首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alvarez-Castro JM  Carlborg O 《Genetics》2007,176(2):1151-1167
Interaction between genes, or epistasis, is found to be common and it is a key concept for understanding adaptation and evolution of natural populations, response to selection in breeding programs, and determination of complex disease. Currently, two independent classes of models are used to study epistasis. Statistical models focus on maintaining desired statistical properties for detection and estimation of genetic effects and for the decomposition of genetic variance using average effects of allele substitutions in populations as parameters. Functional models focus on the evolutionary consequences of the attributes of the genotype-phenotype map using natural effects of allele substitutions as parameters. Here we provide a new, general and unified model framework: the natural and orthogonal interactions (NOIA) model. NOIA implements tools for transforming genetic effects measured in one population to the ones of other populations (e.g., between two experimental designs for QTL) and parameters of statistical and functional epistasis into each other (thus enabling us to obtain functional estimates of QTL), as demonstrated numerically. We develop graphical interpretations of functional and statistical models as regressions of the genotypic values on the gene content, which illustrates the difference between the models--the constraint on the slope of the functional regression--and when the models are equivalent. Furthermore, we use our theoretical foundations to conceptually clarify functional and statistical epistasis, discuss the advantages of NOIA over previous theory, and stress the importance of linking functional and statistical models.  相似文献   

2.
Objectives: We aimed at extending the Natural and Orthogonal Interaction (NOIA) framework, developed for modeling gene-gene interactions in the analysis of quantitative traits, to allow for reduced genetic models, dichotomous traits, and gene-environment interactions. We evaluate the performance of the NOIA statistical models using simulated data and lung cancer data. Methods: The NOIA statistical models are developed for additive, dominant, and recessive genetic models as well as for a binary environmental exposure. Using the Kronecker product rule, a NOIA statistical model is built to model gene-environment interactions. By treating the genotypic values as the logarithm of odds, the NOIA statistical models are extended to the analysis of case-control data. Results: Our simulations showed that power for testing associations while allowing for interaction using the NOIA statistical model is much higher than using functional models for most of the scenarios we simulated. When applied to lung cancer data, much smaller p values were obtained using the NOIA statistical model for either the main effects or the SNP-smoking interactions for some of the SNPs tested. Conclusion: The NOIA statistical models are usually more powerful than the functional models in detecting main effects and interaction effects for both quantitative traits and binary traits.  相似文献   

3.
The map from genotype to phenotype is an exceedingly complex function of central importance in biology. In this work we derive and analyze a mathematically tractable model of the genotype-phenotype map that allows for any order of gene interaction. By assuming that the alterations of the effect of a gene substitution due to changes in the genetic background can be described as a linear transformation, we show that the genotype-phenotype map is a sum of linear and multilinear terms of operationally defined "reference" effects at each locus. The "multilinear" model is used to study the effect of epistasis on quantitative genetic variation, on the response to selection, and on genetic canalization. It is shown how the model can be used to estimate the strength of "functional" epistasis from a variety of genetic experiments.  相似文献   

4.
In genetic association studies, tests for Hardy-Weinberg proportions are often employed as a quality control checking procedure. Missing genotypes are typically discarded prior to testing. In this paper we show that inference for Hardy-Weinberg proportions can be biased when missing values are discarded. We propose to use multiple imputation of missing values in order to improve inference for Hardy-Weinberg proportions. For imputation we employ a multinomial logit model that uses information from allele intensities and/or neighbouring markers. Analysis of an empirical data set of single nucleotide polymorphisms possibly related to colon cancer reveals that missing genotypes are not missing completely at random. Deviation from Hardy-Weinberg proportions is mostly due to a lack of heterozygotes. Inbreeding coefficients estimated by multiple imputation of the missings are typically lowered with respect to inbreeding coefficients estimated by discarding the missings. Accounting for missings by multiple imputation qualitatively changed the results of 10 to 17% of the statistical tests performed. Estimates of inbreeding coefficients obtained by multiple imputation showed high correlation with estimates obtained by single imputation using an external reference panel. Our conclusion is that imputation of missing data leads to improved statistical inference for Hardy-Weinberg proportions.  相似文献   

5.
Epistasis, or gene–gene interaction, results from joint effects of genes on a trait; thus, the same alleles of one gene may display different genetic effects in different genetic backgrounds. In this study, we generalized the coding technique of a natural and orthogonal interaction (NOIA) model for association studies along with gene–gene interactions for dichotomous traits and human complex diseases. The NOIA model which has non-correlated estimators for genetic effects is important for estimating influence from multiple loci. We conducted simulations and data analyses to evaluate the performance of the NOIA model. Both simulation and real data analyses revealed that the NOIA statistical model had higher power for detecting main genetic effects and usually had higher power for some interaction effects than the usual model. Although associated genes have been identified for predisposing people to melanoma risk: HERC2 at 15q13.1, MC1R at 16q24.3 and CDKN2A at 9p21.3, no gene–gene interaction study has been fully explored for melanoma. By applying the NOIA statistical model to a genome-wide melanoma dataset, we confirmed the previously identified significantly associated genes and found potential regions at chromosomes 5 and 4 that may interact with the HERC2 and MC1R genes, respectively. Our study not only generalized the orthogonal NOIA model but also provided useful insights for understanding the influence of interactions on melanoma risk.  相似文献   

6.
Functional dependencies between genes are a defining characteristic of gene networks underlying quantitative traits. However, recent studies show that the proportion of the genetic variation that can be attributed to statistical epistasis varies from almost zero to very high. It is thus of fundamental as well as instrumental importance to better understand whether different functional dependency patterns among polymorphic genes give rise to distinct statistical interaction patterns or not. Here we address this issue by combining a quantitative genetic model approach with genotype-phenotype models capable of translating allelic variation and regulatory principles into phenotypic variation at the level of gene expression. We show that gene regulatory networks with and without feedback motifs can exhibit a wide range of possible statistical genetic architectures with regard to both type of effect explaining phenotypic variance and number of apparent loci underlying the observed phenotypic effect. Although all motifs are capable of harboring significant interactions, positive feedback gives rise to higher amounts and more types of statistical epistasis. The results also suggest that the inclusion of statistical interaction terms in genetic models will increase the chance to detect additional QTL as well as functional dependencies between genetic loci over a broad range of regulatory regimes. This article illustrates how statistical genetic methods can fruitfully be combined with nonlinear systems dynamics to elucidate biological issues beyond reach of each methodology in isolation.  相似文献   

7.
Since Bateson's discovery that genes can suppress the phenotypic effects of other genes, gene interactions-called epistasis-have been the topic of a vast research effort. Systems and developmental biologists study epistasis to understand the genotype-phenotype map, whereas evolutionary biologists recognize the fundamental importance of epistasis for evolution. Depending on its form, epistasis may lead to divergence and speciation, provide evolutionary benefits to sex and affect the robustness and evolvability of organisms. That epistasis can itself be shaped by evolution has only recently been realized. Here, we review the empirical pattern of epistasis, and some of the factors that may affect the form and extent of epistasis. Based on their divergent consequences, we distinguish between interactions with or without mean effect, and those affecting the magnitude of fitness effects or their sign. Empirical work has begun to quantify epistasis in multiple dimensions in the context of metabolic and fitness landscape models. We discuss possible proximate causes (such as protein function and metabolic networks) and ultimate factors (including mutation, recombination, and the importance of natural selection and genetic drift). We conclude that, in general, pleiotropy is an important prerequisite for epistasis, and that epistasis may evolve as an adaptive or intrinsic consequence of changes in genetic robustness and evolvability.  相似文献   

8.
Álvarez-Castro JM  Yang RC 《Genetica》2011,139(9):1119-1134
Quantitative genetics stems from the theoretical models of genetic effects, which are re-parameterizations of the genotypic values into parameters of biological (genetic) relevance. Different formulations of genetic effects are adequate to address different subjects. We thus need to generalize and unify them under a common framework for enabling researchers to easily transform genetic effects between different biological meanings. The Natural and Orthogonal Interactions (NOIA) model of genetic effects has been developed to achieve this aim. Here, we further implement the statistical formulation of NOIA with multiple alleles under Hardy–Weinberg departures (HWD). We show that our developments are straightforwardly connected to the decomposition of the genetic variance and we point out several emergent properties of multiallelic quantitative genetic models, as compared to the biallelic ones. Further, NOIA entails a natural extension of one-locus developments to multiple epistatic loci under linkage equilibrium. Therefore, we present an extension of the orthogonal decomposition of the genetic variance to multiple epistatic, multiallelic loci under HWD. We illustrate this theory with a graphical interpretation and an analysis of published data on the human acid phosphatase (ACP1) polymorphism.  相似文献   

9.
10.
It has been argued that the architecture of the genotype-phenotype map determines evolvability, but few studies have attempted to quantify these effects. In this article we use the multilinear epistatic model to study the effects of different forms of epistasis on the response to directional selection. We derive an analytical prediction for the change in the additive genetic variance, and use individual-based simulations to understand the dynamics of evolvability and the evolution of genetic architecture. This shows that the major determinant for the evolution of the additive variance, and thus the evolvability, is directional epistasis. Positive directional epistasis leads to an acceleration of evolvability, while negative directional epistasis leads to canalization. In contrast, pure non-directional epistasis has little effect on the response to selection. One consequence of this is that the classical epistatic variance components, which do not distinguish directional and non-directional effects, are useless as predictors of evolutionary dynamics. The build-up of linkage disequilibrium also has negligible effects. We argue that directional epistasis is likely to have major effects on evolutionary dynamics and should be the focus of empirical studies of epistasis.  相似文献   

11.
Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting is related to several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we generalize the natural and orthogonal interactions (NOIA) framework to allow for estimation of both main allelic effects and POEs. We develop a statistical (Stat-POE) model that has the orthogonal estimates of parameters including the POEs. We conducted simulation studies for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.  相似文献   

12.
Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance explains the insignificant narrow-sense and significant broad-sense heritability by using a combination of careful statistical epistatic analyses and functional genetic experiments.  相似文献   

13.
Likelihood-based phylogenetic inference posits a probabilistic model of character state change along branches of a phylogenetic tree. These models typically assume statistical independence of sites in the sequence alignment. This is a restrictive assumption that facilitates computational tractability, but ignores how epistasis, the effect of genetic background on mutational effects, influences the evolution of functional sequences. We consider the effect of using a misspecified site-independent model on the accuracy of Bayesian phylogenetic inference in the setting of pairwise-site epistasis. Previous work has shown that as alignment length increases, tree reconstruction accuracy also increases. Here, we present a simulation study demonstrating that accuracy increases with alignment size even if the additional sites are epistatically coupled. We introduce an alignment-based test statistic that is a diagnostic for pairwise epistasis and can be used in posterior predictive checks.  相似文献   

14.
Jannink JL 《Genetics》2007,176(1):553-561
Association studies are designed to identify main effects of alleles across a potentially wide range of genetic backgrounds. To control for spurious associations, effects of the genetic background itself are often incorporated into the linear model, either in the form of subpopulation effects in the case of structure or in the form of genetic relationship matrices in the case of complex pedigrees. In this context epistatic interactions between loci can be captured as an interaction effect between the associated locus and the genetic background. In this study I developed genetic and statistical models to tie the locus by genetic background interaction idea back to more standard concepts of epistasis when genetic background is modeled using an additive relationship matrix. I also simulated epistatic interactions in four-generation randomly mating pedigrees and evaluated the ability of the statistical models to identify when a biallelic associated locus was epistatic to other loci. Under additive-by-additive epistasis, when interaction effects of the associated locus were quite large (explaining 20% of the phenotypic variance), epistasis was detected in 79% of pedigrees containing 320 individuals. The epistatic model also predicted the genotypic value of progeny better than a standard additive model in 78% of simulations. When interaction effects were smaller (although still fairly large, explaining 5% of the phenotypic variance), epistasis was detected in only 9% of pedigrees containing 320 individuals and the epistatic and additive models were equally effective at predicting the genotypic values of progeny. Epistasis was detected with the same power whether the overall epistatic effect was the result of a single pairwise interaction or the sum of nine pairwise interactions, each generating one ninth of the epistatic variance. The power to detect epistasis was highest (94%) at low QTL minor allele frequency, fell to a minimum (60%) at minor allele frequency of about 0.2, and then plateaued at about 80% as alleles reached intermediate frequencies. The power to detect epistasis declined when the linkage disequilibrium between the DNA marker and the functional polymorphism was not complete.  相似文献   

15.
For a model of diallelic loci with arbitrary epistasis, Barton and Turelli [2004. Effects of genetic drift on variance components under a general model of epistasis. Evolution 58, 2111-2132] gave results for variances among and within replicate lines obtained by inbreeding without selection. Here, we discuss the relation between their population genetic methods and classical quantitative genetic arguments. In particular, we consider the case of no dominance using classical identity by descent arguments, which generalizes their results from two alleles to multiple alleles. To clarify the connections between the alternative methods, we obtain the same results using an intermediate method, which explicitly identifies the statistical effects of sets of loci. We also discuss the effects of population bottlenecks on covariances among relatives.  相似文献   

16.
Epistasis and Its Contribution to Genetic Variance Components   总被引:37,自引:9,他引:28       下载免费PDF全文
J. M. Cheverud  E. J. Routman 《Genetics》1995,139(3):1455-1461
We present a new parameterization of physiological epistasis that allows the measurement of epistasis separate from its effects on the interaction (epistatic) genetic variance component. Epistasis is the deviation of two-locus genotypic values from the sum of the contributing single-locus genotypic values. This parameterization leads to statistical tests for epistasis given estimates of two-locus genotypic values such as can be obtained from quantitative trait locus studies. The contributions of epistasis to the additive, dominance and interaction genetic variances are specified. Epistasis can make substantial contributions to each of these variance components. This parameterization of epistasis allows general consideration of the role of epistasis in evolution by defining its contribution to the additive genetic variance.  相似文献   

17.
The problem of complex adaptations is studied in two largely disconnected research traditions: evolutionary biology and evolutionary computer science. This paper summarizes the results from both areas and compares their implications. In evolutionary computer science it was found that the Darwinian process of mutation, recombination and selection is not universally effective in improving complex systems like computer programs or chip designs. For adaptation to occur, these systems must possess “evolvability,” i.e., the ability of random variations to sometimes produce improvement. It was found that evolvability critically depends on the way genetic variation maps onto phenotypic variation, an issue known as the representation problem. The genotype-phenotype map determines the variability of characters, which is the propensity to vary. Variability needs to be distinguished from variations, which are the actually realized differences between individuals. The genotype-phenotype map is the common theme underlying such varied biological phenomena as genetic canalization, developmental constraints, biological versatility, developmental dissociability, and morphological integration. For evolutionary biology the representation problem has important implications: how is it that extant species acquired a genotype-phenotype map which allows improvement by mutation and selection? Is the genotype-phenotype map able to change in evolution? What are the selective forces, if any, that shape the genotype-phenotype map? We propose that the genotype-phenotype map can evolve by two main routes: epistatic mutations, or the creation of new genes. A common result for organismic design is modularity. By modularity we mean a genotype-phenotype map in which there are few pleiotropic effects among characters serving different functions, with pleiotropic effects falling mainly among characters that are part of a single functional complex. Such a design is expected to improve evolvability by limiting the interference between the adaptation of different functions. Several population genetic models are reviewed that are intended to explain the evolutionary origin of a modular design. While our current knowledge is insufficient to assess the plausibility of these models, they form the beginning of a framework for understanding the evolution of the genotype-phenotype map.  相似文献   

18.
Both analytical and molecular tools currently exist that can be used to prolifically apply quantitative trait loci (QTL) analysis to the study of natural populations. In this communication, we review and exemplify the use of QTL mapping tools and genetic modeling for conservation geneticists. We simulate populations inspired by relevant cases that can be encountered in the field and analyze them using the recently developed flexible intercross analysis (FIA) method. We then reanalyze these results with the also recently developed natural and orthogonal interactions (NOIA) model of genetic effects. Next, we further exemplify the potential of genetic modeling for the interpretation of the output of QTL analyses by reviewing studies on hybrids between wild individuals and their domesticated relatives. Based on the results here presented we emphasize several points that are pertinent in conservation genetics including (i) the advantages of FIA as a powerful tool to be applied to line crosses in which the parental lines are not inbred, (ii) the importance of obtaining estimates of genetic effects that are adequate to address the research issue under consideration, (iii) the versatility of genetic modeling, particularly NOIA, to dissect complex genetic architectures and (iv) the possibility of using currently available methods to address non-equilibrium multiallelic systems.  相似文献   

19.
Modeling epistasis of quantitative trait loci using Cockerham's model   总被引:10,自引:0,他引:10  
Kao CH  Zeng ZB 《Genetics》2002,160(3):1243-1261
We use the orthogonal contrast scales proposed by Cockerham to construct a genetic model, called Cockerham's model, for studying epistasis between genes. The properties of Cockerham's model in modeling and mapping epistatic genes under linkage equilibrium and disequilibrium are investigated and discussed. Because of its orthogonal property, Cockerham's model has several advantages in partitioning genetic variance into components, interpreting and estimating gene effects, and application to quantitative trait loci (QTL) mapping when compared to other models, and thus it can facilitate the study of epistasis between genes and be readily used in QTL mapping. The issues of QTL mapping with epistasis are also addressed. Real and simulated examples are used to illustrate Cockerham's model, compare different models, and map for epistatic QTL. Finally, we extend Cockerham's model to multiple loci and discuss its applications to QTL mapping.  相似文献   

20.
RNA folding from sequences into secondary structures is a simple yet powerful, biophysically grounded model of a genotype-phenotype map in which concepts like plasticity, evolvability, epistasis, and modularity can not only be precisely defined and statistically measured but also reveal simultaneous and profoundly non-independent effects of natural selection. Molecular plasticity is viewed here as the capacity of an RNA sequence to assume a variety of energetically favorable shapes by equilibrating among them at constant temperature. Through simulations based on experimental designs, we study the dynamics of a population of RNA molecules that evolve toward a predefined target shape in a constant environment. Each shape in the plastic repertoire of a sequence contributes to the overall fitness of the sequence in proportion to the time the sequence spends in that shape. Plasticity is costly, since the more shapes a sequence can assume, the less time it spends in any one of them. Unsurprisingly, selection leads to a reduction of plasticity (environmental canalization). The most striking observation, however, is the simultaneous slow-down and eventual halting of the evolutionary process. The reduction of plasticity entails genetic canalization, that is, a dramatic loss of variability (and hence a loss of evolvability) to the point of lock-in. The causal bridge between environmental canalization and genetic canalization is provided by a correlation between the set of shapes in the plastic repertoire of a sequence and the set of dominant (minimum free energy) shapes in its genetic neighborhood. This statistical property of the RNA genotype-phenotype map, which we call plastogenetic congruence, traps populations in regions where most genetic variation is phenotypically neutral. We call this phenomenon neutral confinement. Analytical models of neutral confinement, made tractable by the assumption of perfect plastogenetic congruence, formally connect mutation rate, the topography of phenotype space, and evolvability. These models identify three mutational regimes: that corresponding to neutral confinement, an exploration threshold corresponding to a breakdown of neutral confinement with the simultaneous persistence of the dominant phenotype, and a classic error threshold corresponding to the loss of the dominant phenotype. In a final step, we analyze the structural properties of canalized phenotypes. The reduction of plasticity leads to extreme modularity, which we analyze from several perspectives: thermophysical (melting--the RNA version of a norm of reaction), kinetic (folding pathways--the RNA version of development), and genetic (transposability--the insensitivity to genetic context). The model thereby suggests a possible evolutionary origin of modularity as a side effect of environmental canalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号