozygotes. All six Su(H) alleles analyzed at the DNA level contained mutations in the Drosophila J kappa RBP gene. Since the Su(H) mutation affects peripheral nervous system development, the Drosophila J kappa RBP gene product is involved in gene regulation of peripheral nervous system development. The results also imply that the immunoglobulin recombination signal sequence and the target sequence of the Drosophila J kappa RBP protein might have a common evolutionary origin.  相似文献   

17.
Abstract: A critical step in the supply of substrate for the phosphoinositide signal transduction pathway is the formation of the liponucleotide intermediate, CDP-diacylglycerol, catalyzed by CDP-diacylglycerol synthase. Further insight into the regulation of phosphoinositide biosynthesis was sought by cloning of the gene for the vertebrate enzyme. Sequence of the corresponding gene from Drosophila was used to prepare a probe for screening of a human neuronal cell cDNA library. A cDNA was isolated with a predicted open reading frame of 1,332 bases, encoding a protein of 51 kDa. The amino acid sequence showed 50% identity (75% similarity) to that of Drosophila eye CDP-diacylglycerol synthase and substantial similarity to the Saccharomyces cerevisiae and Escherichia coli homologues. Northern blot analysis, with human cDNA riboprobes, suggested that the corresponding mRNA was expressed in all human tissues examined. Expression of the human cDNA in COS cells resulted in a more than fourfold increase in CDP-diacylglycerol synthase activity. Knowledge of the sequence of vertebrate CDP-diacylglycerol synthase should facilitate further investigations into its regulation and the possible existence of distinct isoforms.  相似文献   

18.
In Salmonella enterica serovar Typhimurium, purine nucleotides and thiamine are synthesized by a branched pathway. The last known common intermediate, aminoimidazole ribonucleotide (AIR), is formed from formylglycinamidine ribonucleotide (FGAM) and ATP by AIR synthetase, encoded by the purI gene in S. enterica. Reduced flux through the first five steps of de novo purine synthesis results in a requirement for purines but not necessarily thiamine. To examine the relationship between the purine and thiamine biosynthetic pathways, purI mutants were made (J. L. Zilles and D. M. Downs, Genetics 143:37-44, 1996). Unexpectedly, some mutant purI alleles (R35C/E57G and K31N/A50G/L218R) allowed growth on minimal medium but resulted in thiamine auxotrophy when exogenous purines were supplied. To explain the biochemical basis for this phenotype, the R35C/E57G mutant PurI protein was purified and characterized kinetically. The K(m) of the mutant enzyme for FGAM was unchanged relative to the wild-type enzyme, but the V(max) was decreased 2.5-fold. The K(m) for ATP of the mutant enzyme was 13-fold increased. Genetic analysis determined that reduced flux through the purine pathway prevented PurI activity in the mutant strain, and purR null mutations suppressed this defect. The data are consistent with the hypothesis that an increased FGAM concentration has the ability to compensate for the lower affinity of the mutant PurI protein for ATP.  相似文献   

19.
During vertebrate evolution, the uric acid degradation pathway has been modified and several enzymes have been lost. Consequently, the end product of purine catabolism varies from species to species. In the past few years, we have focused our attention on vertebrate allantoicase (an uricolytic pathway enzyme), whose activity is present in certain fish and amphibians only, but whose mRNA we detected also in mammals. As allantoicase activity disappeared in amniotes, we wonder why these sequences not only remain present in the mammalian genome, but are still transcribed. To elucidate this issue, we have cloned and analyzed comparable cDNA sequences of different organisms from ascidians to mammals. The analysis of the nonsynonymous–synonymous substitution rate that we performed on the coding region comprising exons 3 to 8 by means of maximum likelihood suggested that a certain amount of purifying selection is acting on the allantoicase sequences. Some implications of the preservation of an apparently unnecessary gene in higher vertebrates are discussed.  相似文献   

20.
Chen X  Li Q  Fischer JA 《Genetics》2000,156(4):1787-1795
The Drosophila DNAprim gene encodes the large subunit (60 kD) of DNA primase, the part of DNA polymerase alpha that synthesizes RNA primers during DNA replication. The precise function of the 60-kD subunit is unknown. In a mutagenesis screen for suppressors of the fat facets (faf) mutant eye phenotype, we identified mutations in DNAprim. The faf gene encodes a deubiquitinating enzyme required specifically for patterning the compound eye. The DNA sequences of four DNAprim alleles were determined and these define essential protein domains. We show that while flies lacking DNAprim activity are lethal, flies with reduced DNAprim activity display morphological defects in their eyes, and unlike faf mutants, cell cycle abnormalities in larval eye discs. Mechanisms by which DNA primase levels might influence the faf-dependent cell communication pathway are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号