首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin proteolipid protein (PLP) contains thioester-bound, long-chain fatty acids which are known to influence the structure of the molecule. To gain further insights into the role of this post-translational modification, we studied the effect that chemical deacylation of PLP had on the morphology of myelin and on the protein's ability to mediate the clustering of lipid vesicles. Incubation of rat optic nerves in isoosmotic solutions containing 100 mM hydroxylamine (HA) pH 7.4 led to deacylation of PLP and decompaction of myelin lamellae at the level of the intraperiod line. Incubation of nerves with milder nucleophilic agents (Tris and methylamine) or diluted HA, conditions that do not remove protein-bound fatty acids, caused no alterations in myelin structure. Other possible effects of HA which could have affected myelin compaction indirectly were ruled out. Incubation of optic nerves with 50 mM dithioerythritol (DTE) also led to the splitting of the myelin intraperiod line and this change again coincided with the removal of fatty acids. In addition, the apparently compacted CNS myelin in the PLP-less myelin-deficient rat, like that in tissue containing deacylated PLP, was readily decompacted upon incubation in isoosmotic buffers, suggesting that the function of PLP as a stabilizer of the interlamellar attachment is, at least in part, mediated by fatty acylation. Furthermore, in contrast to the native protein, PLP deacylated with either HA or DTE failed to induce the clustering of phosphatidylcholine/cholesterol vesicles in vitro. This phenomenon is not due to side-effects of the deacylation procedure since, upon partial repalmitoylation, the protein recovered most of its original vesicle-clustering activity. Collectively, these findings suggest that palmitoylation, by influencing the adhesive properties of PLP, is important for stabilizing the multilamellar structure of myelin.  相似文献   

2.
Uncoated vesicles (UCV) loaded with the myelin proteolipid apoprotein covalently tagged with fluorescein (PLPF) were found to interact with isolated oligodendrocytes from bovine brain at 4°C as well as at 37°C. After 1.5 hours of incubation, the labeled protein was localized in the cell membranes. After 2.5 hours the fluorescence intensity associated with the oligodendrocytes decreased and completely disappeared at t=3.5 hours. Addition of KCl or EDTA in the incubation medium significantly hindered the interaction with cells. In contrast, the elimination of membrane proteins from UCV did not perturb cell labeling. A specific role of PLP was suggested since UCV loaded with a soluble protein (BSAF) led to a weak cell labeling.Abbreviations IAF 5-iodacetamidofluorescein - BSA bovine serum albumin - BSA BSA labelled with IAF - PLP proteolipid apoprotein - PLPF aqueous form of PLP tagged with IAF - CV coated vesicles - UCV uncoated vesicles - UCV*PLPF UCV loaded with PLPF - MV model vesicles This work was suported by Cnrs and INSERM.  相似文献   

3.
Proteolipid protein (PLP) was isolated from white matter of human brain by chloroform/methanol extraction and further purified by chromatography. Performic acid oxidation yielded a product homogeneous in NaDodSO4-polyacrylamide electrophoresis with a molecular mass of 30 kDa. The carboxymethylated PLP was chemically cleaved with cyanogen bromide into four fragments: CNBr I 22-24 kDa, CNBr II 5 kDa, CNBr III 1.4 kDa and CNBr IV 0.7 kDa. HBr/dimethylsulfoxide cleavage at tryptophan residues released four fragments: Trp I 14-16 kDa, Trp II 2.0 kDa, Trp III 5 kDa and Trp IV 7 kDa. Hydrophilic fragments were enriched in 50% formic acid (CNBr II, III, IV and Trp II and III), whereas hydrophobic peptides precipitated from this solvent were CNBr I, Trp I and IV. The fragments were separated by gel filtration with 90% formic acid as solvent and finally purified by gel permeation HPLC (Si 60 and Si 100) for automated liquid and solid-phase Edman degradation. Large fragments were further cleaved with different proteinases (trypsin, V8-proteinase, endoproteinase Lys-C and thermolysin). We used an improved strategy in the sequencing of the human proteolipid protein compared with our approach to the structural elucidation of bovine brain PLP. The amino-acid sequence of human PLP contains 276 residues, the same as found in bovine proteolipid protein. The two sequences proved to be identical. The possible importance of the conservative structure of this integral membrane protein is discussed.  相似文献   

4.
Proteolipids were isolated from 20 day old normal andjimpy mouse brain by extraction into chloroform-methanol (21, w/v), delipidated by size-exclusion HPLC, and analyzed by SDS-PAGE, Western blots, amino acid analyses, and N-terminal sequencing. SDS-PAGE showed that a major proteolipid fromjimpy mouse brain had an apparent molecular weight of 23 kDa, intermediate to that of PLP and DM-20 from normal mouse brain. Western blots with 3 different antibodies which recognize residues 200–224, 116–150, and 270–276 respectively recognized immunoreactive material in normal andjimpy PLP. Since antibody reactive with 270–276 did not recognizejimpy PLP, an altered C-terminus of thejimpy protein is suggested. These results demonstrated that a PLP can be partially purified fromjimpy mouse brain. Amino acid analyses failed to show the predicted increase in cysteinyl residues (predicted from cDNA) injimpy PLP. However, whenjimpy brain proteolipids were subjected to N-terminal sequencing, Gly, Leu, Leu, Gly the first four amino acids of PLP were detected. Thus, the partial purification of a proteolipid fromjimpy mouse brain, whose characteristics (apparent molecular weight, immunoreactivity, N-terminal sequence and relative net charge) strongly suggested that PLP of altered size is present injimpy mouse brain.Abbreviations BCIP 5-bromo-4-chloro-3-indolyl phosphate toluidine salt - MBP myelin basic protein - NBT -nitro blue tetrazolium chloride - PITC phenylisothiocyanate - PLP myelin proteolipid protein - PVDF polyvinylidene difluoride - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis Special issue dedicated to Dr. Marjorie B. Lees.  相似文献   

5.
Brush-border membrane vesicles prepared from rabbit kidney cortex were incubated at 37 degrees C for 30 min with phosphatidylinositol-specific phospholipase C. This maneuver resulted in a release of approx. 85% of the brush-border membrane-linked enzyme alkaline phosphatase as determined by its enzymatic activity. Transport of inorganic [32P]phosphate (100 microM) by the PI-specific phospholipase C-treated brush-border membrane vesicles was measured at 20-22 degrees C in the presence of an inwardly directed 100 mM Na+ gradient. Neither initial uptake rates, as estimated from 10-s uptake values (103.5 +/- 6.8%, n = 7 experiments), nor equilibrium uptake values, measured after 2 h (102 +/- 3.4%) were different from controls (100%). Control and PI-specific phospholipase C-treated brush-border membrane vesicles were extracted with chloroform/methanol to obtain a proteolipid fraction which has been shown to bind Pi with high affinity and specificity (Kessler, R.J., Vaughn, D.A. and Fanestil, D.D. (1982) J. Biol. Chem. 257, 14311-14317). Phosphate binding (at 10 microM Pi) by the extracted proteolipid was measured. No significant difference in binding was observed between the two types of preparations: 31.0 +/- 9.37 in controls and 29.8 +/- 8.3 nmol/mg protein in the proteolipid extracted from PI-specific phospholipase C-treated brush-border membrane vesicles. It appears therefore that alkaline phosphatase activity is essential neither for Pi transport by brush-border membrane vesicles nor for Pi binding by proteolipid extracted from brush-border membrane. These results dissociate alkaline phosphatase activity, but not brush-border membrane vesicle transport of phosphate, from phosphate binding by proteolipid.  相似文献   

6.
The energetics of lipid vesicle-vesicle aggregation in dextran (36,000 mol wt) solutions have been studied with the use of micromechanical experiments. The affinities (free energy reduction per unit area of contact) for vesicle-vesicle aggregation were determined from measurements of the tension induced in an initially flaccid vesicle membrane as it adhered to another vesicle. The experiments involved controlled aggregation of single vesicles by the following procedure: two giant (approximately 20 micron diam) vesicles were selected from a chamber on the microscope stage that contained the vesicle suspension and transferred to a second chamber that contained a dextran (36,000 mol wt) salt solution (120 mM); the vesicles were then maneuvered into position for contact. One vesicle was aspirated with sufficient suction pressure to create a rigid sphere outside the pipette; the other vesicle was allowed to spread over the rigid vesicle surface. The aggregation potential (affinity) was derived from the membrane tension vs. contact area. Vesicles were formed from mixture of egg lecithin (PC) and phosphatidylserine (PS). For vesicles with a PC/PS ratio of 10:1, the affinity showed a linear increase with concentration of dextran; the values were on the order of 10(-1) ergs/cm2 at 10% by weight in grams. Similarly, pure PC vesicle aggregation was characterized by an affinity value of 1.5 X 10(-1) ergs/cm2 in 10% dextran by weight in grams. In 10% by weight in grams solutions of dextran, the free energy potential for vesicle aggregation decreased as the surface charge (PS) was increased; the affinity extrapolated to zero at a PC/PS ratio of 2:1. When adherent vesicle pairs were transferred into a dextran-free buffer, the vesicles did not spontaneously separate. They maintained adhesive contact until forceably separated, after which they would not read here. Thus, it appears that dextran forms a "cross-bridge" between the vesicle surfaces.  相似文献   

7.
Immunochemical analysis of the myelin proteolipid protein (PLP) has identified the carboxyl terminal amino acid phenylalanine 276 as the only PLP epitope conserved between the PLP components of rat and lungfish, species representing the phylogenetically most widely separated groups that synthesise typical CNS myelin. Immunoblotting using a rabbit antiserum raised against the carboxyl terminal sequence of rat PLP (residues 257-276) identified this epitope on the PLP components of both tetrapod (rat, chicken, lizard, and frog) and lobe-finned fish (coelacanth and lungfish) CNS myelin, including the DM-20 isoform of PLP, which is restricted to rat, chicken, and lizard CNS myelin. The conservation of the carboxyl terminus of PLP during evolution suggests this structure may play an important role in maintaining the organisation and function of PLP in the myelin membrane.  相似文献   

8.
Annexin II tetramer (A-IIt) is a member of the annexin family of Ca2+ and phospholipid-binding proteins. The ability of this protein to aggregate both phospholipid vesicles and chromaffin granules has suggested a role for the protein in membrane trafficking events such as exocytosis. A-IIt is also a major intracellular substrate of both pp60src and protein kinase C; however, the effect of phosphorylation on the activity of this protein is unknown. In the current report we have examined the effect of phosphorylation on the lipid vesicle aggregation activity of the protein. Protein kinase C catalyzed the incorporation of 2.1 +/- 0.8 mol of phosphate/mol of A-IIt. Phosphorylation of A-IIt caused a dramatic decrease in the rate and extent of lipid vesicle aggregation without significantly effecting Ca(2+)-dependent lipid binding by the phosphorylated protein. Phosphorylation of A-IIt increased the A50%(Ca2+) of lipid vesicle aggregation from 0.18 microM to 0.65 mM. Activation of A-IIt phosphorylation, concomitant with activation of lipid vesicle aggregation, inhibited both the rate and extent of lipid vesicle aggregation but did not cause disassembly of the aggregated lipid vesicles. These results suggest that protein kinase C-dependent phosphorylation of A-IIt blocks the ability of the protein to aggregate phospholipid vesicles without affecting the lipid vesicle binding properties of the protein.  相似文献   

9.
Membrane fractions and chloroform-methanol (C-M) extracts ofjimpy (jp) and normal CNS at 17–20 days were examined by immunoblot and sequence analysis to determine whether myelin proteolipid protein (PLP) or DM-20 could be detected in jp CNS. No reactivity was detected in jp samples with several PLP antibodies (Abs) except with one Ab to amino acids 109–128 of normal PLP. Proteins in the immunoreactive bands 26 Mr comigrating with PLP were sequenced for the first 10–12 residues. A sequence corresponding to PLP was found in normal CNS, as expected, but not in the band from jp CNS. Our results provide no evidence for an aberrant form of PLP in jp CNS at 17–20 days. This and other studies suggest that the abnormalities in jp brain are not due to toxicity of the mutant jp PLP/DM-20 proteins. Interestingly, a sequence identical to the amino terminus of the mature proton channel subunit 9 of mitochondrial F0 ATPase was detected in the immunoreactive bands 26 Mr in both normal and jp samples. This identification was supported by reactivity with an Ab to the F0 subunit and by labeling with dicyclohexylcarbodiimide (DCCD). In contrast to PLP isolated from whole CNS, PLP isolated from myelin was devoid of F0 subunit 9 based on sequence analysis and lack of reactivity with an Ab to the F0 subunit, yet still reacted with DCCD. This finding rules out the possibility that contaminating F0 ATPase gives rise to the DCCD binding exhibited by PLP and confirms the possibility that PLP has proton channel activity, as suggested by Lin and Lees (1,2).Abbreviations used Ab antibody - CM conditioned medium - C M chloroform-methanol - DCCD dicyclohexylcarbodiimide - jp jimpy - Mr mobility (apparent m.w×10–3) - PLP proteolipid protein - PVDF polyvinylidene difluoride  相似文献   

10.
In this study, we have investigated the structure of the native myelin proteolipid protein (PLP), DM-20 protein and several low molecular mass proteolipids by mass spectrometry. The various proteolipid species were isolated from bovine spinal cord by size-exclusion and ion-exchange chromatography in organic solvents. Matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) of PLP and DM-20 revealed molecular masses of 31.6 and 27.2 kDa, respectively, which is consistent with the presence of six and four molecules of thioester-bound fatty acids. Electrospray ionization-MS analysis of the deacylated proteins in organic solvents produced the predicted molecular masses of the apoproteins (29.9 and 26.1 kDa), demonstrating that palmitoylation is the major post-translational modification of PLP, and that the majority of PLP and DM-20 molecules in the CNS are fully acylated. A series of myelin-associated, palmitoylated proteolipids with molecular masses raging between 12 kDa and 18 kDa were also isolated and subjected to amino acid analysis, fatty acid analysis, N- and C-terminal sequencing, tryptic digestion and peptide mapping by MALDI-TOF-MS. The results clearly showed that these polypeptides correspond to the N-terminal region (residues 1-105/112) and C-terminal region (residues 113/131-276) of the major PLP, and they appear to be produced by natural proteolytic cleavage within the 60 amino acid-long cytoplasmic domain. These proteolipids are not postmortem artifacts of PLP and DM-20, and are differentially distributed across the CNS.  相似文献   

11.
The binding of the chloroplast coupling factor CF to lipid vesicles was analyzed by gel filtration. CF can be bound to vesicles made of chloroplast lipids but not of lecithin. The presence in the vesicle walls of a proteolipid subunit of the hydrophobic component of the coupling factor increases the binding of CF. The apparent binding constant and the maximum protein/lipid ratio are calculated. The Ca2+-ATPase activity of bound CF is markedly lower than that of dissolved CF. It is confirmed that the proteolipid is a N,N'-dicyclohexylcarbodiimide sensitive proton channel. The binding of CF on proteolipid vesicles decreases their proton permeability.  相似文献   

12.
To ascertain the roles of the membrane proteins in cation/sarcolemmal membrane binding, isolated rat cardiac sarcolemmal vesicles were extensively treated with Protease (S. aureus strain V.8). SDS-gel electrophoresis, protein and phosphate analysis confirmed that at least 20–22% of the protein, but none of the phospholipid, was solubilized by this procedure, and that the remaining membrane proteins were extensively hydrolyzed into small fragments. The cation binding properties of the treated vesicles were then examined by analyzing their aggregation behavior. The results demonstrate that this procedure had no effect on the selectivity series for di- and trivalent cation binding, or the divalent cation-induced aggregation behavior of the sarcolemmal vesicles at different pHs, indicating that proteins are probably not involved in these interactions and cannot be the low affinity cation binding sites previously observed [21, 22]. It did, however, change the pH at which protons induced sarcolemmal vesicle aggregation, suggesting a possible role for proteins in these processes. Protease treatment also modified the effects of fluorescamine labelling on divalent cation-induced vesicle aggregation, indicating that the NH, groups being labelled with fluorescamine are located on the sarcolemmal proteins. Together, these results support the hypothesis that di- and trivalent cation binding to the sarcolemmal membrane is largely determined by lipid/lipid and/or lipid/carbohydrate interactions within the plane of the sarcolemmal membrane, and that membrane proteins may exert an influence on these interactions, but only under very specialized conditions.Abbreviations MES 2-(N-morpholino)ethanesulfonic acid - MOPS 3-(N-morpholino) propanesulfonic acid - HEPES N-2-Hydroxyethylpiperizine-N-2- ethanesulfonic acid - CHES 2(N-Cyclohexylamino) ethanesulfonic acid - DTT DL-Dithiothreitol - PMSF Phenylmethyl-sulfonyl fluoride  相似文献   

13.
Abstract: Myelin vesicles, reconstituted liposomes with proteolipid protein (PLP), the main protein component of myelin, and electrophysiological patch-clamp are potentially powerful tools to study the role of myelin in functional ionic channels. However, technical difficulties in the vesiculation of myelin and the small size of the vesicles obtained do not permit the application of micropipettes for current recordings. From a suspension of purified myelin we have prepared oligolamellar vesicles (mean diameter of 144 nm) using the so-called French pressure system. From this preparation we obtained giant myelin vesicles ∼10 µm in mean diameter, using a dehydration-rehydration procedure. Qualitative analysis of proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed no significant loss of any component in these vesicles due to pressure, in comparison with non-vesiculated myelin. A way of preparing giant liposomes of ∼80–100 µm and proteoliposomes of ∼30 µm in mean diameter, using the same dehydration-rehydration procedure, is also reported. Reconstitution of purified PLP in giant liposomes was confirmed by fluorescent labeling of PLP and by fluorescence microscopy. The current recordings from these vesicles prove the validity of these methods and provide significant evidence of the existence of ionic channels in myelin membranes and the possibility that PLP functions as a channel. The physiological significance and characterization of these channels remain yet unresolved. These results have a special significance for elucidating the molecular role of myelin in the regulation of neural activity and in the brain ion microenvironment.  相似文献   

14.
The acylation of proteolipid protein (PLP) was examined in myelin and myelin subfractions from rat brain during the active period of myelination. Proteolipid protein and DM-20 in myelin and myelin subfractions were readily acylated in developing rat brain 22 hours after intracerebral injection of [3H]palmitic acid. No differences in the relative specific activity of PLP in myelin from 9-, 15-, and 30-day-old rat brains was observed; however, the relative specific activity of PLP in the heavy myelin subfraction tended to be higher than that in the light myelin subfraction. The acylation of PLP was confirmed by fluorography of immuno-stained cellulose nitrate sheets, clearly establishing that the acylated protein is in fact the oligodendroglial cell- and myelin-specific protein, PLP. Since PLP is acylated in the 9-day-old animal, when little compact myelin is present, it is possible that the acylation of PLP is a prerequisite for the incorporation of this protein into the myelin membrane.  相似文献   

15.
We have previously shown that patients with multiple sclerosis (MS) have increased T cell responses to the immunodominant region (residues 184-209) of myelin proteolipid protein (PLP). The present study investigated whether this reactivity fluctuates over time and correlates with disease activity. We performed monthly limiting dilution assays for 12-16 mo in four healthy subjects and five patients with relapsing-remitting MS to quantify the frequencies of circulating T cells proliferating in response to PLP(41-58), PLP(184-199), PLP(190-209), myelin basic protein (MBP), MBP(82-100), and tetanus toxoid. Disease activity was monitored by clinical assessment and gadolinium-enhanced magnetic resonance imaging of the brain. There were fluctuations in the frequencies of autoreactive T cells in all subjects. Compared with healthy controls, MS patients had significantly more frequent surges of T cells reactive to the 184-209 region of PLP, but infrequent surges of T cell reactivity to MBP(82-100). There was temporal clustering of the surges of T cell reactivity to MBP(82-100) and MBP, suggesting T cell activation by environmental stimuli. Some clinical relapses were preceded by surges of T cell reactivity to PLP(184-209), and in one patient there was significant correlation between the frequency of T cells reactive to PLP(184-199) and the total number of gadolinium-enhancing magnetic resonance imaging lesions. However, other relapses were not associated with surges of T cell reactivity to the Ags tested. T cells reactive to PLP(184-209) may contribute to the development of some of the CNS lesions in MS.  相似文献   

16.
This report describes the preparation and characterization of a panel of monoclonal antibodies (mAbs) against the myelin proteolipid protein (PLP). A Lewis rat was immunized with bovine proteolipid apoprotein and 27 mAbs were selected based on their reactivity against bovine PLP on enzyme-linked immunosorbent assays. Eleven mAbs recognized the PLP carboxyl-terminal sequence when tested against a panel of synthetic peptides in a solid-phase assay. A carboxyl-terminal pentapeptide (residues 272-276) was sufficient for antibody binding and the terminal phenylalanine residue was found particularly important. Deletion, modification, or replacement of this residue markedly reduced or obliterated antigen-antibody interaction. Nine mAbs reacted with a second antigenic determinant, residues 209-217, but these could be identified only by competitive immunoassays. This peptide was a more effective inhibitor than the longer peptides 202-217 and 205-221, suggesting that flanking residues may interfere with peptide-antibody interaction. Seven antibodies did not react with any of the synthetic peptides tested and their determinants remain unidentified. Immunoblot analysis showed that the mAbs reacted with both the PLP and the DM-20 isoforms. Twenty-three of the mAbs were of the immunoglobulin G2a or b isotype; the remaining antibodies were immunoglobulin M and all of these were specific for residues 209-217. Cultured murine oligodendrocytes were stained by most of the mAbs tested, but the most intense reactivity was observed with the carboxyl-terminus-specific mAbs. The immunocytochemical analyses demonstrate that the mAbs react with the native PLP in situ and show their potential usefulness for studies of the cell biology of myelin and oligodendrocytes.  相似文献   

17.
Regulation of myelin proteolipid protein (PLP:) gene expression is tightly controlled, both spatially and temporally. Previously, we have shown with transgenic mice that a PLP:-lacZ fusion gene (which includes the entire sequence for PLP: intron 1 DNA) is regulated in a similar manner to endogenous PLP: gene expression. Furthermore, by deletion-transfection analyses using assorted PLP:-lacZ constructs with partial deletion of PLP: intron 1 sequences, we have shown that the first intron possesses an antisilencer region that is capable of over-coming repression mediated by two distinct regions located elsewhere within intron 1 DNA. Here, we report the ability of various fragments encompassing the antisilencer region to restore beta-galactosidase activity when inserted into PLP:-lacZ constructs, which originally exhibited low levels of beta-galactosidase activity. Additional constructs were generated to test the effects of these antisilencer-containing fragments in constructs that are missing either one or both of the negative regulatory regions that are overridden during antisilencing. Transfection analyses, in conjunction with protein-DNA binding assays, suggest that several nuclear factors are necessary for derepression of PLP: gene activity in an oligodendroglial cell line. Moreover, either the "core" or complete antisilencing region can act in an additive or synergistic fashion when multiple copies are inserted into the Plp-lacZ constructs.  相似文献   

18.
Membrane protein folding has suffered from a lack of detailed kinetic studies, particularly with regard to the insertion of denatured protein into lipid bilayers. We present a detailed in vitro kinetic study of the association of a denatured, transmembrane alpha helical protein with lipid vesicles. The mechanism of folding of Escherichia coli diacylglycerol kinase from a partially denatured state in urea has been investigated. The protein associates with lipid vesicles to give a protein, vesicle complex with an apparent association constant of 2 x 10(6) M(-1) s(-1). This association rate approaches the diffusion limit of the protein, vesicle reaction. The association of the protein with lipid vesicles is followed by a slower process occurring at observed rate of 0.031 s(-1), involving insertion into the bilayer and generation of a functional oligomer of diacylglycerol kinase. Protein aggregation competes with vesicle insertion. The urea-denatured protein monomers begin to aggregate as soon as the urea is diluted. This aggregation is faster than the association of the protein with vesicles so that most protein aggregates before it inserts into a vesicle. Increasing the vesicle concentration favours insertion of protein monomers, but at high vesicle concentrations monomers are primarily in separate vesicles and do not associate to form functional oligomers. Irreversible aggregation limits the yield of functional protein, while the data also suggest that lipid vesicles can reverse another aggregation reaction, leading to the recovery of correctly folded protein.  相似文献   

19.
A cDNA library from rat brain was constructed in pBR322 and screened with a 14-mer mixed oligonucleotide probe based on residues 231-235 of bovine proteolipid (PLP). A positive clone was isolated: it contained a 1334-base-pair cDNA insert and was subjected to DNA sequence analysis. The cDNA encoded information for the 276 amino acids of rat PLP. Comparison with bovine PLP sequence showed a complete amino acid sequence homology except for 4 amino acid residues.  相似文献   

20.
In a developmental study, we have shown that DM-20 is present before proteolipid protein (PLP) in the fetal bovine cerebral hemispheres. When the white matter appears (27-30 weeks of gestation), the amount of DM-20 drastically increases. DM-20 remains the major proteolipid until birth. PLP is detected only 2-4 weeks after the appearance of white matter, that is, more than 4 weeks after the appearance of DM-20. The early appearance of DM-20 at the beginning of myelination raises the question of its particular function. In the adult bovine cerebral hemispheres, PLP is the major proteolipid but DM-20 remains quantitatively important because the PLP/DM-20 ratio ranges from 1.5 to 1.7. In the same developmental study we have, in the fetal cerebral hemispheres, isolated and characterized a novel proteolipid (apparent Mr 20,000), which appears even before DM-20 and is not detected in the adult brain. It is structurally related to PLP and DM-20 because the first 31 N-terminal amino acid residues are the same. However, in immunoblot, it did not react either with the antitridecapeptide 117-129 antiserum of PLP or with the anti-C-terminal hexapeptide antiserum of PLP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号