首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
By macroautoradiography and by GLC separation, differences in the uptake of radioactive carbon from [U-14C]glucose into free amino acids (glutamate + glutamine, aspartate + asparagine, GABA, alanine and glycine) in mouse cerebral neocortex, hippocampus, thalamus and hypothalamus were investigated. (1) The autoradiographical densities in the thalamus, cerebral neocortex and hippocampus measured with a microdensitometer were higher than that in the hypothalamus at 5 min after subcutaneous injection. At 180 min, densities in the cerebral neocortex, hippocampus and hypothalamus were higher than that in thalamus. (2) The free amino acid levels determined by GLC varied with each brain region. (3) The specific radioactivity (d.p.m./μmol) of alanine in each brain region was higher than that of the other amino acids at 5 min after the injection. The specific radioactivity of GABA in the brain regions was clearly higher than that of (glutamate + glutamine), (aspartate + asparagine) and glycine at 5 and 15 min. (4) The autoradiographical data were in good agreement with the chemical data at 5 min but were different at 180 min. (5) Variations in specific radioactivity of each free amino acid among brain regions at 5 min were influenced greatly by existing free amino acid concentrations in each region.  相似文献   

2.
1. Total free amino acid contents in the optic lobe and diencephalon increased significantly during hibernation. 2. Free glutamate + glutamine showed significant increases in the cerebral hemisphere, optic lobe, medulla oblongata and diencephalon. 3. Free aspartate + asparagine showed significant increases in the cerebral hemisphere, optic lobe, diencephalon and olfactory lobe. 4. GABA showed a significant change only in the medulla oblongata. 5. Total protein amino acid level in the cerebellum and olfactory lobe decreased significantly during hibernation and most of the amino acids decreased significantly in these regions. 6. The amino acid metabolism during amphibian hibernation differs from that of the mammal.  相似文献   

3.
To obtain evidence of the site of conversion of [U-14C]glucose into glutamate and related amino acids of the brain, a mixture of [U-14C]glucose and [3H]glutamate was injected subcutaneously into rats. [3H]Glutamate gave rise to several 3H-labelled amino acids in rat liver and blood; only 3H-labelled glutamate, glutamine or γ-aminobutyrate were found in the brain. The specific radioactivity of [3H]glutamine in the brain was higher than that of [3H]glutamate indicating the entry of [3H]glutamate mainly in the ‘small glutamate compartment’. The 14C-labelling pattern of amino acids in the brain and liver after injection of [U-14C]glucose was similar to that previously reported (Gaitonde et al., 1965). The specific radioactivity of [14C]glutamine in the blood and liver after injection of both precursors was greater than that of glutamate between 10 and 60 min after the injection of the precursors. The extent of labelling of alanine and aspartate was greater than that of other amino acids in the blood after injection of [U-14C]glucose. There was no labelling of brain protein with [3H]glutamate during the 10 min period, but significant label was found at 30 and 60 min. The highest relative incorporation of [14C]glutamate and [14C]aspartate in rat brain protein was observed at 5 min after the injection of [U-14C]glucose. The results have been discussed in the context of transport of glutamine synthesized in the brain and the site of metabolism of [U-14C]glucose in the brain.  相似文献   

4.
Studies in vivo and in vitro of the distribution of label in C-1 of glutamate and glutamine and C-4 of aspartate in the free amino acids of brain were carried out. [1-14C]-Acetate was used both in vivo and in vitro and l -[U-14C]aspartate and l -[U-14C]glutamate were used in vitro.
  • 1 The results obtained with labelled acetate and aspartate suggest that CO2 and a 3-carbon acid may exchange at different rates on a COa-fixing enzyme.
  • 2 The apparent cycling times of both glutamate and glutamine show fast components measured in minutes and slow components measured in hours.
  • 3 With [1-14C]acetate in vitro glutamine is more rapidly labelled in C-1 than is glutamate at early time points; the curves cross over at about 7 min.
  • 4 The results support and extend the concept of metabolic compartmentation of amino acid metabolism in brain.
  相似文献   

5.
Abstract— In the cat, intraventricularly injected [14c]leucine does not appear to penetrate into the cerebral tissue, whereas intravenously injected [14c]leucine readily penetrates the blood-brain barrier. The latter route of administration of [14c]leucine produces rather uniform distribution of radioactivity in cortical and subcortical regions as well as diencephalic, lower brain stem, and cerebellar regions. Data consistent with compartmentation of the glutamate-glutamine system were observed in all regions except the cerebellum and head of the caudate nucleus. In the latter two areas, the ratios of the specific activity of glutamine to glutamic acid was less than 1, whereas in all other areas it was greater than 1. The turnover rate of the brain protein was fastest in the cerebellum and neocortex and slowest in the caudate nucleus and in the pons and medulla.  相似文献   

6.
Abstract— —In the head of the caudate nucleus, the relative specific activity of glutamine (glutamic acid specific activity = 1) was less than 1 with intravenous [14C]leucine as the tracer metabolite. This is in contrast to observations made in other brain areas (cortex, hippocampus, thalamus, pons, and medulla) where the relative specific activity of glutamine was greater than 1. This is also in contrast to findings when [l-14C]acetate was utilized as the tracer; under these conditions, in all brain areas, including the head of the caudate nucleus, the relative specific activity of glutamine was greater than 1. It is inferred that the differences in metabolism of [14C]leucine and [14C]acetate in the head of the caudate from that in other brain areas reflect differences in compartmentation of the glutamate-glutamine system.  相似文献   

7.
Zusammenfassung —Die Aktivitäten der Glutamat-Decarboxylase, Glutamat-Oxalacetat-Transaminase, Glutamat-Pyruvat-Transaminase, Glutamat-Dehydrogenase und Glutamin-synthetase sowie die Konzentration der freien Aminosäuren und des Ammoniaks wurden in neun Hirnregionen des Hundes (Amygdalae, Thalamus, Nucleus caudatus, Hippocampus, Temporalpol, Gyrus cinguli, Kleinhirnmark, Kleinhirnrinde, Medulla oblongata) in der präkonvulsiven Phase nach intracisternaler Injektion von l-Glutamat bzw. Pyridoxal-5-phosphat bestimmt. Sechs der neun untersuchten Gebiete zeigten keine auffälligen Stoffwechselveränderungen. Lediglich im Amygdalae, Hippocampus und in der Medulla oblongata konnten deutliche Unterschiede verschiedener Enzymaktivitäten und Substratkonzentrationen beobachtet werden. Die Erhöhung des Glutamats im Hippocampus erscheint wegen der Übereinstimmung mit den an den Rattengehirnen gefundenen Veränderungen am wichtigsten und wird als möglicher Ausgangspunkt für einen cerebralen Anfall diskutiert. Abstract —The activities of glutamate decarboxylase, aspartate aminotransferase (glutamic-oxalacetic transaminase), EC 2.6.1.1 alanine aminotransferase (glutamic-pyruvic transaminase EC 2.6.1.2), glutamate dehydrogenase and glutamine synthetase, as well as the concentration of free amino acids and ammonium were determined in nine regions of the dog brain (nucleus amygdalae, thalamus, nucleus caudatus, hippocampus, temporal lobe, gyrus cinguli, cerebellar marrow, cerebellar cortex, medulla oblongata) in the preconvulsive phase after injections of l-glutamate and pyridoxal-5-phosphate. In six of the nine regions examined there were no considerable metabolic changes. Marked changes in different enzyme activities and substrate concentrations were observed in the nucleus amygdalae, hippocampus and medulla oblongata. The increase of glutamate in the hippocampus seems to be of great importance in view of the agreement with alterations found in the brains of rats, and this is regarded as a starting point for cerebral seizures.  相似文献   

8.
Abstract—
  • 1 The in vivo metabolism of glutamate in rat neuron cell bodies and neuropil was studied after intraventricular injection of (U-14C)glutamic acid followed by separation of the tissue into neuronal and neuropil fractions.
  • 2 The losses of amino acid and of radioactivity during the fractionation were equivalent. Recoveries were: glutamate, 32; glutamine, 15; aspartate, 25; GABA, 41; alanine, 30 per cent. In the washed cell fractions glutamine was 45 per cent and alanine 132 per cent higher in the neuronal fraction, glutamate was 62, GABA 77 and aspartate 95 per cent of neuropil levels. This contrasted with results obtained previously for in vitro incorporation. Calculation from these results indicated that 28 per cent of the original cell suspension was neuronal, 72 per cent neuropil. In the final cell preparations, 29 per cent of the neuron cell bodies and 26 per cent of the neuropil were recovered.
  • 3 Specific activity of glutamate in the neuronal fraction 15 min after injection was higher than in the original suspension, but had declined to 30 per cent of its initial value by 2 h. In the neuropil, specific activity of glutamate was below that of the cell suspension at 15 min, but at later times rose above it by up to 40 per cent.
  • 4 Radioactivity was detected in aspartate and glutamine 15 min after injection and GABA by 60 min after injection. In the original cell suspension the specific activity of glutamine was higher than that of glutamate at all times (the Waelsch effect) but aspartate and GABA were lower than glutamate.
  • 5 In the neuronal fraction the specific activity of glutamine was below that of glutamate at all times, indicating a precursor-product relationship. In the neuropil fraction, glutamine specific activity remained above glutamate for the first hour.
  • 6 These results are discussed in relation to the interpretation of the Waelsch effect in terms of metabolic compartmentation.
  相似文献   

9.
Abstract— [2-14C]Propionate injected into rats was metabolized into [14C]glucose and 14C-labelled aspartate, glutamate, glutamine and alanine. The results are consistent with the conversion of propionate into succinate and the oxidation of succinate into oxaloacetate, the precursor of labelled amino acids and the substrate for gluconeogenesis.
The ratio of the specific radioactivity of glutamine to glutamate was greater than 1 during the 30 min period in the brain, indicating that propionate taken up by the brain was metabolized mainly in the 'small glutamate compartment' in the brain. The results, therefore, support the previous conclusion (G aitonde , 1975) that the labelling of amino acids by [14C]propionate formed from [U-14C>]-threonine in thiamin-deficient rats was metabolized in the 'large glutamate compartment' of the brain.
The specific radioactivity ratio of glutamine to glutamate in the liver was less than 1 during the 10 min period but greater than 1 at 30min. These findings which gave evidence against metabolic compartments of glutamate in the liver, were interpreted as indicative of the entry of blood-borne [14C]glutamine synthesized in other tissues, e.g. brain. The labelling of amino acids when compared to that after injection of [U-14C]glucose showed that [2-14C]propionate was quantitatively a better source of amino acids in the liver. The concentration of some amino acids in the brain and liver was less in the adult than in the young rats, except for alanine and glutathione, where the liver content was more than double that in the adult.  相似文献   

10.
Abstract: The present study determined the metabolic fate of [U-13C]glutamate in primary cultures of cerebral cortical astrocytes from rat brain and also in cultures incubated in the presence of 1 or 5 mMα-ketoisocaproate (α-KIC). When astrocytes were incubated with 0.2 mM [U-13C]glutamate, 64.1% of the 13C metabolized was converted to glutamine, and the remainder was metabolized via the tricarboxylic acid (TCA) cycle. The formation of [1,2,3-13C3]glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. In control astrocytes, 8.0% of the [13C]glutamate metabolized was incorporated into intracellular aspartate, and 17.2% was incorporated into lactate that was released into the medium. In contrast, there was no detectable incorporation of [13C]glutamate into aspartate in astrocytes incubated in the presence of α-KIC. In addition, the intracellular aspartate concentration was decreased 50% in these cells. However, there was increased incorporation of [13C]glutamate into the 1,2,3-13C3-isotopomer of lactate in cells incubated in the presence of α-KIC versus controls, with formation of lactate accounting for 34.8% of the glutamate metabolized in astrocytes incubated in the presence of α-KIC. Altogether more of the [13C]glutamate was metabolized via the TCA cycle, and less was converted to glutamine in astrocytes incubated in the presence of α-KIC than in control cells. Overall, the results demonstrate that the presence of α-KIC profoundly influences the metabolic disposition of glutamate by astrocytes and leads to altered concentrations of other metabolites, including aspartate, lactate, and leucine. The decrease in formation of aspartate from glutamate and in total concentration of aspartate may impair the activity of the malate-aspartate shuttle and the ability of astrocytes to transfer reducing equivalents into the mitochondria and thus compromise overall energy metabolism in astrocytes.  相似文献   

11.
In Myrica gale L. plants the assimilation of ammonia released by symbiotic Frankia was observed by 15N2 labelling and subsequent analysis of the isotopic enrichment of nodule amino acids over time by single ion monitoring gas chromatography-mass spectrometry. In detached nodules of Myrica , glutamine was the first amino acid labelled at 30 s and subsequently the amino acids glutamate, aspartate, alanine and γ-amino butyric acid (GABA) became labelled. This pattern of labelling is consistent with the incorporation of ammonium via glutamine synthetase [GS; EC 6.3.1.2]. No evidence for the ammonium assimilation via glutamate dehydrogenase [GDH; EC 1.4.1.2] was observed as glutamate became labelled only after glutamine. Using attached nodules and pulse-chase labelling, we observed synthesis of glutamine, glutamate, aspartate, alanine, GABA and asparagine, and followed the transport of fixed nitrogen in the xylem largely as glutamine and asparagine. Estimation of the cost of nitrogen fixation and asparagine synthesis in Myrica nodules suggests a minimum of one sucrose required per asparagine produced. Rapid translocation of recently fixed nitrogen was observed in Myrica gale nodules as 80% of the nitrogen fixed during a 1-h period was translocated out of the nodules within 9 h. The large pool of asparagine that is present in nodules may buffer the transport of nitrogen and thus act to regulate nitrogen fixation via a feedback mechanism.  相似文献   

12.
Abstract: Metabolic compartmentation of amino acid metabolism in brain is exemplified by the differential synthesis of glutamate and glutamine from the identical precursor and by the localization of the enzyme glutamine synthetase in glial cells. In the current study, we determined if the oxidative metabolism of glutamate and glutamine was also compartmentalized. The relative oxidation rates of glutamate and glutamine in the hippocampus of free-moving rats was determined by using microdialysis both to infuse the radioactive substrate and to collect 14CO2 generated during their oxidation. At the end of the oxidation experiment, the radioactive substrate was replaced by artificial CSF, 2 min-fractions were collected, and the specific activities of glutamate and glutamine were determined. Extrapolation of the specific activity back to the time that artificial CSF replaced 14C-amino acids in the microdialysis probe yielded an approximation of the interstitial specific activity during the oxidation. The extrapolated interstitial specific activities for [14C]glutamate and [14C]glutamine were 59 ± 18 and 2.1 ± 0.5 dpm/pmol, respectively. The initial infused specific activities for [U-14C]glutamate and [U-14C]glutamine were 408 ± 8 and 387 ± 1 dpm/pmol, respectively. The dilution of glutamine was greater than that of glutamate, consistent with the difference in concentrations of these amino acids in the interstitial space. Based on the extrapolated interstitial specific activities, the rate of glutamine oxidation exceeds that of glutamate oxidation by a factor of 5.3. These data indicate compartmentation of either uptake and/or oxidative metabolism of these two amino acids. The presence of [14C]glutamine in the interstitial space when [14C]glutamate was perfused into the brain provided further evidence for the glutamate/glutamine cycle in brain.  相似文献   

13.
l-Aspartate-[U-14C] was quickly metabolized in rice seedlings into amino acids, organic acids and sugars. On feeding simultaneously with ammonium for 2 hr, about 1% of the total soluble radioactivity was recovered as asparagine. Major amino acids labelled were aspartate, glutamate, glutamine and alanine in both shoots and roots. On the other hand, on feeding l-aspartate-[U-14C] to rice seedlings precultured in an ammonium medium, asparagine accounted for 35% of the total soluble radioactivity in the roots. Different labelling patterns in amino acids from those of non-precultured tissues were observed, and the main amino acids labelled in this case were asparagine and γ-aminobutyrate in the roots; glutamate, asparagine and glutamine in the shoots. It was observed in the roots that this increase of asparagine labelling was associated with a decrease of label in glutamate.  相似文献   

14.
Gas chromatography-mass spectrometry was used to study the metabolism of 15NH3 in organotypic cerebellar explants and cultured astrocyte monolayers. A steady-state level of 15NH3 was present by 1 min in both systems. Steady-state labeling in L-[amide-15N] glutamine, L-[15N]alanine, L-[15N]glutamate, and L-[15N]aspartate was attained by 1 min after 15NH3 addition in the organotypic cerebellar explants and by approximately 5 min in the cultured astrocytes. No measurable 15N labeling was noted in either glycine or serine in either system.  相似文献   

15.
Brain tissue was obtained at autopsy from nine cirrhotic patients dying in hepatic coma and from an equal number of controls, free from neurological, psychiatric, or hepatic diseases, matched for age and time interval from death to freezing of dissected brain samples. Glutamine, glutamate, aspartate, and gamma-aminobutyric acid (GABA) levels were measured in homogenates of cerebral cortex (prefrontal and frontal), caudate nuclei, hypothalamus, cerebellum (cortex and vermis), and medulla oblongata as their o-phthalaldehyde derivatives by HPLC using fluorescence detection. Glutamine concentrations were found to be elevated two- to fourfold in all brain structures, the largest increases being observed in prefrontal cortex and medulla oblongata. Glutamate levels were selectively decreased in prefrontal cortex (by 20%), caudate nuclei (by 27%), and cerebellar vermis (by 17%) from cirrhotic patients. On the other hand, GABA content of autopsied brain tissue from these patients was found to be within normal limits in all brain structures. It is suggested that such region-selective reductions of glutamate may reflect loss of the amino acid from the releasable (neurotransmitter) pool. These findings may be of significance in the pathogenesis of hepatic encephalopathy resulting from chronic liver disease.  相似文献   

16.
Mice were anaesthetized with nembutal and the effects of intraventricularly injected excitant amino acids on [U-14C]acetate metabolism were investigated. The natural excitant amino acids, l -glutamate and l -aspartate, reduced the incorporation of 14C from [U-14C]acetate into glutamine, GAB A and possibly alanine. The synthetic excitant amino acid, N-methyl-d -aspartate caused a reduction in the incorporation of 14C from intraventricularly injected [U-14C]acetate into all of the brain amino acids labelled by [U-14C]acetate within 5 min. It is suggested that these effects may be due to changes in pool sizes of tricarboxylic cycle intermediates, to inhibition of acetyl-CoA formation, or both. Differences in the metabolic effects of the synthetic and natural excitants are interpreted in terms of the uptake of the natural amino acids into glutamine-forming pool(s) of glutamate metabolism.  相似文献   

17.
Glucose and Synaptosomal Glutamate Metabolism: Studies with [15N]Glutamate   总被引:1,自引:0,他引:1  
The metabolism of [15N]glutamate was studied with gas chromatography-mass spectrometry in rat brain synaptosomes incubated with and without glucose. [15N]Glutamate was taken up rapidly by the preparation, reaching a steady-state level in less than 5 min. 15N was incorporated predominantly into aspartate and, to a much lesser extent, into gamma-aminobutyrate. The amount of [15N]ammonia formed was very small, and the enrichment of 15N in alanine and glutamine was below the level of detection. Omission of glucose substantially increased the rate and amount of [15N]aspartate generated. It is proposed that in synaptosomes (a) the predominant route of glutamate nitrogen disposal is through the aspartate aminotransferase reaction; (b) the aspartate aminotransferase pathway generates 2-oxoglutarate, which then serves as the metabolic fuel needed to produce ATP; (c) utilization of glutamate via transamination to aspartate is greatly accelerated when flux through the tricarboxylic acid cycle is diminished by the omission of glucose; (d) the metabolism of glutamate via glutamate dehydrogenase in intact synaptosomes is slow, most likely reflecting restriction of enzyme activity by some unknown factor(s), which suggests that the glutamate dehydrogenase reaction may not be near equilibrium in neurons; and (e) the activities of alanine aminotransferase and glutamine synthetase in synaptosomes are very low.  相似文献   

18.
(1) The in vitro metabolism of [U-14C]glucose and [U-14C]glutamate was compared in snail, octopus and locust ganglia, and in rat cerebral cortex. (2) The metabolic patterns are quantitatively similar. The major labelled metabolites formed from glucose or glutamate by rat cortex and the invertebrate systems were CO2, aspartate, glutamate, glutamine and alanine. γ-Aminobutyric acid (GABA) was formed in substantial amounts only by locust and rat. (3) A much larger proportion of labelled glucose and glutamate was converted to alanine by the invertebrates compared with rat cortex, although 14CO2 production was lower. (4) The effect of glucose in reducing aspartate formation and stimulating glutamine formation from [U-14C]glutamate in mammalian cortex was observed in the locust but not in the molluscs. (5) Labelled citric acid cycle intermediates were formed in substantial quantities from glucose and glutamate only by snail and locust.  相似文献   

19.
The parietal cortical slices obtained from 8 week-old (young) and 78 week-old (middle-aged) male Wistar rats were incubated withd-[U-14C]glucose in oxygensaturated Gey's balanced salt solution. Subsequently, the radioactivities of liberated CO2 and glucose-derived amino acids (alanine, aspartate, GABA, glutamate and glutamine) obtained from the slices were measured. In the middle-aged rats as compared to the young rats, the amount of radioactivity of CO2 (P<0.01) and glutamate (P<0.05) showed a significant raduction with glutamine unchanged, while that of alanine (P<0.01), aspartate (P<0.05) and GABA (P<0.05) increased significantly. The results indicate that with advancing age the overall glucose oxidation in the cerebral cortex declines but the metabolic pathway to form amino acids is not uniformly suppressed. Therefore, the above characteristic glucose metabolism could be related to the development of heterogeneous enzyme activities associated with aging in the brain.  相似文献   

20.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity were determined in 23 selected parts of the dog CNS and 4 parts of the peripheral nervous system. Maximum ChAT activity was found in the caudate nucleus and the ventral roots of the spinal cord. High activity was also present in the thalamus, the pons, the cerebral cortex, the medulla oblongata, the ventral spinal horns and the sciatic nerve. The lowest activity was measured in the cerebellum, the dorsal cord roots and the spinal ganglia. Maximum AChE activity was found in the caudate nucleus and the cerebellum. Relatively high activity was also present in the thalamus, the pons, the medulla oblongata, the grey matter of the spinal cord and the spinal ganglia. The lowest AChE activity was measured in the ventral and dorsal spinal roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号