首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmission of vector-borne diseases depends largely on the ability of the insect vector to become infected with the parasite. In tsetse flies, newly emerged or teneral flies are considered the most likely to develop a mature, infective trypanosome infection. This was confirmed during experimental infections where laboratory-reared Glossina morsitans morsitans Westwood (Diptera: Glossinidae) were infected with Trypanosoma congolense or T. brucei brucei. The ability of mature adult tsetse flies to become infected with trypanosomes was significantly lower than that of newly emerged flies for both parasites. However, the nutritional status of the tsetse at the time of the infective bloodmeal affected its ability to acquire either a T. congolense or T. b. brucei infection. Indeed, an extreme period of starvation (3-4 days for teneral flies, 7 days for adult flies) lowers the developmental barrier for a trypanosome infection, especially at the midgut level of the tsetse fly. Adult G. m. morsitans became at least as susceptible as newly emerged flies to infection with T. congolense. Moreover, the susceptibility of adult flies, starved for 7 days, to an infection with T. b. brucei was also significantly increased, but only at the level of maturation of an established midgut infection to a salivary gland infection. The outcome of these experimental infections clearly suggests that, under natural conditions, nutritional stress in adult tsetse flies could contribute substantially to the epidemiology of tsetse-transmitted trypanosomiasis.  相似文献   

2.
wo laboratory strains of Glossina morsitans centralis originating from different fly-belts (one from Singida, in Tanzania, and the other from Mumbwa, in Zambia) were compared with respect to vectorial competence for pathogenic Trypanosoma species, genetic variation and inter-colony fertility. The vectorial competence of G.m.centralis of Tanzanian origin for Trypanosoma vivax and T.congolense is similar to, whereas for T.brucei brucei it is lower than the colony of Zambian origin. Nevertheless, these two laboratory strains of G.m.centralis showed levels of susceptibility to the three pathogenic Trypanosoma species which were much greater than previously observed in laboratory colonies of other Glossina species. Electrophoresis of fifteen enzymes revealed that the two colonies differ significantly in allele frequencies at only three loci that are relatively close together on one of the autosomes. Hybridization experiments revealed that G.m.centralis from the two fly-belts are consubspecific.  相似文献   

3.
Culture procyclic forms of Trypanosoma brucei rhodesiense and Trypanosoma congolense were fed to Glossina morsitans morsitans through artificial membranes. A very high percentage of the flies so fed produced established midgut infections, a proportion of which went on to develop into mature metacyclic trypanosomes capable of infecting mammalian hosts. The method offers a safe, clean way of infecting tsetse flies with African trypanosomes which reduces the need for trypanosome-infected animals in the laboratory.  相似文献   

4.
Studies were made of infection rates of trypanosomes in the tsetse fly Glossina morsitans morsitans Westwood (Diptera: Glossinidae) when maintained in vivo (rabbits) or in vitro on high quality, gamma-irradiated, sterile defibrinated bovine blood, obtained from the Entomology Unit of the International Atomic Energy Agency (IAEA). For both Trypanosoma congolense Broden and T. b. brucei Plimmer & Bradford, in vitro maintenance significantly reduced the proportion of flies that developed mature metacyclic trypanosome infections.  相似文献   

5.
Resistance and sensitivity to normal human serum (NHS) of Trypanosoma congolense, a parasite believed to cause disease in animals only, were investigated in vivo as well as in vitro. Our results indicate that like Trypanosoma brucei, T. congolense can be grouped into three different phenotypes according to its resistance to NHS. Some strains are completely resistant to NHS, like Trypanosoma brucei gambiense and the resistant form of Trypanosoma brucei rhodesiense. Other strains show a very low degree of resistance comparable to the sensitive form of T. b. rhodesiense, and some are completely sensitive to NHS. Continuous passaging in mice in the presence or absence of NHS shows that the resistance and sensitivity of T. congolense can be reversed like in T. b. rhodesiense. Our data suggest that T. congolense might be able to infect man in regions where animals may serve as reservoirs for the infection.  相似文献   

6.
In order to better understand the epidemiology of Human and Animal trypanosomiasis that occur together in sleeping sickness foci, a study of prevalences of animal parasites (Trypanosoma vivax, T. congolense "forest type", and T. simiae) infections was conducted on domestic animals to complete the previous work carried on T. brucei gambiense prevalence using the same animal sample. 875 domestic animals, including 307 pigs, 264 goats, 267 sheep and 37 dogs were sampled in the sleeping sickness foci of Bipindi, Campo, Doumé and Fontem in Cameroon. The polymerase chain reaction (PCR) based method was used to identify these trypanosome species. A total of 237 (27.08%) domestic animals were infected by at least one trypanosome species. The prevalence of T. vivax, T. congolense "forest type" and T. simiae were 20.91%, 11.42% and 0.34% respectively. The prevalences of 7 vivax and T. congolense "forest type" differed significantly between the animal species and between the foci (p < 0.0001); however, these two trypanosomes were found in all animal species as well as in all the foci subjected to the study. The high prevalences of 7 vivax and T congolense "forest type" in Bipindi and Fontem-Center indicate their intense transmission in these foci.  相似文献   

7.
East African x Galla goats, when infected with Trypanosoma congolense isolates from the Kilifi area of Kenya by Glossina morsitans centralis, did not develop the characteristic chancre reaction at the bite sites, whereas bites of tsetse infected with the cloned T. congolense IL.1180 from Serengeti, Tanzania, resulted in chancres in the same goats. Histological changes could not be observed in skin biopsies collected 8 or 9 days after infection with Kilifi isolates. However, all goats became parasitemic about 10 days after challenge. It is concluded that the absence of chancre development is a characteristic feature of T. congolense parasites from Kilifi. The isoenzyme analysis of clones of two T. congolense Kilifi isolates and the T. congolense clone IL.1180 indicated that they belong to different zymodemes. Neutralizing antibodies to homologous metacyclic variable antigen types were detected in six out of seven (86%) of the sera from goats infected with a clone or stock of a T. congolense Kilifi isolate, 20 days after infection. Goats primed by tsetse transmitted infection with a stock or clone of T. congolense from Kilifi and treated with Berenil were, in three out of eight cases (37%), not immune to homologous challenge. It is suggested that the reduced immune response to metacyclic variable antigen types could be a result of the absence of cellular infiltration, i.e., chancre development in the skin at the tsetse bite site. It is concluded that the use of the chancre reaction as a marker for serodeme analysis of recently isolated stocks of T. congolense from Kilifi was not feasible.  相似文献   

8.
SYNOPSIS. Culture procyclic forms of Trypanosoma brucei rhodesiense and Trypanosoma congolense were fed to Glossina morsitans morsitans through artificial membranes. A very high percentage of the flies so fed produced established midgut infections, a proportion of which went on to develop into mature metacyclic trypanosomes capable of infecting mammalian hosts. The method offers a safe, clean way of infecting tsetse flies with African trypanosomes which reduces the need for trypanosome-infected animals in the laboratory.  相似文献   

9.
Stable introduction of exogenous DNA into Trypanosoma brucei.   总被引:4,自引:1,他引:3       下载免费PDF全文
W C Gibson  T C White  P W Laird    P Borst 《The EMBO journal》1987,6(8):2457-2461
The lack of a homologous transformation system for trypanosomes is a serious handicap to the study of gene expression in these protozoans. Attempts to develop such a system have been complicated by the lack of suitable homologous vectors and ignorance of the requirements for mRNA synthesis which is discontinuous in trypanosomes. We have found that Trypanosoma congolense, a close relative of T. brucei, contains exceptionally small chromosomes, which can be isolated whole and distinguished from those of T. brucei by the presence of a unique satellite DNA. We show here that mini-chromosomes from T. congolense can be introduced into T. brucei by electroporation and detected by hybridisation with T. congolense satellite DNA. The introduced DNA can survive through several generations in the absence of any selective pressure. These results provide the basis for the development of a transformation system for trypanosomes.  相似文献   

10.
Abstract Teneral Glossina morsitans mositans, G.m.submorsitans, G.palpalis gambiensis and G.tachinoides were allowed to feed on rabbits infected with Trypanosoma congolense savannah type or on mice infected with T.congolense riverine-forest type. The four tsetse species and subspecies were also infected simultaneously in vitro on the blood of mice infected with the two clones of T.congolense via a silicone membrane. The infected tsetse were maintained on rabbits and from the day 25 after the infective feed, the surviving tsetse were dissected in order to determine the infection rates.
Results showed higher mature infection rates in morsitans-gwup tsetse flies than in palpalis-group tsetse flies when infected with the savannah type of T.congolense. In contrast, infection rates with the riverine-forest type of T.congolense were lower, and fewer flies showed full development cycle. The intrinsec vectorial capacity of G.m.submorsitans for the two T.congolense types was the highest, whereas the intrinsic vectorial capacity of G.p.gambiensis for the Savannah type and G.m.morsitans for the riverine-forest type were the lowest. Among all tsetse which were infected simultaneously with the two types of T.congolense , the polymerase chain reaction detected only five flies which had both trypanosome taxa in the midgut and the proboscis. All the other infections were attributable to the savannah type.
The differences in the gut of different Glossina species and subspecies allowing these two sub-groups of T.congolense to survive better and undergo the complete developmental cycle more readily in some species than other are discussed.  相似文献   

11.
Membrane proteins were isolated from purified Trypanosoma brucei coated endocytotic vesicles by phase separation with Triton X-114. The largest abundant membrane protein was a doublet band with a molecular mass of about 77 kDa. A specific antiserum was prepared against this protein by immunization with antigen bands excised from sodium dodecyl sulfate-polyacrylamide gels. Immunoblot analyses with this antiserum showed that the 77-kDa protein was present in other T. brucei, in T. congolense, and in T. vivax bloodstream-stage parasites but absent from procyclic (tsetse fly midgut)-stage trypanosomes. Antigenically related molecules of 58, 300, and 15.5 kDa were also detected. The 300- and 15.5-kDa molecules were not in purified coated vesicles; they were detected in whole bloodstream- and procyclic-form T. brucei organisms. Immunofluorescent studies localized the antigen to the region between the flagellar pocket and the nucleus of bloodstream-form parasites. Ultrastructurally, the antigen was detected on membranes of endosomes and lysosome-like structures that contained endocytosed markers.  相似文献   

12.
Abstract Numbers of immature Trypanosoma brucei brucei within a tsetse midgut remain remarkably constant after establishment throughout the course of an infection, irrespective of whether the infection eventually matures. These results suggest a system of self regulation of the parasite population in the insect gut based on a form of programmed cell death which would carry advantages for both the parasite and the vector.  相似文献   

13.
Glucose-6-phosphate dehydrogenase (G6PD) changes were studied in livers of rats inoculated with Trypanosoma lewisi, Trypanosoma rhodesiense, Trypanosoma congolense and Trypanosoma brucei. Marked increases in G6PD were directly related to the degree of parasitemia. No essential differences in G6PD levels were seen in animals inoculated with physiological saline when compared with uninoculated controls. Elevation of G6PD was observed only from day 10 to 20 in rats inoculated with T. lewisi. After day 20, the G6PD levels were not statistically significant from those of uninoculated controls. Liver G6PD levels were increased as early as day 3 post-inoculation and continued up to the time of death in rats inoculated with T. brucei, T. rhodesiense and T. congolense.  相似文献   

14.
Cyclical transmission of African trypanosomes - Trypanosoma congolense and subspecies of T. brucei - depends on their uptake by and development within their tsetse fly vectors. Tsetse susceptibility to such trypanosome infection seems to be controlled by maternally inherited rickettsia-like organisms (RLOs) (Fig. 1) and it now seems that the RLOs may exert this effect by controlling midgut lectins in the fly. Ian Maudlin and Susan Welburn explain the latest findings.  相似文献   

15.
A multidisciplinary work was undertaken in the agropastoral zone of Sidéradougou, Burkina Faso to try to elucidate the key factors determining the presence of tsetse flies. In this study the PCR was used to characterize trypanosomes infecting the vector ( Glossina tachinoides and Glossina palpalis gambiensis ) and the host, i.e. cattle. A 2-year survey involved dissecting 2211 tsetse of the two Glossina species. A total of 298 parasitologically infected tsetse were analysed by PCR. Trypanosoma vivax was the most frequently identified trypanosome followed by the savannah type of T. congolense and, to a lesser extent, the riverine forest type of T. congolense , and by T. brucei . No cases of T. simiae were found. From the 107 identified infections in cattle, the taxa were the same, but T. congolense savannah type was more frequent, whereas T. vivax and T. congolense riverine forest types were found less frequently. A correlation was found between midgut infection rates of tsetse, nonidentified infections and reptile bloodmeals. These rates were higher in G.p. gambiensis , and in the western part of the study area. T. vivax infections were related to cattle bloodmeals, and were more frequent in G. tachinoides and in the eastern study area. The PCR results combined with bloodmeal analysis helped us to establish the relationships between the vector and the host, to assess the trypanosome challenge in the two parts of the area, to elucidate the differences between the two types of T. congolense , and to suspect that most midgut infections were originating from reptilian trypanosomes.  相似文献   

16.
Acute infection with Trypanosoma cruzi or its African relatives, including T. brucei rhodesiense, T. b. gambiense, T. b. brucei and T. congolense, is frequently accompanied by manifestations of immunological dysfunction. Initially investigators catalogued the ensuing immunologic alterations and identified a number of modifications in lymphoid or accessory cell properties. More recently, the emphasis has switched towards the molecular underpinnings of immunosuppression in these infections. In this article, Marcelo Sztein and Felipe Kierszenboum focus on recent progress made in the quest to delineate the mechanisms behind altered lymphocyte functions in tryponosomal infections, point out particular and common features of immunosuppression induced by T. cruzi and African trypanosomes, and outline possible directions for future research.  相似文献   

17.
Tsetse flies transmit African trypanosomes, responsible for sleeping sickness in humans and nagana in animals. This disease affects many people with considerable impact on public health and economy in sub-Saharan Africa, whereas trypanosomes' resistance to drugs is rising. The symbiont Sodalis glossinidius is considered to play a role in the ability of the fly to acquire trypanosomes. Different species of Glossina were shown to harbor genetically distinct populations of S. glossinidius. We therefore investigated whether vector competence for a given trypanosome species could be linked to the presence of specific genotypes of S. glossinidius. Glossina palpalis gambiensis individuals were fed on blood infected either with Trypanosoma brucei gambiense or Trypanosoma brucei brucei. The genetic diversity of S. glossinidius strains isolated from infected and noninfected dissected flies was investigated using amplified fragment length polymorphism markers. Correspondence between occurrence of these markers and parasite establishment was analyzed using multivariate analysis. Sodalis glossinidius strains isolated from T. brucei gambiense-infected flies clustered differently than that isolated from T. brucei brucei-infected individuals. The ability of T. brucei gambiense and T. brucei brucei to establish in G. palpalis gambiensis insect midgut is statistically linked to the presence of specific genotypes of S. glossinidius. This could explain variations in Glossina vector competence in the wild. Then, assessment of the prevalence of specific S. glossinidius genotypes could lead to novel risk management strategies.  相似文献   

18.
The complete primary structures of two variant specific glycoproteins (VSGs) of the nannomonad Trypanosoma (N.) congolense are presented. These coat proteins subserve the function of antigenic variation. The secondary structure potentials of both VSGs have been calculated. The amino acid sequences and secondary structure potentials of these VSGs have been compared with the primary structures and secondary structure potentials of several Trypanosoma brucei complex VSGs. In homologous regions, the T. brucei complex VSGs show a pattern of sharply contrasting secondary structure potentials. It has been suggested previously that this pattern gives rise to different folding structures in different members of this polygene protein family. Thus, different short regions of the polypeptide sequence are exposed as antigenic "caps" on the solvent-exposed surface of intact trypanosomes. A sharply contrasting secondary structure potential pattern is also found in regions of the two T. congolense VSGs. However, there is little homology of primary structure between each of the two T. congolense VSGs and any member of the T. brucei complex VSG polygene family whose primary structure has been determined.  相似文献   

19.
The course of Trypanosoma congolense infections in Glossina morsitans morsitans was followed by electron-microscopic examination of ultrathin sections of the guts and proboscises of infected flies. Guts dissected from flies 7 days after infection with culture procyclic forms of T. congolense had heavy trypanosome infections in the midgut involving both the endo- and ectoperitrophic spaces. Trypanosomes were also seen in the process of penetrating the fully formed peritrophic membrane in the central region of the midgut. By post infection day 21, trypanosomes had reached the proboscis of the fly and were found as clumps of epimastigote forms attached to the labrum by hemidesmosomes between their flagella and the chitinous lining of the food canal. Desmosome connections were observed between the flagella of adjacent epimastigotes. Flies examined at postinfection days 28 and 42 had, in addition to the attached forms in the labrum, free forms in the hypopharynx.  相似文献   

20.
In field studies, tsetse flies (Diptera: Glossinidae) feed more successfully on cattle infected with Trypanosoma congolense Broden (Kinetoplastida: Trypanosomatidae) than on cattle infected with T. vivax Ziemann or uninfected cattle. Here we describe the first laboratory investigation of this phenomenon. In the first experiment, caged Glossina pallidipes Austen were fed for 1 and 5 min on a Boran steer infected with T. congolense clone IL 1180 and on an uninfected steer. Feeding success was recorded in this way five times over several weeks. The same protocol was subsequently used in three additional experiments with the following combinations: G. pallidipes and a steer infected with T. vivax stock IL 3913, G. morsitans centralis Machado and a steer infected with T. congolense, and G. morsitans centralis and a steer infected with T. vivax. The four experiments were replicated once, making eight experiments in total. In three experiments there was increased tsetse feeding success, measured at 1 min, after a steer became infected (T. congolense, two experiments and T. vivax, one experiment). Analysis of all data combined found no significant differences in tsetse feeding success on the different groups of cattle prior to infection, but after infection tsetse feeding success was significantly greater on the infected cattle (P< 0.001). Trypanosoma congolense infection led to a greater increase in tsetse feeding success than T. vivax infection. The increase in feeding success was not related to changes in the level of anaemia, skin surface temperature or parasitaemia. A possible explanation is the effects of trypanosome infection on cutaneous vasodilation and/or blood clotting in infected cattle. When allowed to feed for 5 min, nearly all tsetse engorged successfully and effects of cattle infection on feeding success were not found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号