共查询到20条相似文献,搜索用时 15 毫秒
1.
Dahlin C Aronsson H Wilks HM Lebedev N Sundqvist C Timko MP 《Plant molecular biology》1999,39(2):309-323
NADPH:protochlorophyllide oxidoreductase (POR) catalyzes the light-dependent reduction of protochlorophyllide (pchlide) to chlorophyllide (chlide) in the biosynthesis of chlorophyll. POR is a peripheral membrane protein that accumulates to high levels in the prolamellar bodies of vascular plant etioplasts and is present at low levels in the thylakoid membranes of developing and mature plastids. Clustered charged-to-alanine scanning mutagenesis of the pea (Pisum sativum L.) POR was carried out and the resulting mutant enzymes analyzed for their ability to catalyze pchlide photoconversion in vivo and to associate properly with thylakoid membrane preparations in vitro. Of 37 mutant enzymes examined, 5 retained wild-type levels of activity, 14 were catalytically inactive, and the remaining 18 exhibited altered levels of function. Several of the mutant enzymes showed temperature- dependent enzymatic activity, being inactive at 32°C, but partially active at 24°C. Mutations in predicted - helical regions of the protein showed the least effect on enzyme activity, whereas mutations in predicted -sheet regions of the protein showed a consistent adverse affect on enzyme function. In the absence of added NADPH, neither wild-type POR nor any of the mutant PORs resisted proteolysis by thermolysin following assembly onto the thylakoid membranes. In contrast, when NADPH was present in the assay mixture, 13 of the 37 mutant PORs examined were found to be resistant to thermolysin upon treatment, suggesting that the mutations did not affect their ability to be properly attached to the thylakoid membrane. In general, the replacement of charged amino acids by alanine in the most N- and C-terminal regions of the mature protein did not significantly affect POR assembly, whereas mutations within the central core of the protein (between residues 86 and 342) were incapable of proper attachment to the thylakoid. Failure to properly associate with the thylakoid membrane in a protease resistant manner was only weakly correlated to loss of catalytic function. These studies are a first step towards defining structural determinants crucial to POR function and intraorganellar localization. 相似文献
2.
3.
Engdahl S Aronsson H Sundqvist C Timko MP Dahlin C 《The Plant journal : for cell and molecular biology》2001,27(4):297-304
Membrane association of NADPH:protochlorophyllide oxidoreductase (POR, EC: 1.6.99.1) with isolated prolamellar bodies (PLBs) and prothylakoids (PTs) from wheat etioplasts was investigated. In vitro-expressed radiolabelled POR, with or without transit peptide, was used to characterize membrane association conditions. Proper association of POR with PLBs and PTs did not require the presequence, whereas NADPH and hydrolysable ATP were vital for the process. After treating the membranes with thermolysin, sodium hydroxide or carbonate, a firm attachment of the POR protein to the membrane was found. Although the PLBs and PTs differ significantly in their relative amount of POR in vivo, no major differences in POR association capacity could be observed between the two membrane systems when exogenous NADPH was added. Experiments run with only an endogenous NADPH source almost abolished association of POR with both PLBs and PTs. In addition, POR protein carrying a mutation in the putative nucleotide-binding site (ALA06) was unable to bind to the inner membranes in the presence of NADPH, which further demonstrates that the co-factor is essential for proper membrane association. POR protein carrying a mutation in the substrate-binding site (ALA24) showed less binding to the membranes as compared to the wild type. The results presented here introduce studies of a novel area of protein-membrane interaction, namely the association of proteins with a paracrystalline membrane structure, the PLB. 相似文献
4.
Zhiwei Hou Xiaoqing Pang Boris Hedtke Bernhard Grimm 《The Plant journal : for cell and molecular biology》2021,107(2):360-376
The control of chlorophyll (Chl) synthesis in angiosperms depends on the light-operating enzyme protochlorophyllide oxidoreductase (POR). The interruption of Chl synthesis during darkness requires suppression of the synthesis of 5-aminolevulinic acid (ALA), the first precursor molecule specific for Chl synthesis. The inactivation of glutamyl-tRNA reductase (GluTR), the first enzyme in tetrapyrrole biosynthesis, accomplished the decreased ALA synthesis by the membrane-bound protein FLUORESCENT (FLU) and prevents overaccumulation of protochlorophyllide (Pchlide) in the dark. We set out to elucidate the molecular mechanism of FLU-mediated inhibition of ALA synthesis, and explored the role of each of the three structural domains of mature FLU, the transmembrane, coiled-coil and tetratricopeptide repeat (TPR) domains, in this process. Efforts to rescue the FLU knock-out mutant with truncated FLU peptides revealed that, on its own, the TPR domain is insufficient to inactivate GluTR, although tight binding of the TPR domain to GluTR was detected. A truncated FLU peptide consisting of transmembrane and TPR domains also failed to inactivate GluTR in the dark. Similarly, suppression of ALA synthesis could not be achieved by combining the coiled-coil and TPR domains. Interaction studies revealed that binding of GluTR and POR to FLU is essential for inhibiting ALA synthesis. These results imply that all three FLU domains are required for the repression of ALA synthesis, in order to avoid the overaccumulation of Pchlide in the dark. Only complete FLU ensures the formation of a membrane-bound ternary complex consisting at least of FLU, GluTR and POR to repress ALA synthesis. 相似文献
5.
The activation energy and activation volume of the spectral blue shift subsequent to protochlorophyllide phototransformation (called Shibata shift in intact leaves) were studied in prolamellar body (PLB) and prothylakoid-(PT)-enriched membrane fractions prepared from dark-grown wheat (Triticum aestivum, L.) leaves. The measurements were done at 20, 30 and 40 °C and at various pressure values. The activation energy values were 181 ± 8 kJ mol− 1 and 188 ± 6 kJ mol− 1 for the PLBs and the PTs, respectively. The pressure stabilized the structure of the NADPH:protochlorophyllide oxidoreductase (POR) macrodomains; it prevented or slowed down the blue shift. There were no significant differences between the activation volumes of PLBs and PTs at 30 or 40 °C giving values around 100-125 ml mol− 1 which correspond to changes in the tertiary structure of proteins but also resemble the volume changes occurring during the disaggregation of protein dimers or oligomers, or during dissociation of peripheral membrane proteins from membranes. The small differences in the activation parameters of PLBs and PTs indicate that molecular rearrangements inside the POR macrodomains are the primary reasons of the fluorescence blue shift; however, their lipid microenvironment must be also important in the initialization of the shift. 相似文献
6.
Reinbothe C Buhr F Bartsch S Desvignes C Quigley F Pesey H Reinbothe S 《Molecular genetics and genomics : MGG》2006,275(6):540-552
NADPH:protochlorophyllide oxidoreductase (POR) B is a key enzyme for the light-induced greening of etiolated angiosperm plants. It is nucleus-encoded, imported into the plastids posttranslationally, and assembled into larger light-harvesting POR:protochlorophyllide complexes termed LHPP (Reinbothe et al., Nature 397:80–84, 1999). An in vitro-mutagenesis approach was taken to study the role of the evolutionarily conserved Cys residues in pigment binding. Four Cys residues are present in the PORB of which two, Cys276 and Cys303, established distinct pigment binding sites, as shown by biochemical tests, protein import studies, and in vitro-reconstitution experiments. While Cys276 constituted the Pchlide binding site in the active site of the enzyme, Cys303 established a second, low affinity pigment binding site that was involved in the assembly and stabilization of imported PORB enzyme inside etioplasts.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. 相似文献
7.
Masuda T Fusada N Shiraishi T Kuroda H Awai K Shimada H Ohta H Takamiya K 《Photosynthesis research》2002,74(2):165-172
NADPH-protochlorophyllide oxidoreductase (POR) catalyzes the light-dependent reduction of protochlorophyllide a in the chlorophyll biosynthetic pathway. Here, we identified two distinct POR cDNAs from tobacco. Both POR isoforms are encoded by a respective single copy gene in tobacco genome. The overall deduced
amino acid sequences of two tobacco cDNAs, designated here POR1 and POR2, displayed significant identities (∼75%), but showed different patterns of light and developmental regulation. In contrast
to the previously isolated POR isoforms of Arabidopsis thaliana and barley, the expression of both tobacco POR isoforms were not negatively regulated by light and persisted in matured green
tissues. Furthermore, the expression of both genes appeared to be regulated by a diurnal regulation. These results show a
wide variety of light- and development-dependent regulations of POR gene expression among angiosperms. Furthermore, phylogenetic analysis including tobacco revealed that POR gene family is differentially represented by angiosperms, most of which is probably caused by independent gene duplication
in individual plant. Present results imply a modification of the previous concept that chlorophyll biosynthesis and chloroplast
differentiation in angiosperms are ubiquitously controlled by unique functions of two POR isoforms.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
8.
The aurea and yellow-green-2 (yg-2) mutants of tomato (Solanum lycopersicum) are unable to synthesize the phytochrome chromophore from heme resulting in a block of this branch of the tetrapyrrole pathway.
We have previously shown that these mutants also exhibit an inhibition of protochlorophyllide (Pchlide) synthesis and it has
been hypothesised that this is due to feedback inhibition by heme on the synthesis of 5-aminolevulinic acid (ALA). In this
study we have investigated Pchlide reaccumulation in cotyledons from etiolated wild-type (WT), aurea and yg-2 seedlings using low-temperature fluorescence spectroscopy. WT cotyledons showed two characteristic Pchlide emission maxima
at 630 nm (F630) and 655 nm (F655) respectively, while the aurea and yg-2 mutants contained only phototransformable Pchlide F655. Following a white-light flash to WT cotyledons, reaccumulation of
phototransformable Pchlide F655 in the first 30 min was absolutely dependent on the presence of Pchlide F630 before the flash.
Reaccumulation of Pchlide F630 was not apparent until at least 2 h after the phototransformation. In contrast, Pchlide F630
never accumulated in aurea cotyledons. The relative rates of both Pchlide F655 and total Pchlide synthesis were approximately twice as high in WT compared
to aurea. Measurement of ALA synthesis capacity during this period showed that the reduced rate of Pchlide reaccumulation in aurea was due to an inhibition at this step of the pathway. In addition, feeding of ALA resulted in a substantial and equal increase
of non-phototransformable Pchlide in both WT and aurea indicating that aurea cotyledons are capable of accumulating high levels of Pchlide that is not associated to the active site of NADPH:Pchlide
oxidoreductase (POR). The implications of these results for the mechanism of inhibition of Pchlide synthesis in phytochrome
chromophore-deficient mutants and the role of non-phototransformable Pchlide F630 during plastid development are discussed.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
9.
Annamária Kósa 《BBA》2006,1757(7):811-820
Artificial formation of flash-photoactive oligomeric protochlorophyllide complexes was found in etiolated pea (Pisum sativum L. cv. Zsuzsi) epicotyl homogenates containing glycerol (40% v/v) and sucrose (40% m/v). The 77 K fluorescence emission spectra indicated that the ratio of the 644 and 655 nm emitting forms to the 636 nm form increased during 3 to 5-day incubation in the dark at −14 °C. Electron micrographs showed the presence of well-organized prolamellar bodies in the homogenates. The same phenomena were found when the homogenates were frozen into liquid nitrogen and thawed to room temperature in several cycles. Similar treatments of intact epicotyl pieces caused significant membrane destructions. In homogenates, the in vitro produced 644 and 655 nm emitting protochlorophyllide forms were flash-photoactive; the extent of phototransformation increased compared to that in native epicotyls. The newly appeared 692 nm chlorophyllide band showed a blue shift (similar to the Shibata shift in leaves), however this process took place only partially due to the effect of the isolation medium.These results prove that the in vitro accumulated 644 and 655 nm protochlorophyllide forms were produced from the flash-photoactive 636 nm emitting monomeric NADPH:protochlorophyllide oxidoreductase units via aggregation, in connection with structure stabilization properties of glycerol and sucrose. 相似文献
10.
The mitochondrial rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) comprises more than 35 subunits, the majority of which are encoded by the nucleus. In Chlamydomonas reinhardtii, only five components (ND1, ND2, ND4, ND5 and ND6) are coded for by the mitochondrial genome. Here, we characterize two mitochondrial mutants (dum5 and dum17) showing strong reduction or inactivation of complex I activity: dum5 is a 1T deletion in the 3' UTR of nd5 whereas dum17 is a 1T deletion in the coding sequence of nd6. The impact of these mutations and of mutations affecting nd1, nd4 and nd4/nd5 genes on the assembly of complex I is investigated. After separation of the respiratory complexes by blue native (BN)-PAGE or sucrose gradient centrifugation, we demonstrate that the absence of intact ND1 or ND6 subunit prevents the assembly of the 850 kDa whole complex, whereas the loss of ND4 or ND4/ND5 leads to the formation of a subcomplex of 650 kDa present in reduced amount. The implications of our findings for the possible role of these ND subunits on the activity of complex I and for the structural organization of the membrane arm of the enzyme are discussed. In mitochondria from all the strains analyzed, we moreover detected a 160-210 kDa fragment comprising the hydrophilic 49 kDa and 76 kDa subunits of the complex I peripheral arm and showing NADH dehydrogenase activity. 相似文献
11.
12.
In the cyanobacterium Synechocystis sp. PCC 6803 five open reading frames (scpA–scpE) have been identified that code for single-helix proteins resembling helices I and III of chlorophyll a/b-binding (Cab) antenna proteins from higher plants. They have been named SCPs (small Cab-like proteins). Deletion of a single scp gene in a wild-type or in a photosystem I-less (PS I-less) strain has little effect. However, the effects of functional deletion of scpB or scpE were remarkable under conditions where chlorophyll availability was limited. When cells of a strain lacking PS I and chlL (coding for a polypeptide needed for light-independent protochlorophyllide reduction) were grown in darkness, the phycobilin and protochlorophyllide levels decreased upon deletion of scpB or scpE and the protoheme level was reduced in the strain lacking scpE. Addition of -aminolevulinic acid (ALA) in darkness drastically increased the level of Mg-protoporphyrin IX and Mg-protoporphyrin IX monomethyl ester in the PS I-less/chlL
–/scpE
– strain, whereas PChlide accumulated in the PS I-less/chlL
–/scpB
– strain. In the PS I-less/chlL
– control strain ALA supplementation did not lead to large changes in the levels of tetrapyrrole biosynthesis intermediates. We propose that ScpE and ScpB regulate tetrapyrrole biosynthesis as a function of pigment availability. This regulation occurs primarily at an early step of tetrapyrrole biosynthesis, prior to ALA. In view of the conserved nature of chlorophyll-binding sites in these proteins, it seems likely that regulation by SCPs occurs as a function of chlorophyll availability, with SCPs activating chlorophyll biosynthesis steps when they do not have pigments bound. 相似文献
13.
A structural model for the nucleotide binding domains of the flavocytochrome b-245 beta-chain. 总被引:4,自引:0,他引:4 下载免费PDF全文
W. R. Taylor D. T. Jones A. W. Segal 《Protein science : a publication of the Protein Society》1993,2(10):1675-1685
NADPH is a system in phagocytic cells that generates O2- and hydrogen peroxide in the endocytic vacuole, both of which are important for killing of the engulfed microbe. Dysfunction of this oxidase results in the syndrome of chronic granulomatous disease, characterized by a profound predisposition to bacterial and fungal infections. A flavocytochrome b is the site of most of the mutations causing this syndrome. The FAD and NADPH binding sites have been located on the beta subunit of this molecule, the C-terminal half of which showed weak sequence similarity to other reductases, including the ferredoxin-NADP reductase (FNR) of known structure. This enabled us to build a model of the nucleotide binding domains of the flavocytochrome using this structure as a template. The model was built initially using a novel automatic modeling method based on distance-matrix projection and then refined using energy minimization with appropriate side-chain torsional constraints. The resulting model rationalized much of the observed sequence conservation and identified a large insertion as a potential regulatory domain. It confirms the inclusion of the neutrophil flavocytochrome b-245 (Cb-245) as a member of the FNR family of reductases and strongly supports its function as the proximal electron transporting component of the NADPH oxidase. 相似文献
14.
Dark-grown angiosperm seedlings lack chlorophylls, but accumulate protochlorophyllide a complexed with the light-dependent enzyme NADPH:protochlorophyllide oxidoreductase. Previous investigators correlated spectral heterogeneity of in vivo protochlorophyllide forms and a shift of chlorophyllide forms from 680 to 672 nm (Shibata shift) occurring after irradiation, with intact membrane structures which are destroyed by solubilization. We demonstrate here that the various protochlorophyllide forms and the Shibata shift which disappear upon solubilization are restored if the reconstituted complex is treated with plastid lipids and 80% (w/v) glycerol. We hypothesize that the lipids can form a cubic phase and that this is the precondition in vitro and in vivo for the observed spectral properties before and after irradiation. 相似文献
15.
Seedlings of gymnosperms, unlike angiosperms, synthesize chlorophyll(ide) (Chl) in darkness (D). In Scots pine cotyledons ( Pinus sylvestris L.) Chl accumulation ceases in D at a low level but Chl accumulation is strongly increased by light, red light (R) being more effective than blue light (B), whereas in Pinus maritima Chi synthesis is almost light-independent. In Scots pine the capacity to form Chl can be increased by R pulses, fully reversible by far-red light, demonstrating the involvement of phytochrome. However, when B- or R–grown seedlings were transferred to D, Chl accumulation stopped immediately irrespective of the level of Pfr (far-red light absorbing form of phytochrome), indicating that the conversion of protochlorophyllide (PChl) is light-dependent. Dose response curves in R and B and simultaneous irradiation with R and B show that R and B are perceived by separate photoreceptors. The immunodetected NADPH-dependent protochlorophyllide oxidoreductase (POR, EC 1.6.99.1), assumed to regulate light-dependent Chl synthesis in angiosperms, is not correlated with the capacity of gymnosperm Chi accumulation in darkness. While two FOR bands could be separated in extracts from dark grown material (38 and 36 kDa) of Pinus sylvestris and P. maritima , only the 38 kDa band disappeared consistently in the light. However. the significance of the more light resistant 36 kDa band for chlorophyll synthesis remains unclear as well. 相似文献
16.
The reduction of NADH:Q oxidoreductase by NADPH occurring in submitochondrial particles has been studied with the freeze-quench technique. It was found that 50% of the Fe-S clusters 2, 3 and 4 could be reduced by NADPH within 30 ms at pH 6.5. The remainder of the clusters, including cluster 1, were reduced slowly and incompletely; it was concluded that these clusters play no role in the NADPH oxidase activity. Nearly the same results were obtained at pH 8 under anaerobic conditions, demonstrating that the rate of reaction of NADPH with the enzyme was essentially the same at both pH values. The rate and extent of reduction of half of the clusters 2 by NADPH at pH 8 were not affected by the presence of O2 of rotenone. This implies a pH-dependent oxidation of the enzyme as the cause for the absence of the NADPH oxidase activity at this pH. A dimeric model of the enzyme is proposed in which one protomer, containing FMN and the Fe-S clusters 1–4 in stoichiometric amounts, is responsible for NADH oxidation at pH 8. This protomer cannot react with NADPH. The other protomer, containing only FMN and the clusters 2, 3 and 4, is supposed to catalyse the oxidation of NADPH. The oxidation of this protomer by ubiquinone is expected to be strongly dependent on pH. This protomer might also catalyse NADH oxidation at pH 6–6.5. 相似文献
17.
This paper reviews the seven specific plant enzymes which have been shown or suggested, to date, to undergo reversible covalent modification by regulatory phosphorylation, including mitochondrial pyruvate dehydrogenase (EC 1.2.4.1), chloroplastic pyruvate, orthophosphate dikinase (EC 2.7.9.1) and ribulose bisphosphate carboxylase/oxygenase (EC 4.1.1.39), cytoplasmic phosphoenolpyruvate carboxylase (EC 4.1.1.31) and 6-phosphofructo-2-kinase (EC 2.7.1.105), microsomal hydroxymethylglutaryl - CoA reductase (EC 1.1.1.34), and quinate: NAD+ oxidoreductase (EC 1.1.1.24). 相似文献
18.
The pre-steady-state kinetics of reoxidation of NADH:Q oxidoreductase present in submitochondrial particles has been studied by the freeze-quench method. It was found that at pH 8 only 50% of the Fe-S clusters 2 and 4 and 75% of the clusters 3 were rapidly reoxidised after transient and complete reduction by a pulse of NADH in the presence of excess NADPH. Thus, NADPH keeps 50% of the clusters 2 and 4 and 25% of the clusters 3 permanently reduced at this pH. Since NADH oxidation is nearly optimal at this pH, whereas NADPH oxidation is virtually absent, it was concluded that these permanently reduced clusters were not involved in the NADH oxidation activity. Incomplete reoxidation of the clusters 2, 3 and 4 after a pulse of NADH was also found in the absence of NADPH, both at pH 6.5 and at pH 8. A pulse of NADPH given at pH 6.5, where NADPH oxidation by oxygen is nearly optimal, caused a slow reduction of 50% of clusters 2 and 4 and 30% of the clusters 3, which persisted for a period of at least 15 s. It was concluded that these clusters were not involved in the oxidation of NADPH by oxygen, as catalysed by the particles. As a working hypothesis a dimeric model for NAD(P)H:Q oxidoreductase is proposed, consisting of two different protomers. One of the protomers, containing FMN and the Fe-S clusters 1–4 in stoichiometric amounts, only reacts with NADH, and its oxidation by ubiquinone is rapid at pH but slow at pH 6.5. The other protomer, containing FMN and the clusters 2, 3 and 4, reacts with both NADH and NADPH and has a pH optimum at 6–6.5 for the reaction with ubiquinone. 相似文献
19.
Todd John B. Recchia Paul A. Parkes-Loach Pamela S. Olsen John D. Fowler Gregory J. S. McGlynn Peter Neil Hunter C. Loach Paul A. 《Photosynthesis research》1999,62(1):85-98
Unlike the and polypeptides of the core light-harvesting complex (LH1) of Rhodobacter (Rb.) sphaeroides, the and polypeptides of the peripheral light-harvesting complex (LH2) of this organism will not form a subunit complex by in vitro reconstitution with bacteriochlorophyll. Guided by prior experiments with the LH1 polypeptides of Rb. sphaeroides and Rhodospirillum rubrum, which defined a set of interactions required to stabilize the subunit complex, a series of mutations to the Rb. sphaeroides LH2 polypeptide was prepared and studied to determine the minimal changes necessary to enable it to form a subunit-type complex. Three mutants were prepared: Arg at position –10 was changed to Asn (numbering is from the conserved His residue which is known to be coordinated to bacteriochlorophyll); Arg at position –10 and Thr at position +7 were changed to Asn and Arg, respectively; and Arg at position –10 was changed to Trp and the C-terminus from +4 to +10 was replaced with the amino acids found at the corresponding positions in the LH1 polypeptide of Rb. sphaeroides. Only this last multiple mutant polypeptide formed subunit-type complexes in vitro. Thus, the importance of the C-terminal region, which encompasses conserved residues at positions +4, +6 and +7, is confirmed. Two mutants of the LH1 polypeptide of Rb. sphaeroides were also constructed to further evaluate the interactions stabilizing the subunit complex and those necessary for oligomerization of subunits to form LH1 complexes. In one of these mutants, Trp at position –10 was changed to Arg, as found in LH2 at this position, and in the other His at position –18 was changed to Val. The results from these mutants allow us to conclude that the residue at the –10 position is unimportant in subunit formation or oligomerization, while the strictly conserved His at –18 is not required for subunit formation but is very important in oligomerization of subunits to form LH1. 相似文献