首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
In the dentate gyrus of adult female meadow voles, a high dose of estradiol benzoate (EB) increases (within 4 h) then decreases (within 48) the number of dividing progenitor cells (Ormerod BK, Galea LAM. 2001. Reproductive status regulates cell proliferation within the dentate gyrus of the adult female meadow vole: A possible regulatory role for estradiol. Neurosci 2:169-179). We investigated whether time-dependent EB exposure differentially influences the number of new granule cells produced in the adult female rat dentate gyrus and whether EB-stimulated adrenal activity mediates the decrease in cell proliferation. Ovariectomized rats received either an EB (10 microg in 0.1 mL) or vehicle (0.1 mL) injection either 4 or 48 h (Experiment 1) before a BrdU injection (200 mg/kg) and were perfused 24 h later to assess the number of new cells. Relative to vehicle, the number of new cells increased following a 4 h exposure (p < or = 0.04) but decreased following a 48 h exposure (p < or = 0.006) to EB. In Experiment 2, the number of new cells within the dentate gyrus of ovariectomized and adrenalectomized females did not significantly differ between groups exposed to EB versus vehicle for 48 h prior to BrdU administration, suggesting the decreased number of new cells observed within the dentate gyrus of adrenal-intact adult female rats is mediated by EB-stimulated adrenal activity. We conclude that estradiol dynamically regulates cell proliferation within the dentate gyrus of adult female rats in the time-dependent manner observed previously in voles and suppresses cell proliferation by influencing adrenal steroids. Investigating how estradiol dynamically regulates neurogenesis could provide insight into the mechanisms by which the proliferation of progenitor cells is controlled within the adult rodent hippocampus.  相似文献   

2.
The purpose of the present study was to assess whether, and to what extent prior handling, restraint or social crowding stress during 3-10 days affects the hypothalamic-pituitary-adrenocortical (HPA) response to an acute short-lasting restraint stress. Also the effect of a feedback inhibitory mechanism of corticosterone in the impairment of HPA axis by these stressors was investigated. Male Wistar rats were pretreated with handling 1 min/day for 3-10 days, restraint 2 times daily for 3-7 days and crowding stress for 7 days before exposure to acute restraint stress in metal tubes for 10 min. Some group of rats received exogenous s.c. corticosterone either once 25 mg/kg or 2 times daily 10 mg/kg for 3-10 days before restraint stress. After the last restraint the rats were decapitated and their trunk blood was collected for the measurement of plasma ACTH and serum corticosterone levels. Handling for 3-7 days, restraint for 3-7 days, and crowding for 7 days and a single pretreatment with corticosterone--all significantly and to a similar extent inhibited the restraint stress-induced increase in ACTH and corticosterone secretion. Chronic pretreatment with corticosterone blunted the restraint stress-induced increase in HPA axis activity. These results indicate that repeated short-lasting stress induced by handling, restraint, or crowding potently attenuates the acute restraint stress-induced stimulatory action of the HPA axis. They also indicate adaptive action of moderate stress on the HPA axis response to acute stress. The results also suggest that a short-lasting hypersecretion of corticosterone during psychological stress may induce a prolonged feedback inhibition of the HPA axis activity. The attenuation of HPA axis response by prior handling has also obvious methodological implications.  相似文献   

3.
Two distinct periods of sensitivity to elevated glucocorticoid hormone levels during postnatal development of the pituitary-adrenal axis were studied. Wistar rats were injected subcutaneously (s.c.) with cortisol (1 mg/kg) on postnatal days 1-5 or 14-18. The steroid treatment during the first postnatal week resulted in a decrease of the morning basal and stress-induced plasma corticosterone levels in 30 day-old male rats, as well as in rats that were injected with cortisol on the third postnatal week. Stress-induced corticosterone levels in 90-day old cortisol-treated rats were determined in blood samples drawn from the tail vein before the restraint stress, immediately after the 20-min long stress, then 60 and 180 min afterwards. Only the rats treated with cortisol during the third week showed a prolonged stress-induced corticosterone secretion, with the highest corticosterone level in 180 min after the restraint stress. The early neonatal cortisol treatment had no effect on (3)H-corticosterone binding in all studied brain areas of the 90-day old rats. The rats treated with cortisol at the 14-17th postnatal days showed a significantly lower (3)H-corticosterone binding in the frontal cortex, hippocampus, and hypothalamus. These findings suggest that the third week of life in rats is more sensitive to elevated levels of corticosterone than the first one. The high level of glucocorticoids at this period has long-term effects on the efficiency of the negative feedback mechanisms provided by hypothalamus-pituitary-adrenal axis.  相似文献   

4.
The dehydroepiandrosterone sulfate (DHEAS) effect on stress-reactivity and the role of mu-opioid receptors in it, were studied. The experiments were carried out in male rats. The shuttling in single or in multiple (19 days, for 1 hour a day) regimes served as the experimental stress influences. The estimation of stress-reactivity was carried out by the plasma corticosterone level. It had been shown that the subcutaneous injection of dehydroepiandrosterone sulfate in rats reduced the stress-induced increase in corticosterone levels under the multiple influences, whereas naltrexone (0.1 mg/kg, for 20 min before DHEAS injection) blocked this effect. There were no effects of DHEAS or naltrexone on corticosterone levels under the single stress influences.  相似文献   

5.
Bauer ME  Perks P  Lightman SL  Shanks N 《Life sciences》2001,69(10):1167-1179
Acute psychological stress is associated with important changes in circulating cell populations and reductions in cell-mediated immune responses. However, the mechanisms underlying these phenomena are poorly understood. In this study, we investigated (i) acute and chronic restraint stress effects in Sprague-Dawley rats on peripheral lymphocyte subsets and (ii) adhesion molecule (beta2 integrins) expression and (iii) also determined whether glucocorticoids could underlie stress-related changes in cellular redistribution. We observed time-dependent changes in lymphocyte distribution including decreased (-21%) percentages of peripheral T helper cells and increased (88%) NK cell numbers following acute brief restraint. Acute stress was also found to overall upregulate beta2-integrin (CD11a and CD11b) expression on T cells and to raise (1049%) plasma corticosterone levels. However, this stress response was found habituated (-75% vs. acute) in the animals previously exposed to chronic restraint stress. Stress effects on circulating lymphocytes were not observed in animals previously exposed to chronic intermittent restraint stress or chronically stressed animals re-exposed to the same stressor. Our results indicate that 1) stress alters lymphocyte distribution, 2) that adhesion molecules may be involved in stress-induced alterations of T-cell distribution and 3) that these changes may be related to circulating glucocorticoids and subjected to adaptation with repeated stress exposure.  相似文献   

6.
Parathyroid hormone-related protein (PTHrP) is a growth inhibitor for alveolar type II cells and could be a regulatory factor for alveolar epithelial cell proliferation after lung injury. We investigated lung PTHrP expression in rats exposed to 85% oxygen. Lung levels of PTHrP were significantly decreased between 4 and 8 days of hyperoxia, concurrent with increased expression of proliferating cell nuclear antigen and increased incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA in lung corner cells. PTHrP receptor was present in both normal and hyperoxic lung. To test whether the fall in PTHrP was related to cell proliferation, we instilled PTHrP into lungs on the fourth day of hyperoxia. Eight hours later, BrdU labeling in alveolar corner cells was 3.2 +/- 0.4 cells/high-power field in hyperoxic PBS-instilled rats compared with 0.5 +/- 0.3 cells/high-power field in PTHrP-instilled rats (P < 0. 01). Thus PTHrP expression changes in response to lung injury due to 85% oxygen and may regulate cell proliferation.  相似文献   

7.
J D Dunn  D Doray 《Life sciences》1984,35(15):1585-1591
Althesin in doses which produced anesthesia (4 and 6 ml kg-1, i.p.) produced biphasic changes in plasma corticosterone levels. Plasma corticosterone showed an increase (p less than 0.05) due to the stress of injection but returned to basal levels by 30 min. Subsequent to the anesthetic effect (approximately 30 min) corticosterone levels increased markedly (p less than 0.01). Althesin's effectiveness showed time of day effects, i.e., Althesin was more effective in the A.M. Rats given 6 ml kg-1 Althesin showed graded plasma corticosterone responses to stresses of varying intensity. Blood withdrawal and surgical stress evoked significant increases in plasma corticosterone but a 2-min holding stress had no effect on plasma corticosterone levels. Instrumented rats receiving supplemental injections (i.p.) presented patterns of plasma corticosterone which were different from those receiving supplemental infusions (i.a.). Whereas plasma corticosterone levels of rats receiving the continuous infusion of Althesin remained relatively constant, corticosterone levels of those which received supplemental injections tended to increase. Collectively, these data suggest that Althesins usefulness as an experimental anesthetic is limited to those studies which are not compromised by stress-induced pituitary-adrenal activity.  相似文献   

8.
Omega-3 fatty acids are important for several neuronal and cognitive functions. Altered omega-3 fatty acid status has been implicated in reduced resistance to stress and mood disorders. We therefore evaluated the effects of repeated restraint stress (6 h/day for 21 days) on adult rats fed omega-3 deficient, control or omega-3 enriched diets from conception. We measured body weight, plasma corticosterone and hippocampus glucocorticoid receptors and correlated these data with emotional and depression-like behaviour assessed by their open-field (OF) activity, anxiety in the elevated-plus maze (EPM), the sucrose preference test and the startle response. We also determined their plasma and brain membrane lipid profiles by gas chromatography. Repeated restraint stress caused rats fed a control diet to lose weight. Their plasma corticosterone increased and they showed moderate behavioural changes, with increases only in grooming (OF test) and entries into the open arms (EPM). Rats fed the omega-3 enriched diet had a lower stress-induced weight loss and plasma corticosterone peak, and reduced grooming. Rats chronically lacking omega-3 fatty acid exhibited an increased startle response, a stress-induced decrease in locomotor activity and exaggerated grooming. The brain omega-3 fatty acids increased as the dietary omega-3 fatty acids increased; diets containing preformed long-chain omega-3 fatty acid were better than diets containing the precursor alpha-linolenic acid. However, the restraint stress reduced the amounts of omega-3 incorporated. These data showed that the response to chronic restraint stress was modulated by the omega-3 fatty acid supply, a dietary deficiency was deleterious while enrichment protecting against stress.  相似文献   

9.
The plasma arginine vasopressin (AVP), ACTH, and corticosterone levels and the hypothalamic corticotropin-releasing hormone (CRH) content were measured after oral administration of 1 ml of 75% ethanol to rats, a model known to induce acute gastric erosions and stress. Elevated plasma AVP, ACTH, and corticosterone levels were detected 1 h after ethanol administration. Treatment with the vasopressin pressor (V(1)) receptor antagonist [d(CH(2))(5)Tyr(Me)-AVP] before ethanol administration significantly reduced the ACTH and corticosterone level increases. A higher hypothalamic CRH content was measured at 30 or 60 min after ethanol administration. V(1) receptor antagonist injection, 5 min before ethanol administration, inhibited the rise in hypothalamic CRH content. The protein synthesis blocker cycloheximide prevented the hypothalamic CRH content elevation after stress. The AVP-, CRH-, and AVP + CRH-induced in vitro ACTH release in normal anterior pituitary tissue cultures was also prevented by pretreatment with the V(1) receptor antagonist. The results support the hypothesis that stress-induced AVP may not only act directly on the ACTH producing anterior pituitary cells but also indirectly at the hypothalamic level via the synthesis and release of CRH.  相似文献   

10.
The dentate gyrus (DG) of the hippocampus is one of a few regions in the adult mammalian brain characterized by ongoing neurogenesis. Proliferation of neural precursors in the granule cell layer of the DG has been identified in pentylenetetrazol (PTZ) kindling epilepsy model, however, little is known about the molecular mechanism. We previously reported that the expression pattern of bone morphogenetic proteins-4 (BMP4) mRNA in the hippocampus was developmentally regulated and mainly localized in the DG of the adult. To explore the role of BMP4 in epileptic activity, we detected BMP4 expression in the DG during PTZ kindling process and explore its correlation with cell proliferation combined with bromodeoxyuridine (BrdU) labeling technique. We found that dynamic changes in BMP4 level and BrdU labeled cells dependent on the kindling stage of PTZ induced seizure-prone state. The number of BMP4 mRNA-positive cells and BrdU labeled cells reached the top level 1 day after PTZ kindled, then declined to base level 2 months later. Furthermore, there was a significant correlation between increased BMP4 mRNA expression and increased number of BrdU labeled cells. After effectively blocked expression of BMP4 with antisense oligodeoxynucleotides(ASODN), the BrdU labeled cells in the dentate gyrus subgranular zone(DG-SGZ) and hilus were significantly decreased 16d after the first PTZ injection and 1, 3, 7, 14d after kindled respectively. These findings suggest that increased proliferation in the DG of the hippocampus resulted from kindling epilepsy elicited by PTZ maybe be modulated by BMP4 over-expression.  相似文献   

11.
Stress can be defined as physical and psychological modifications that disrupt the homeostasis and the balance of organisms. Stress is known as one of the most important reasons of several diseases. In the present study, the anti-stress effect of betaine was evaluated with reference to its antioxidant property. Wistar albino rats were divided into four groups such as control, betaine, restraint stress (6 h/day for 30 days), and betaine + restraint stress. The oxidative damage was assessed by measuring the protein and corticosterone in plasma, lipid peroxidation, non-enzymic (reduced glutathione), and enzymic antioxidants (glutathione peroxidase, glutathione-S-transferase, catalase, and superoxide dismutase) in the lymphoid organs of thymus and spleen. Followed by the induction of restraint stress, the non-enzymic and enzymic antioxidants were significantly decreased with concomitant increase observed in the levels of corticosterone and lipid peroxidation. Oral pretreatment with betaine (250 mg/kg body weight daily for a period of 30 days) significantly (P < 0.001) prevented the restraint stress-induced alterations in the levels of protein and corticosterone in plasma of experimental groups of rats. It counteracted the restraint stress-induced lipid peroxidation and maintained the antioxidant defense system in the lymphoid tissues at near normal. The findings suggest that betaine possesses significant anti-stress activity, which may be due to its antioxidant property.  相似文献   

12.
Male Wistar rats at 2 and 12 months of age were sacrificed before, immediately following, and at 6 and 24 hours after a 3-hour immobilization stress period. Levels of noradrenaline (NA) and its major metabolite, 3-methoxy-4-hydroxyphenylethyleneglycol sulfate (MHPG-SO4), in eight brain regions and plasma corticosterone levels were fluorometrically determined. Immobilization stress caused significant increases of MHPG-SO4 levels in all brain regions examined and significant elevations in plasma corticosterone levels in both 2 and 12 month old rats. In 2 month old rats, the MHPG-SO4 levels in all brain regions returned to control levels within 6 hours after release from the stress. However, in 12 month old rats, the metabolite levels in the hypothalamus, amygdala, pons plus medulla oblongata (pons+med. obl .) and midbrain still remained at significantly increased levels at 6 and 24 hours after the stress. Moreover, in the amygdala of older rats, stress-induced decreases in NA levels persisted even 6 hours after stress. Plasma corticosterone levels also showed significant elevations at 6 and 24 hours after the stress only in 12 month old rats. These results suggest that brain NA metabolism during recovery periods from an acute exposure to a stressful situation is altered by the aging process in such a manner that NA neurons in the hypothalamus, amygdala, pons+med. obl . and midbrain in older rats remain activated by stressful stimuli for prolonged periods of time following release from stress.  相似文献   

13.
Fifteen percent of women worldwide develop postpartum depression; however, many women also suffer from mood disorders during pregnancy. Our knowledge of how these stress-related disorders affect the neurobiology of the mother is very limited. In animal models, depressive-like behavior is often associated with repeated stress and alterations in adult neurogenesis in the hippocampus. However, research has yet to investigate the effect of stress on affective-like behavior and hippocampal neurogenesis in the pregnant female. The aim of the present study was to determine whether stress during gestation alters affective-like behaviors, corticosterone levels, and hippocampal cell proliferation and new cell survival in the pregnant female, and whether these effects differ from virgin females. Age-matched pregnant and virgin Sprague-Dawley rats were divided into two conditions: 1) stress and 2) control. Females in the stress condition were repeatedly restrained during gestation, and at matched time points in virgin females. Affective-like behaviors were assessed at the end of gestation, and at matched time points in virgin females. Results demonstrate that regardless of repeated restraint stress, pregnant females have increased anxiety-like behavior, decreased depressive-like behavior, and lower corticosterone levels, compared to non-stressed, and at times stressed, virgin females. In addition, stressed virgin females have lower levels of depressive-like behavior compared to control virgin females. Interestingly, hippocampal cell proliferation was increased in both virgin and pregnant females after stress. Understanding how stress affects the female during different reproductive states will aid in improving the health and well being of the mother and child.  相似文献   

14.
Social isolation of rodents during development is thought to be a relevant model of early-life chronic stress. We investigated the effects of early-life social isolation on later adult fear and anxiety behavior, and on corticosterone stress responses, in male rats. On postnatal day 21, male rats were either housed in isolation or in groups of 3 for a 3 week period, after which, all rats were group-reared for an additional 2 weeks. After the 5-week treatment, adult rats were examined for conditioned fear, open field anxiety-like behavior, social interaction behavior and corticosterone responses to restraint stress. Isolates exhibited increased anxiety-like behaviors in a brightly-lit open field during the first 10 min of the test period compared to group-reared rats. Isolation-reared rats also showed increased fear behavior and reduced social contact in a social interaction test, and a transient increase in fear behavior to a conditioned stimulus that predicted foot-shock. Isolation-reared rats showed similar restraint-induced increases in plasma corticosterone as group-reared controls, but plasma corticosterone levels 2 h after restraint were significantly lower than pre-stress levels in isolates. Overall, this study shows that isolation restricted to an early part of development increases anxiety-like and fear behaviors in adulthood, and also results in depressed levels of plasma corticosterone following restraint stress.  相似文献   

15.
Neurogenesis in the dentate gyrus occurs throughout life. We observed regional differences in neurogenesis in the dentate gyrus of adult rats following transient forebrain ischemia. Nine days after ischemic-reperfusion or sham manipulation, rats were given 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdU), a marker for dividing cells. They were killed 1 or 28 days later to distinguish between cell proliferation and survival. Neurogenesis was evaluated by BrdU incorporation as well by identifying neuronal and glial markers in six regions of the dentate gyrus: rostral, middle and caudal along the rostrocaudal axis, each further divided into suprapyramidal and infrapyramidal blade subregions. In control rats BrdU-positive cells in the rostral subregions were significantly lower in the suprapyramidal than in the infrapyramidal blades at both 1 and 28 days after BrdU injection. One day after injection, BrdU-positive cells had increased more in five of the subregions in the ischemic rats than in the controls, the exception being the suprapyramidal blade of the rostral subregion. At 28 days after BrdU injection, numbers of BrdU-positive cells were higher in four subregions in the ischemic group, the exceptions being the rostral suprapyramidal and middle infrapyramidal blades. At 28 days after BrdU injection, the percentages of BrdU positive cells that expressed a neuronal marker (NeuN) were the same in the dentate granule cell layers of ischemic and control rats. Our data thus demonstrate regional differences in enhanced neurogenesis in the dentate gyrus of adult rats after transient forebrain ischemia.  相似文献   

16.
Female Long-Evans hooded rats with 5-day estrus cycles were subjected to 4 hr of continuous restraint for either 1 or 20 days. On the last day of the stress regimen, plasma and adrenal corticosterone concentrations were determined and classified according to the stage of the estrous cycle. The results indicated that acute stress produced greater plasma corticosterone concentrations than controls only during estrus, whereas in response to chronic stress significant stress-induced increments were observed during estrus and proestrus. The results suggest that the estrous cycle influences the magnitude of the stress-induced increments for both acute and chronic stress. In addition, the pituitary-adrenal system did not show habituation to repeated administration of this stress, but sensitization was observed during proestrus.  相似文献   

17.
The circadian rhythm of hepatic cell proliferation in rats appears on the 20th day of life, when the hypothalamo-adrenal axis is mature enough for circadian activity to occur. From the 20th day to the 30th day of life, the mitotic rhythm is progressively induced by a reduction in nocturnal values, while diurnal rhythms remain unchanged. Mitotic peaks emerge at 10.00 hours. A labelling index wave occurs 8 hr before the corresponding mitotic wave, with a peak at 02.00 hours and a minimum in the evening, coincidental with the acrophase of plasma corticosterone level (activity phase). Labelled mitoses curves and metaphase accumulation after colchicine injection show that the duration of the S, G2 and M phases remain approximately constant and that the circadian variation is due to a variation in the rate of cells that enter these successive phases. During the synchronization period (from day 20 to 30), the growth fraction decreases progressively. Adrenalectomy at this time is followed by a higher cell proliferation and all rhythms disappear after 2 days. Corticosterone injected before the triggering of the rhythmic activity in 17-day-old rats immediately reduces the labelling index, while the mitotic index is decreased 10 hr later; this delay is equal to the S + G2 duration. The results are discussed. They favour the hypothesis that the circadian variation of corticosterone is responsible for the induction of a circadian variation in developmental cell proliferation by inhibition of the G1-S transition when it is higher in the evening.  相似文献   

18.
Abstract. From the 20th day to the 30th day of life, the mitotic rhythm is progressively induced by a reduction in nocturnal values, while diurnal rhythms remain unchanged. Mitotic peaks emerge at 10.00 hours.
A labelling index wave occurs 8 hr before the corresponding mitotic wave, with a peak at 02.00 hours and a minimum in the evening, coincidental with the acrophase of plasma corticosterone level (activity phase).
Labelled mitoses curves and metaphase accumulation after colchicin injection show that the duration of the S, G2 and M phases remain approximately constant and that the circadian variation is due to a variation in the rate of cells that enter these successive phases. During the synchronization period (from day 20 to 30), the growth fraction decreases progressively. Adrenalectomy at this time is followed by a higher cell proliferation and all rhythms disappear after 2 days.
Corticosterone injected before the triggering of the rhythmic activity in 17-day-old rats immediately reduces the labelling index, while the mitotic index is decreased 10 hr later; this delay is equal to the S + G2 duration.
The results are discussed. They favour the hypothesis that the circadian variation of corticosterone is responsible for the induction of a circadian variation in developmental cell proliferation by inhibition of the G1-S transition when it is higher in the evening.
The circadian rhythm of hepatic cell proliferation in rats appears on the 20th day of life, when the hypothalamo-adrenal axis is mature enough for circadian activity to occur.  相似文献   

19.
Functional activity of hypothalamic-pituitary-adrenocortical axis has been studied under control and restraint stress conditions in rats with inherited stress-sensitive arterial hypertension (ISIAH strain) and in normotensive WAG (Wistar Albino Glaxo) strain. The levels of hypothalamic CRH-mRNA (in control and 2 hrs stress), pituitary and plasma ACTH and plasma corticosterone (in control and after 5, 15 or 30 min of restraint stress), were evaluated. Hypothalamic CRH-mRNA level was found to be approximately the same in the control rats of both strains. In control conditions, the pituitary and plasma ACTH content in ISIAH rats was significantly lower whereas the corticosterone level in the plasma differed from each other in both strain. The restraint stress resulted in a statistically significant increase of the CRH-mRNA in ISIAH rats and not in the WAG rats. Moreover, in spite of the lower ACTH level in stressed ISIAH rats, the corticosterone blood plasma concentration in hypetensive rats was significantly higher. The data obtained confirm the idea that the stress-dependent hypertension might be related to an enhanced sensitivity of the main endocrine links involved in the stress response organization.  相似文献   

20.
Purkinje cells (PCs) are the projection neurons of the cerebellar cortex. They receive two major types of synaptic input - that from the inferior olive via climbing fibres and that from the granule neurons via parallel fibres. The precursors of granule neurons proliferate at the surface of the developing cerebellumin the external granule layer (EGL), which persists until postnatal day 14 in the mouse [1]. PCs are thought to provide trophic support for granule neurons [2][3] and to stimulate the proliferation of cells in the EGL [4], but the signalling molecules that mediate these cell-cell interactions have not been identified. I show here that PCs in the developing mouse cerebellum express the gene encoding the morphogen Sonic hedgehog (Shh) and that dividing cells in the EGL express Patched (Ptc) and Gli1, two target genes of which expression is upregulated in response to Hedgehog signalling (see [5] and references therein). Treatment of developing mice with hybridoma cells that secrete neutralizing anti-Shh antibodies [6] disrupted cerebellar development and reduced bromodeoxyuridine (BrdU) incorporation in the EGL of neonatal mice, whereas treatment of dissociated granule neuron cultures with recombinant Shh stimulated BrdU incorporation. These results suggest that PC-derived Shh normally promotes the proliferation of granule neuron precursors in the EGL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号