首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrostatic compression in glycerinated rabbit muscle fibers.   总被引:2,自引:2,他引:0       下载免费PDF全文
Glycerinated muscle fibers isolated from rabbit psoas muscle, and a number of other nonmuscle elastic fibers including glass, rubber, and collagen, were exposed to hydrostatic pressures of up to 10 MPa (100 Atm) to determine the pressure sensitivity of their isometric tension. The isometric tension of muscle fibers in the relaxed state (passive tension) was insensitive to increased pressure, whereas the muscle fiber tension in rigor state increased linearly with pressure. The tension of all other fiber types (except rubber) also increased with pressure; the rubber tension was pressure insensitive. The pressure sensitivity of rigor tension was 2.3 kN/m2/MPa and, in comparison with force/extension relation determined at atmospheric pressure, the hydrostatic compression in rigor muscle fibers was estimated to be 0.03% Lo/MPa. As reported previously, the active muscle fiber tension is depressed by increased pressure. The possible underlying basis of the different pressure-dependent tension behavior in relaxed, rigor, and active muscle is discussed.  相似文献   

2.
The rigor tension and stiffness of glycerinated fibres from rabbit psoas muscle were found to vary markedly in dependence on the rate of substitution of the solutions in the experimental chamber. The maximum value of rigor tension, which is close to that activated by Ca2+ with pCa4, was obtained at the slow development of rigor in the absence of Ca2+ ions. The observed dependence is assumed to be due to the different degrees of removal of the 'slack' in fibres, which may be contributed by compliant ends of the preparation. A new method allowing to obtain rather reproducible values of rigor tension is proposed.  相似文献   

3.
Shortening and lengthening velocities, instantaneous stiffness, and tension transients after stretch were measured in compressed muscle fibers from the frog in the presence or absence of polyvinylpyrrolidone (PVP K30) or Dextran T70. Both shortening and lengthening velocities clearly decreased with the concentration of polymer. In the presence of polymer, "passive" stiffness was observed in relaxing solution depending on fiber diameter, and stiffness increased further by activation. This increase by activation above "passive" stiffness was nearly constant in the wide range of polymer concentrations. These active and "passive" stiffnesses were found to be dependent on sarcomere length. The stiffness of a compressed rigor fiber was indicated to be composed of constant rigor stiffness and a variable "passive" one. The tension transient after stretch in a compressed active or rigor fiber was also indicated to be composed of two kinds of transients. The above results suggest that (a) there exist two kinds of interactions in parallel in a compressed active or rigor fiber: one active or rigor and another "passive" between sliding filaments, and (b) the decrease in shortening velocity in a compressed fiber may be brought about by this "passive" interaction.  相似文献   

4.
5.
The suppression of tension development by orthovanadate (Vi) was studied in mechanical experiments and by measuring the binding of radioactive Vi and nucleotides to glycerol-extracted rabbit muscle fibers. During active contractions, Vi bound to the cross-bridges and suppressed tension with an apparent second-order rate constant of 1.34 X 10(3) M-1s-1. The half-saturation concentration for tension suppression was 94 microM Vi. The incubation of fibers in Vi relaxing or rigor solutions prior to initiation of active contractions had little effect on the initial rise of active tension. The addition of adenosine diphosphate (ADP) and Vi to fibers in rigor did not cause relaxation. Suppression of tension only developed during cross-bridge cycling. After slow relaxation from rigor in 1 mM Vi and low (50 microM) MgATP concentration (0 Ca2+), radioactive Vi and ADP were trapped within the fiber. This finding indicated the formation of a stable myosin X ADP X Vi complex, as has been reported in biochemical experiments with isolated myosin. Vi and ADP trapped within the fibers were released only by subsequent cross-bridge attachment. Vi and ADP were preferentially trapped under conditions of cross-bridge cycling in the presence of ATP rather than in relaxed fibers or in rigor with ADP. These results indicate that in the normal cross-bridge cycle, inorganic phosphate (Pi) is released from actomyosin before ADP. The resulting actomyosin X ADP intermediate can bind Vi and Pi. This intermediate probably supports force. Vi behaves as a close analogue of Pi in muscle fibers, as it does with isolated actomyosin.  相似文献   

6.
Isometric rigor tension development of glycerinated rabbit psoas muscle fibers in a medium, due to the formation of rigor complexes, was estimated at varying ATP concentrations from 0 to 2.5 mM and pH values from 6.75 to 8.20. The dissociation of rigor complexes was also estimated under the same conditions. When muscle fibers developed rigor tension from the relaxed and rigor states, the magnitude of rigor tension increased with increasing concentration of ATP. Transition between rigor and relaxation in single fibers occurred discontinuously at constant levels (critical levels) of ATP which were determined by pH. The critical concentrations of ATP necessary for inducing the transitions between rigor and relaxed states were also increased exponentially with increased pH. Incomplete repetition of tension development by the same fiber was also observed. This incomplete reversibility was divided into two types: one which showed a decay in rigor tension and another which showed no decay. The reason for the incomplete reversibility was discussed.  相似文献   

7.
Two rigor states in skinned crayfish single muscle fibers   总被引:8,自引:3,他引:5       下载免费PDF全文
We studied the tension and stiffness of crayfish skinned single muscle fibers during and after the induction of rigor by removal of MgATP (substrate). We found that the rigor state is not unique but depends on the condition of the muscle before rigor. Fibers induced into rigor with a minimum of activation (low rigor) develop a small tension and moderate stiffness, while those entering rigor during maximum activation (high rigor) maintain near peak tension (80%) and develop a high stiffness. These rigor states are insensitive to Ca addition or deletion but they are partially interconvertible by length change. Stiffness changes when the rigor muscle length is varied, a condition in which the number of attached cross-rigor muscle length is varied, a condition in which the number of attached cross-bridges cannot change, and high-rigor muscle becomes less stiff than low-rigor muscle when the former is brought to the same tension by length release. The sensitivity of low, high, or length-released high-rigor muscles to trace substrate concentration (less than muM) differs, and rigor at lower strain is more suscepitible to substrate.  相似文献   

8.
V B Savel'ev 《Biofizika》1986,31(6):1027-1032
Mechanical characteristics and low-angle equatorial X-ray patterns from frog sartorius muscle passing into iodoacetate rigor under isometric conditions at temperatures 2 degrees-25 degrees C were studied. It is ascertained that during the rigor tension development at all the temperatures Z-reflection intensity increases and those of the (10), (11), (20), (21) and (30) reflections decrease. The last three reflections disappear then still in the phase of the rigor tension development. It is found that the sarcomere lengths remain not always invariable, especially at high temperatures, when the muscle passes into rigor, and can both decrease and increase in the sample place which is investigated by means of X-ray diffraction method. It is shown that the decrease of the I10/I11 relation in some experiments at high temperatures is only due to the sarcomere length decrease. The merging time of the Z and (11) reflections depends both on the temperature and on the sarcomere length change. Thus essential changes correlated with the rigor tension development, and resulted in the Z-reflection intensity increase take place in tetragonal lattice of Z-band and in the I-band region located near Z-band. In A-band the hexagonal lattice order change for the worse is marked only. It is proposed that the mechanism of the rigor tension development differs from that of tension development in ordinary contraction of the skeletal muscle.  相似文献   

9.
Fluctuations in tension during contraction of single muscle fibers.   总被引:6,自引:2,他引:4       下载免费PDF全文
We have searched for fluctuations in the steady-state tension developed by stimulated single muscle fibers. Such tension "noise" is expected to be present as a result of the statistical fluctuations in the number and/or state of myosin cross-bridges interacting with thin filament sites at any time. A sensitive electro-optical tension transducer capable of resolving the expected fluctuations in magnitude and frequency was constructed to search for the fluctuations. The noise was analyzed by computing the power spectra and amplitude of stochastic fluctuations in the photomultiplier counting rate, which was made proportional to muscle force. The optical system and electronic instrumentation together with the minicomputer software are described. Tensions were measured in single skinned glycerinated rabbit psoas muscle fibers in rigor and during contraction and relaxation. The results indicate the presence of fluctuations in contracting muscles and a complete absence of tension noise in eith rigor or relaxation. Also, a numerical method was developed to simulate the power spectra and amplitude of fluctuations, given the rate constants for association and dissociation of the cross-bridges and actin. The simulated power spectra and the frequency distributions observed experimentally are similar.  相似文献   

10.
It is shown that short treatment of a single skinned rigor fibre from rabbit m X psoas with 0.05% glutaraldehyde in the absence of Ca ions leads to a modified state of the contractile apparatus. After the addition of 5 mM MgATP in the absence of Ca ions to the fibre a sharp rise and subsequent slow decay of tension were observed in contrast to the tension drop in case of the control (unmodified) specimen. The tension transients following quick stretch (L 0.5%) were similar to those for Ca-activated tension. In case of the modified relaxed fibre such a phenomenon was not observed. These results can be explained by "freezing" with glutaraldehyde the thin filament structure either in the "on" or "off" states. The relation of these results to the cooperativity in the regulation mechanism of contraction is discussed.  相似文献   

11.
Glycerol-extracted insect fibrillar muscle fibres in rigor exhibited both an elastic and a plastic phase in the length-tension diagram. The transition between these phases took place at a critical tension, the yield point or elastic limit. In the plastic phase the apparent static elastic modulus became zero, whereas the immediate elastic modulus (measured by rapid length changes completed within 4 ms) exhibited no abrupt change at the yield point. The tension value of the yield point (but not immediate stiffness) was lowered by addition of AMP-PNP and was partially restored by washing out AMP-PNP. The dependence of the critical tension at which plastic flow begins on cooperative cross bridge behaviour is discussed in terms of breaking and reforming acto-myosin linkages. Evidence is presented that addition of AMP-PNP induces slippage of cross bridges on the actin filament by affecting the interaction between myosin and actin.  相似文献   

12.
The intensity of light scattered by chemically skinned rabbit psoas fibers in relaxed, rigor, and activated states was monitored at 90 degrees to the incident beam. In the relaxed state, scattering varied in proportion to the volume of muscle in the beam. Scattering increased to 2.3 times the resting value when rigor was induced by withdrawal of MgATP or when the myofibrils were activated by the caffeine-induced release of Ca from the sarcoplasmic reticulum. The rigor-induced increase in scattering decreased monotonically when MgATP was reintroduced stepwise (0-100 microM). This decrease in scattering was accompanied by an increase in tension up to an optimum MgATP level of approximately 10 microM, and then tension decreased at higher concentrations (10-100 microM). The increase in scattering during both rigor and activation was dependent upon fiber length. At lengths when thick-thin filament overlap was near zero, the light signal due to rigor and activation fell to within 10% of the signal for the relaxed fiber at that length. The signal during rigor increased only minimally (approximately 10%) when stretch (approximately 1%) was applied. This increase in signal was small despite a measured 5- to 10-fold increase in tension and an estimated twofold increase in stiffness. Thus, the increased light scattering caused by rigor and activation depends on filament overlap and not tension, stiffness, or substrate binding.  相似文献   

13.
The kinetics of force production in chemically skinned trabeculae from the guinea pig were studied by laser photolysis of caged ATP in the presence of Ca2+. Preincubation of the tissue during rigor with the enzyme apyrase was used to reduce the population of MgADP-bound cross-bridges (Martin and Barsotti, 1994). In untreated tissue, tension remained constant or dipped slightly below the rigor level immediately after ATP release, before increasing to the maximum measured in pCa 4.5 and 5 mM MgATP. The in-phase component stiffness, which is a measure of cross-bridge attachment, exhibited a large decrease before increasing to 55% of that measured in rigor. Neither the rate of the decline nor of the rise in tension was sensitive to the concentration of photolytically released ATP. The rate of the decline in stiffness was found to be dependent on [ATP]: 1.8 x 10(4) M-1/s-1, a value more than four times higher than that previously measured in similar experiments in the absence of Ca2+. The rate of tension development averaged 14.9 +/- 2.5 s-1. Preincubation with apyrase altered the mechanical characteristics of the early phase of the contraction. The rate and amplitude of the initial drop in both tension and stiffness after caged ATP photolysis increased and became dependent on [ATP]. The second-order rate constants measured for the initial drop in tension and stiffness were 8.4 x 10(4) M-1 s-1 and 1.5 x 10(5) M-1 s-1. These rates are more than two times faster than those previously measured in the absence of Ca2+. The effects of apyrase incubation on the time course of tension and stiffness were consistent with the hypothesis that during rigor, skinned trabeculae retain a significant population of MgADP-bound cross-bridges. These in turn act to attenuate the initial drop in tension after caged ATP photolysis and slow the apparent rate of rigor cross-bridge detachment. The results also show that Ca2+ increases the rate of cross-bridge detachment in both untreated and apyrase-treated tissue, but the effect is larger in untreated tissue. This suggests that in cardiac muscle Ca2+ modulates the rate of cross-bridge detachment.  相似文献   

14.
K Horiuti  K Kagawa    K Yamada 《Biophysical journal》1994,67(5):1925-1932
We isometrically activated skinned fibers in rigor by flash photolysis of caged ATP at various [Ca2+] at 8 degrees C. On release of ATP, tension initially decreased with the same time course at all [Ca2+]. At high [Ca2+] (pCa < or = 5.8), tension rose to the steady-state plateau after the brief relaxation. When the [Ca2+] was intermediate (7.0 < or = pCa < or = 6.0), tension temporarily overshot the final steady-state level. The half-time during this tension transient was longer at higher [Ca2+]. The transient contractions could be simulated by a simple kinetic model: R + ATP-->Q, and X<-->Q<-->A, where R, X, and A are the rigor, relaxed, and active-tension states, respectively; Q is a "pre-active" state where tension is very low; and Ca2+ affects only the X-Q transition. This scheme was also useful for predicting the tension transients in Ca(2+)- and P(i)-jump experiments at various [Ca2+]. ADP enhanced the Ca2+ sensitivity of the ATP-induced transient contraction, which was not in the scope of the model.  相似文献   

15.
A method developed to study the effect of increased hydrostatic pressure on the isometric tension of a single muscle fibre is described and experiments done at room temperature (18-22 degrees C) on glycerinated rabbit psoas muscle fibres are presented. Increase of pressure (range 1-10 MPa) caused little change in tension transducer response when a muscle fibre was relaxed. However, there was a reversible depression of isometric tension with an increase of pressure when a fibre was maximally calcium-activated or in rigor; the depression was around 15% for active tension and 30% for rigor tension, for an increase of pressure of 10 MPa (ca. 100 atm).  相似文献   

16.
Bundles of rat cardiac fibers were treated with EGTA to increase the permeability of the sarcolemma to ions and small molecules. In the medium without calcium, the EGTA-treated fibers developed rigor tension dependent on the concentration of MgATP in the bathing solution: half-maximal tension was recorded at 2.5 mM MgATP and maximal tension at 0.1 mM MgATP in the medium. However, in the presence of 15 mM phosphocreatine without added creatine kinase a decrease of MgATP concentration to 0.1 mM did not result in any development of rigor tension. Phosphocreatine prevented rigor tension development in the absence of added MgATP when MgADP was added. In the presence of MgADP, phosphocreatine decreased rigor tension more rapidly and to a higher extent than added MgATP. At 5 mM MgADP, half-maximal rigor tension was observed in the presence of 2 mM phosphocreatine which is close to the Km value for phosphocreatine in the creatine-kinase reaction. These results demonstrate that the intact creatine kinase in the EGTA-treated fibers with increased sarcolemmal permeability is able to ensure rapid replenishment of MgATP in the myofibrillar compartment at the expense of phosphocreatine. The data obtained conform completely to the concept of adenine-nucleotide compartmentation in cardiac cells and of energy channelling by the phosphocreatine-creatine shuttle mechanism.  相似文献   

17.
Julian Borejdo  Susan Putnam 《BBA》1977,459(3):578-595
Single skinned glycerinated muscle fibers were labelled with the fluorescent dye N-(iodoacetylamino)-1-naphthylamine-5-sulfonic acid (1,5-IAEDANS). The heavy chain of myosin (EC 3.6.1.3) was labelled predominantly when the reaction was carried out in relaxation at 0 °C. Mechanical properties of skinned fibers were little affected by labelling with the fluorophore. Rigor tension developed upon transferring native or labelled skinned fibers from relaxing to rigor solutions lacking Ca2+ was very small but could be enhanced by progressively increasing Ca2+ concentration; the rigor tension decreased with increasing sarcomere length.Polarization of fluorescence of skinned fibers reacted with 1,5-IAEDANS was measured along the line of excitation as well as at 90° to it. The mean values of parallel and perpendicular components of polarization of labelled fibers measured at 0° were close to the values obtained for native fibers irrigated with 1,5-IAEDANS-labelled heavy meromyosin, fiber “ghosts” irrigated with labelled heavy meromyosin, and oriented bundles of myofibrils reacted with the same fluorophore. Skinned fibers stretched above the rest length and then irrigated with 1,5-IAEDANS-labelled heavy meromyosin gave rise to polarized fluorescence close to the values theoretically predicted for an assembly of helically arranged fluorophores. Using 90° detection system a satisfactory fit to the theory could be obtained from single fibers labelled with 1,5-IAEDANS and measured in rigor. The angle between the fiber axis and the direction of the emission dipole of 1,5-IAEDANS attached to subfragment-1 was estimated to be near 40°.  相似文献   

18.
Isometric tension responses to rapid temperature jumps (T-jumps) of 3-7 degrees C were examined in single skinned fibers isolated from rabbit psoas (fast) and soleus (slow) muscles. T-jumps were induced by an infrared laser pulse (wavelength 1.32 microns, pulse duration 0.2 ms) obtained from a Nd-YAG laser, which heated the fiber and bathing buffer solution in a 50-microliter trough. After a T-jump, the temperature near the fiber remained constant for approximately 0.5 s, and the temperature could be clamped for longer periods by means of Peltier units assembled on the back trough wall. A T-jump produced a step decrease in tension in both fast and slow muscle fibers in rigor, indicating thermal expansion. In maximally Ca-activated (pCa approximately 4) fibers, the increase of steady tension with heating (3-35 degrees C) was approximately sigmoidal, and a T-jump at any temperature induced a more complex tension transient than in rigor fibers. An initial (small amplitude) step decrease in tension followed by a rapid recovery (tau(1); see Davis and Harrington, 1993) was seen in some records from both fiber types, which presumably was an indirect consequence of thermal expansion. The net rise in tension after a T-jump was biexponential, and its time course was characteristically different in the two fibers. At approximately 12 degrees C the reciprocal time constants for the two exponential components (tau(2) and tau(3), respectively, were approximately 70.s(-1) and approximately 15.s(-1) in fast fibers and approximately 20.s(-1) and approximately 3.s(-1) in slow fibers. In both fibers, tau(2) ("endothermic force regeneration") became faster with an increase in temperature. Furthermore, tau(3) was temperature sensitive in slow fibers but not in fast fibers. The results are compared and contrasted with previous findings from T-jump experiments on fast fibers. It is observed that the fast/slow fiber difference in the rate of endothermic force generation (three- to fourfold) is considerably smaller than the reported differences in the "phosphate release steps" (> 30-fold).  相似文献   

19.
The kinetics of ATP-induced rigor cross-bridge detachment were studied by initiating relaxation in chemically skinned trabeculae of the guinea pig heart using photolytic release of ATP in the absence of calcium ions (pCa > 8). The time course of the fall in tension exhibited either an initial plateau phase of variable duration with little change in tension or a rise in tension, followed by a decrease to relaxed levels. The in-phase component of tissue stiffness initially decreased. The rate then slowed near the end of the tension plateau, indicating transient cross-bridge rebinding, before falling to relaxed levels. Estimates of the apparent second-order rate constant for ATP-induced detachment of rigor cross-bridges based on the half-time for relaxation or on the half-time to the convergence of tension records to a common time course were similar at 3 x 10(3) M-1 s-1. Because the characteristics of the mechanical transients observed during relaxation from rigor were markedly similar to those reported from studies of rabbit psoas fibers in the presence of MgADP (Dantzig, J. A., M. G. Hibberd, D. R. Trentham, and Y. E. Goldman. 1991. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J. Physiol. 432:639-680), direct measurements of MgADP using [3H]ATP in cardiac tissue in rigor were made. Results indicated that during rigor, nearly 18% of the cross-bridges in skinned trabeculae had [3H]MgADP bound. Incubation of the tissue during rigor with apyrase, an enzyme with both ADPase and ATPase activity, reduced the level of [3H]MgADP to that measured following a 2-min chase in a solution containing 5 mM unlabeled MgATP. Apyrase incubation also significantly reduced the tension and stiffness transients, so that both time courses became monotonic and could be fit with a simple model for cross-bridge detachment. The apparent second-order rate constant for ATP-induced rigor cross-bridge detachment measured in the apyrase treated tissue at 4 x 10(4) M-1 s-1 was faster than that measured in untreated tissue. Nevertheless, this rate was still over an order of magnitude slower than the analogous rate measured in previous studies of isolated cardiac actomyosin-S1. These results are consistent with the hypothesis that the presence of MgADP bound cross-bridges suppresses the inhibition normally imposed by the thin filament regulatory system in the absence of calcium ions and allows cross-bridge rebinding and force production during relaxation from rigor.  相似文献   

20.
As a first step toward freeze-trapping and 3-D modeling of the very rapid load-induced structural responses of active myosin heads, we explored the conformational range of longer lasting force-dependent changes in rigor crossbridges of insect flight muscle (IFM). Rigor IFM fibers were slam-frozen after ramp stretch (1000 ms) of 1-2% and freeze-substituted. Tomograms were calculated from tilt series of 30 nm longitudinal sections of Araldite-embedded fibers. Modified procedures of alignment and correspondence analysis grouped self-similar crossbridge forms into 16 class averages with 4.5 nm resolution, revealing actin protomers and myosin S2 segments of some crossbridges for the first time in muscle thin sections. Acto-S1 atomic models manually fitted to crossbridge density required a range of lever arm adjustments to match variably distorted rigor crossbridges. Some lever arms were unchanged compared with low tension rigor, while others were bent and displaced M-ward by up to 4.5 nm. The average displacement was 1.6 +/- 1.0 nm. "Map back" images that replaced each unaveraged 39 nm crossbridge motif by its class average showed an ordered mix of distorted and unaltered crossbridges distributed along the 116 nm repeat that reflects differences in rigor myosin head loading even before stretch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号