首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The yeast a-factor transporter Ste6 is a member of the ABC transporter family and is closely related to human MDR1. We constructed a set of 26 Ste6 mutants using a random mutagenesis approach. Cell fractionation experiments demonstrated that most of the mutants, with the notable exception of those with alterations in TM1, are transported to the plasma membrane, the presumptive site of action of Ste6. Trafficking, therefore, does not seem to be affected in most of the mutants. To identify regions in Ste6 that interact with the ABC transporter "signature motif" (LSGGQ) we screened for intragenic revertants of the LSGGQ mutant M68 (S507N). Suppressor mutations were identified in TM12 and upstream of TM6. Surprisingly, these mutations also suppressed the Walker A mutation G397D, which should be defective in ATP-binding and hydrolysis at NBD1. Photoaffinity labeling experiments with 8-azido-[alpha-32P]ATP showed that ATP binding at NBD2 is reduced by the suppressor mutation in TM12. The experiments further suggest that the two NBDs of Ste6 are not equivalent and affect each other's ability to bind and hydrolyze ATP.  相似文献   

2.
Glycogen storage disease type 1b (GSD-1b) is proposed to be caused by a deficiency in microsomal glucose 6-phosphate (G6P) transport, causing a loss of glucose-6-phosphatase activity and glucose homeostasis. However, for decades, this disorder has defied molecular characterization. In this study, we characterize the structural organization of the G6P transporter gene and identify mutations in the gene that segregate with the GSD-1b disorder. We report the functional characterization of the recombinant G6P transporter and demonstrate that mutations uncovered in GSD-1b patients disrupt G6P transport. Our results, for the first time, define a molecular basis for functional deficiency in GSD-1b and raise the possibility that the defective G6P transporter contributes to neutropenia and neutrophil/monocyte dysfunctions characteristic of GSD-1b patients.  相似文献   

3.
MOTIVATION: Membrane-bound proteins are a special class of proteins. The regions that insert into the cell-membrane have a profoundly different hydrophobicity pattern compared with soluble proteins. Multiple alignment techniques use scoring schemes tailored for sequences of soluble proteins and are therefore in principle not optimal to align membrane-bound proteins. RESULTS: Transmembrane (TM) regions in protein sequences can be reliably recognized using state-of-the-art sequence prediction techniques. Furthermore, membrane-specific scoring matrices are available. We have developed a new alignment method, called PRALINETM, which integrates these two features to enhance multiple sequence alignment. We tested our algorithm on the TM alignment benchmark set by Bahr et al. (2001), and showed that the quality of TM alignments can be significantly improved compared with the quality produced by a standard multiple alignment technique. The results clearly indicate that the incorporation of these new elements into current state-of-the-art alignment methods is crucial for optimizing the alignment of TM proteins. AVAILABILITY: A webserver is available at http://www.ibi.vu.nl/programs/pralinewww.  相似文献   

4.
Glycogen storage disease type 1 (GSD-1), also known as von Gierke disease, is a group of autosomal recessive metabolic disorders caused by deficiencies in the activity of the glucose-6-phosphatase (G6Pase) system that consists of at least two membrane proteins, glucose-6-phosphate transporter (G6PT) and G6Pase. G6PT translocates glucose-6-phosphate (G6P) from cytoplasm to the lumen of the endoplasmic reticulum (ER) and G6Pase catalyzes the hydrolysis of G6P to produce glucose and phosphate. Therefore, G6PT and G6Pase work in concert to maintain glucose homeostasis. Deficiencies in G6Pase and G6PT cause GSD-1a and GSD-1b, respectively. Both manifest functional G6Pase deficiency characterized by growth retardation, hypoglycemia, hepatomegaly, kidney enlargement, hyperlipidemia, hyperuricemia, and lactic acidemia. GSD-1b patients also suffer from chronic neutropenia and functional deficiencies of neutrophils and monocytes, resulting in recurrent bacterial infections as well as ulceration of the oral and intestinal mucosa. The G6Pase gene maps to chromosome 17q21 and encodes a 36-kDa glycoprotein that is anchored to the ER by 9 transmembrane helices with its active site facing the lumen. Animal models of GSD-1a have been developed and are being exploited to delineate the disease more precisely and to develop new therapies. The G6PT gene maps to chromosome 11q23 and encodes a 37-kDa protein that is anchored to the ER by 10 transmembrane helices. A functional assay for the recombinant G6PT protein has been established, which showed that G6PT functions as a G6P transporter in the absence of G6Pase. However, microsomal G6P uptake activity was markedly enhanced in the simultaneous presence of G6PT and G6Pase. The cloning of the G6PT gene now permits animal models of GSD-1b to be generated. These recent developments are increasing our understanding of the GSD-l disorders and the G6Pase system, knowledge that will facilitate the development of novel therapeutic approaches for these disorders.  相似文献   

5.
The amino acid sequences of haemoglobin-like proteins from the bacteria Alcaligenes eutrophus , Bacillus subtilis , Erwinia chrysanthemi , Escherichia coli , Vibrio parahaemolyticus , Vitreoscilla sp. and the yeast Saccharomyces cerevisiae were studied. Phylogenies based on distance and parsimony analysis showed that the eubacterial group can be easily distinguished from the other haemoglobin-like proteins. The construction of a consensus bacterial flavohaemoglobin based on the alignment of six bacterial and one yeast globins allowed the design of consensus primers to search for haemoglobin-like genes in other bacteria. PCR products of the expected size were found in Campylobacter jejuni , Salmonella typhimurium , Listeria monocytogenes , Rhizobium leguminosarum , Klebsiella pneumoniae , Pseudomonas aeruginosa and Staphylococcus aureus .  相似文献   

6.
7.
A sequence comparison of the two membrane-associated (MA) domains of the cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance transporter (MDR), and -factor pheromone export system (STE6) proteins, each of which are believed to contain a total of 12 transmembrane (TM) segments, reveals significant amino acid homology and length conservation in the loop regions that connect individual TM sequences. Similar structural homology is observed between these proteins, hemolysin B (HLYB) and the major histocompatibility-linked peptide transporter, HAM1, the latter two which contain a single MA domain composed of six TM segments. In addition, there are specific sequences that are conserved within the TM segments of the five different membrane proteins. This observation suggests that the folding topologies of the MA domains of MDR, STE6, and CFTR in the plasma membrane are likely to be very similar. The sequence analysis also reveals that there are three characteristic motifs (a pair of aromatic residues, LTLXXXXXXP and GXXL) that are conserved in MDR, STE6, HLYB, HAM1, but not in CFTR. We propose that although CFTR may be evolutionarily related to these other membrane proteins, it belongs to a separate subclass.  相似文献   

8.
Tyr(446) in putative transmembrane segment 10 (TM10) of the yeast galactose transporter Gal2 has previously been identified as essential for galactose recognition. In the present study, alignment of the amino acid sequences of 63 sugar transporters or related proteins revealed 14 aromatic sites, including Tyr(446) of Gal2, that are conserved in >75% of these proteins. The importance of the remaining 13 conserved aromatic amino acids was examined individually by random mutagenesis using degenerate primers. Galactose transport-positive clones were identified by plate selection and subjected to DNA sequencing. For those transport-positive clones corresponding to Tyr(352), and Phe(504) mutants, all the amino acid substitutions comprised aromatic residues. The importance of the aromatic residues at these sites was further investigated by replacing them individually with each of the other 19 amino acids and measuring the galactose transport activity of the resulting mutants. Among both Tyr(352) and Phe(504) mutants, the other aromatic amino acids supported galactose transport; no other amino acids conferred high affinity transport activity. Thus, at least three aromatic sites are critical for galactose transport: one at the extracellular boundary of putative TM7 (Tyr(352)), one in the middle of putative TM10 (Tyr(446)), and one in the middle of putative TM12 (Phe(504)).  相似文献   

9.
The existence of the enzyme glucose-6-phosphatase (G6Pase) in early and term human placenta was investigated by comparing the characteristics of placental microsomal glucose 6-phosphate (G6P) hydrolytic activity and liver G6Pase. Placental microsomes exhibited similar apparent Km values for G6P and beta-glycerophosphate in intact and deoxycholate-treated microsomes, heat stability at acidic pH, low latency of mannose 6-phosphate hydrolysis, very low activity of pyrophosphate: glucose phosphotransferase, and undetectable [U-14C]G6P transport into the placental microsomes, all of which indicated that specific G6Pase activity does not exist in placenta. Immunological evidence of the absence of both 36.5 kDa and T2 proteins, which represent the G6Pase catalytic protein and the phosphate/pyrophosphate transporter protein, respectively, confirmed that early and term human placenta are devoid of the multicomponent G6Pase enzyme.  相似文献   

10.
The 150-residue protein TM1509 is encoded in gene YF09_THEMA of Thermotoga maritima. TM1509 has so far no functional annotation and belongs to protein family UPF0054 (PFAM accession number: PF02130) which contains at least 146 members. The NMR structure of TM1509 reveals an α+β fold comprising a four stranded β-sheet with topology A(↑), B(↑), D(↑), C(↓) as well as five α-helices I–V. The structures of most members of family PF02130 can be reliably constructed using the TM1509 NMR structure, demonstrating high leverage for exploration of fold space. A multiple sequence alignment of TM1509 with homologues of family UPF0054 shows that three polypeptide segments, as well as a putative zinc-binding consensus motif HGXLHLXGYDH located at the C-terminal end of α-helix IV, are highly conserved. The spatial arrangement of the three His residues of this UPF0054 consensus motif is similar to the arrangement found for the His residues in the HEXXHXXGXXH zinc-binding consensus motif of matrix metallo-proteases (MMPs). Moreover, the other conserved polypeptide segments form a large cavity which encloses the putative Zn-binding pocket and might confer specificity during catalysis. However, TM1509 and the other members of the UPF0054 family do not have the crucial Glu residue in position 2 of the MMP consensus motif. Intriguingly, the TM1509 structure indicates that the Asp in the UPF0054 consensus motif (Asp 111 in TM1509) may overtake the catalytic role of the Glu. This suggests that protein family UPF0054 might contain members of a hitherto uncharacterized class of metalloproteases.  相似文献   

11.
Deficiencies in glucose 6-phosphate (G6P) transporter (G6PT), a 10-helical endoplasmic reticulum transmembrane protein of 429 amino acids, cause glycogen storage disease type 1b. To date, only three missense mutations in G6PT have been shown to abolish microsomal G6P transport activity. Here, we report the results of structure-function studies on human G6PT and demonstrate that 15 missense mutations and a codon deletion (delta F93) mutation abolish microsomal G6P uptake activity and that two splicing mutations cause exon skipping. While most missense mutants support the synthesis of G6PT protein similar to that of the wild-type transporter, immunoblot analysis shows that G20D, delta F93, and I278N mutations, located in helix 1, 2, and 6, respectively, destabilize the G6PT. Further, we demonstrate that G6PT mutants lacking an intact helix 10 are misfolded and undergo degradation within cells. Moreover, amino acids 415-417 in the cytoplasmic tail of the carboxyl-domain, extending from helix 10, also play a critical role in the correct folding of the transporter. However, the last 12 amino acids of the cytoplasmic tail play no essential role(s) in functional integrity of the G6PT. Our results, for the first time, elucidate the structural requirements for the stability and transport activity of the G6PT protein.  相似文献   

12.
Wnt ligands conduct their functions in canonical Wnt signaling by binding to two receptors, the single transmembrane low density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) and seven transmembrane (7TM) Frizzled receptors. Subsequently, phosphorylation of serine/threonine residues within five repeating signature PPPSP motifs on LRP6 is responsible for LRP6 activation. GSK3β, a cytosolic kinase for phosphorylation of a downstream effector β-catenin, was proposed to participate in such LRP6 phosphorylation. Here, we report a new class of membrane-associated kinases for LRP6 phosphorylation. We found that G protein-coupled receptor kinases 5 and 6 (GRK5/6), traditionally known to phosphorylate and desensitize 7TM G protein-coupled receptors, directly phosphorylate the PPPSP motifs on single transmembrane LRP6 and regulate Wnt/LRP6 signaling. GRK5/6-induced LRP6 activation is inhibited by the LRP6 antagonist Dickkopf. Depletion of GRK5 markedly reduces Wnt3A-stimulated LRP6 phosphorylation in cells. In zebrafish, functional knock-down of GRK5 results in reduced Wnt signaling, analogous to LRP6 knock-down, as assessed by decreased abundance of β-catenin and lowered expression of the Wnt target genes cdx4, vent, and axin2. Expression of GRK5 rescues the diminished β-catenin and axin2 response caused by GRK5 depletion. Thus, our findings identify GRK5/6 as novel kinases for the single transmembrane receptor LRP6 during Wnt signaling.  相似文献   

13.
Although multiple sequence alignments (MSAs) are essential for a wide range of applications from structure modeling to prediction of functional sites, construction of accurate MSAs for distantly related proteins remains a largely unsolved problem. The rapidly increasing database of spatial structures is a valuable source to improve alignment quality. We explore the use of 3D structural information to guide sequence alignments constructed by our MSA program PROMALS. The resulting tool, PROMALS3D, automatically identifies homologs with known 3D structures for the input sequences, derives structural constraints through structure-based alignments and combines them with sequence constraints to construct consistency-based multiple sequence alignments. The output is a consensus alignment that brings together sequence and structural information about input proteins and their homologs. PROMALS3D can also align sequences of multiple input structures, with the output representing a multiple structure-based alignment refined in combination with sequence constraints. The advantage of PROMALS3D is that it gives researchers an easy way to produce high-quality alignments consistent with both sequences and structures of proteins. PROMALS3D outperforms a number of existing methods for constructing multiple sequence or structural alignments using both reference-dependent and reference-independent evaluation methods.  相似文献   

14.
Microsomal glucose-6-phosphatase-alpha (G6Pase-alpha) and glucose 6-phosphate transporter (G6PT) work together to increase blood glucose concentrations by performing the terminal step in both glycogenolysis and gluconeogenesis. Deficiency of the G6PT in liver gives rise to glycogen storage disease type 1b (GSD1b), whereas deficiency of G6Pase-alpha leads to GSD1a. G6Pase-alpha shares its substrate (glucose 6-phosphate; G6P) with hexose-6-phosphate-dehydrogenase (H6PDH), a microsomal enzyme that regenerates NADPH within the endoplasmic reticulum lumen, thereby conferring reductase activity upon 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). 11beta-HSD1 interconverts hormonally active C11beta-hydroxy steroids (cortisol in humans and corticosterone in rodents) to inactive C11-oxo steroids (cortisone and 11-dehydrocorticosterone, respectively). In vivo reductase activity predominates, generating active glucocorticoid. We hypothesized that substrate (G6P) availability to H6PDH in patients with GSD1b and GSD1a will decrease or increase 11beta-HSD1 reductase activity, respectively. We investigated 11beta-HSD1 activity in GSD1b and GSD1a mice and in two patients with GSD1b and five patients diagnosed with GSD1a. We confirmed our hypothesis by assessing 11beta-HSD1 in vivo and in vitro, revealing a significant decrease in reductase activity in GSD1b animals and patients, whereas GSD1a patients showed a marked increase in activity. The cellular trafficking of G6P therefore directly regulates 11beta-HSD1 reductase activity and provides a novel link between glucose metabolism and function of the hypothalamo-pituitary-adrenal axis.  相似文献   

15.
The operation of glucose 6-phosphatase (EC 3.1.3.9) (Glc6Pase) stems from the interaction of at least two highly hydrophobic proteins embedded in the ER membrane, a heavily glycosylated catalytic subunit of m 36 kDa (P36) and a 46-kDa putative glucose 6-phosphate (Glc6P) translocase (P46). Topology studies of P36 and P46 predict, respectively, nine and ten transmembrane domains with the N-terminal end of P36 oriented towards the lumen of the ER and both termini of P46 oriented towards the cytoplasm. P36 gene expression is increased by glucose, fructose 2,6-bisphosphate (Fru-2,6-P2) and free fatty acids, as well as by glucocorticoids and cyclic AMP; the latter are counteracted by insulin. P46 gene expression is affected by glucose, insulin and cyclic AMP in a manner similar to P36. Accordingly, several response elements for glucocorticoids, cyclic AMP and insulin regulated by hepatocyte nuclear factors were found in the Glc6Pase promoter. Mutations in P36 and P46 lead to glycogen storage disease (GSD) type-1a and type-1 non a (formerly 1b and 1c), respectively. Adenovirus-mediated overexpression of P36 in hepatocytes and in vivo impairs glycogen metabolism and glycolysis and increases glucose production; P36 overexpression in INS-1 cells results in decreased glycolysis and glucose-induced insulin secretion. The nature of the interaction between P36 and P46 in controling Glc6Pase activity remains to be defined. The latter might also have functions other than Glc6P transport that are related to Glc6P metabolism.  相似文献   

16.
Pan CJ  Chen SY  Jun HS  Lin SR  Mansfield BC  Chou JY 《PloS one》2011,6(9):e23157
Blood glucose homeostasis between meals depends upon production of glucose within the endoplasmic reticulum (ER) of the liver and kidney by hydrolysis of glucose-6-phosphate (G6P) into glucose and phosphate (P(i)). This reaction depends on coupling the G6P transporter (G6PT) with glucose-6-phosphatase-α (G6Pase-α). Only one G6PT, also known as SLC37A4, has been characterized, and it acts as a P(i)-linked G6P antiporter. The other three SLC37 family members, predicted to be sugar-phosphate:P(i) exchangers, have not been characterized functionally. Using reconstituted proteoliposomes, we examine the antiporter activity of the other SLC37 members along with their ability to couple with G6Pase-α. G6PT- and mock-proteoliposomes are used as positive and negative controls, respectively. We show that SLC37A1 and SLC37A2 are ER-associated, P(i)-linked antiporters, that can transport G6P. Unlike G6PT, neither is sensitive to chlorogenic acid, a competitive inhibitor of physiological ER G6P transport, and neither couples to G6Pase-α. We conclude that three of the four SLC37 family members are functional sugar-phosphate antiporters. However, only G6PT/SLC37A4 matches the characteristics of the physiological ER G6P transporter, suggesting the other SLC37 proteins have roles independent of blood glucose homeostasis.  相似文献   

17.
18.
Ulfers AL  McMurry JL  Kendall DA  Mierke DF 《Biochemistry》2002,41(38):11344-11350
The third cytoplasmic loop (IC3) is a determinant in the dynamic life cycle of G protein-coupled receptors, including the activation, internalization, desensitization, and resensitization processes. Here, we characterize the structural features of the IC3 of the cannabinoid 1 receptor (CB1) in micelle solution using heteronuclear, (1)H,(15)N-high-resolution NMR methods. The IC3 construct was designed to contain one-third of each of the transmembrane helices (TMs 5 and 6) to tether the protein to the hydrophobic portion of the micelle. Indeed, the NMR analysis illustrates prominent alpha-helices at the N-terminus (G1-R10) and C-terminus (Q37-T47) of the IC3 receptor domain, corresponding to the cytoplasmic termini of TM5 and TM6. The structural features of the central portion of the IC3 consist of a small alpha-helix, adjacent to the terminus of TM5. The remainder is mostly unstructured as indicated by the NMR-based observables (NOEs and chemical shifts). Despite the lack of secondary structure, the hydrophobic triplet of isoleucine residues in the center of the IC3 is found in molecular dynamics simulations to associate with the lipid environment, producing two smaller loops out of the IC3. Previous studies examining mastoparan and related peptides and their ability to activate G proteins have concluded an alpha-helix is required for efficient binding and activation. Our structural results for the IC3 of CB1 would then suggest that in the intact receptor the G protein is activated by the alpha-helices of the cytoplasmic ends of TM5 or TM6 and not the unstructured central region of the IC3.  相似文献   

19.
The sodium- and chloride-coupled gamma-aminobutyric acid (GABA) transporter GAT-1 is essential for efficient synaptic transmission by this neurotransmitter. GAT-1 is the first cloned member of the neurotransmitter-sodium-symporter family. Here we address the idea that during transport the extracellular halves of transmembrane domains (TM) 1 and 6, TM 1b/TM 6a, move relative to the binding pocket. Therefore, we have probed the aqueous accessibility of TM 6a and its proximity to TM 1b in the presence and absence of its substrates. Cysteines were introduced, one by one, at all TM 6a positions. In several mutants, transport activity was inhibited by the impermeant sulfhydryl reagent (2-trimethylammonium)methanethiosulfonate, whereas wild type GAT-1 was basically insensitive. This inhibition was potentiated by sodium, whereas GABA was protective. Moreover, we used paired cysteine mutagenesis in conjunction with treatments with copper(II)(1,10-phenanthroline)(3) (CuPh). CuPh did not affect the activity of wild type GAT-1 but potently inhibited transport by the TM 6a mutant D287C. Such inhibition was not observed with D287C/C74A, indicating that Asp-287 is close to Cys-74 of TM 1b. Inhibition of transport of D287C by CuPh, but not by (2-trimethylammonium)methanethiosulfonate, was potentiated when sodium and GABA were both removed. Thus, the degree of inhibition by CuPh is not a simple function of the accessibility of the individual cysteines but also involves structural rearrangements around the TM 1b/TM 6a interface.  相似文献   

20.
Until now, voltage-gated Ca(2+) channel proteins have been found only in eukaryotes. Here we report that a gene recently discovered in the eubacterium Bacillus halodurans codes for a protein closely related to eukaryotic Ca(2+) channels, but that has only one 6-transmembrane-segement (6TM) motif, instead of four, in its pore-forming subunit. This is supported by the comparison of consensus sequences, which, along with the patterns of residue conservation, indicates a similar structure in the membrane to voltage-gated K(+) channels. From this we hypothesize that Ca(2+) channels originally evolved in bacteria, and that the specific eubacteria protein highlighted here is an ideal candidate for structure determination efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号