首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水稻所在的稻属(Oryza)共有24个左右的物种。由于野生稻含有大量的优良农艺性状基因, 在水稻遗传学研究中日益受到重视。随着国际稻属基因组计划的开展, 越来越多的稻属基因组序列被测定, 稻属成为进行比较、功能和进化基因组学研究的模式系统。近期开展的一系列研究对稻属不同基因组区段以及全基因组序列的比较分析, 揭示了稻属在基因组大小、基因移动、多倍体进化、常染色质到异染色质的转化以及着丝粒区域的进化等方面的分子机制。转座子的活性以及转座子因非均等重组或非法重组而造成的删除, 对稻属基因组的扩增和收缩具有重要作用。DNA双链断裂修复介导的基因移动, 特别是非同源末端连接, 是稻属基因组非共线性基因形成的主要来源。稻属基因组从常染色质到异染色质的转换过程, 伴随着转座子的大量扩增、基因片段的区段性和串联重复以及从基因组其他位置不断捕获异染色质基因。对稻属不同物种间基因拷贝数、特异基因和重要农艺性状基因的进化等研究, 可揭示稻属不同物种间表型和适应性差异的分子基础, 将加速水稻的育种和改良。  相似文献   

2.
3.
The complete nucleotide sequence of the mt (mitochondrial) and cp (chloroplast) genomes of the unicellular green alga Ostreococcus tauri has been determined. The mt genome assembles as a circle of 44,237 bp and contains 65 genes. With an overall average length of only 42 bp for the intergenic regions, this is the most gene-dense mt genome of all Chlorophyta. Furthermore, it is characterized by a unique segmental duplication, encompassing 22 genes and covering 44% of the genome. Such a duplication has not been observed before in green algae, although it is also present in the mt genomes of higher plants. The quadripartite cp genome forms a circle of 71,666 bp, containing 86 genes divided over a larger and a smaller single-copy region, separated by 2 inverted repeat sequences. Based on genome size and number of genes, the Ostreococcus cp genome is the smallest known among the green algae. Phylogenetic analyses based on a concatenated alignment of cp, mt, and nuclear genes confirm the position of O. tauri within the Prasinophyceae, an early branch of the Chlorophyta.  相似文献   

4.
5.
Comparative genome structure analysis allows us to identify novel genes, repetitive sequences and gene duplications. To explore lineage-specific genomic changes of the molluscs that is good model for development of nervous system in invertebrate, we conducted comparative genome structure analyses of three molluscs, pygmy squid, nautilus and scallops using partial genome shotgun sequencing. Most effective elements on the genome structural changes are repetitive elements (REs) causing expansion of genome size and whole genome duplication producing large amount of novel functional genes. Therefore, we investigated variation and proportion of REs and whole genome duplication. We, first, identified variations of REs in the three molluscan genomes by homology-based and de novo RE detection. Proportion of REs were 9.2%, 4.0%, and 3.8% in the pygmy squid, nautilus and scallop, respectively. We, then, estimated genome size of the species as 2.1, 4.2 and 1.8 Gb, respectively, with 2× coverage frequency and DNA sequencing theory. We also performed a gene duplication assay based on coding genes, and found that large-scale duplication events occurred after divergence from the limpet Lottia, an out-group of the three molluscan species. Comparison of all the results suggested that RE expansion did not relate to the increase in genome size of nautilus. Despite close relationships to nautilus, the squid has the largest portion of REs and smaller genome size than nautilus. We also identified lineage-specific RE and gene-family expansions, possibly relate to acquisition of the most complicated eye and brain systems in the three species.  相似文献   

6.
Differential genome duplication and fish diversity   总被引:3,自引:0,他引:3  
The duplication of genes and entire genomes arebelieved to be important mechanisms underlyingmorphological variation and functionalinnovation in the evolution of life andespecially for the broad diversity observed inthe speciation of fishes. How did these fishspecies and their genetic diversity arise? Theoccurrence of three rounds of genomeduplication during vertebrate evolution mightexplain why many gene families are typicallyabout half the size in land vertebrates as theyare in fishes. However, mechanisms of geneticdiversity in fish lineages need to be furtherexplained. Here we propose that differentialgenome duplication of from two to six roundsoccurred in different fish lines, offering newopportunities during the radiation of fishlineages. This model provides a fundamentalbasis for the understanding of theirspeciation, diversity and evolution.  相似文献   

7.
To explore the mitochondrial genes of the Cruciferae family, the mitochondrial genome of Raphanus sativus (sat) was sequenced and annotated. The circular mitochondrial genome of sat is 239,723 bp and includes 33 protein-coding genes, three rRNA genes and 17 tRNA genes. The mitochondrial genome also contains a pair of large repeat sequences 5.9 kb in length, which may mediate genome reorga-nization into two sub-genomic circles, with predicted sizes of 124.8 kb and 115.0 kb, respectively. Furthermore, gene evolution of mitochondrial genomes within the Cruciferae family was analyzed using sat mitochondrial type (mitotype), together with six other re-ported mitotypes. The cruciferous mitochondrial genomes have maintained almost the same set of functional genes. Compared with Cycas taitungensis (a representative gymnosperm), the mitochondrial genomes of the Cruciferae have lost nine protein-coding genes and seven mitochondrial-like tRNA genes, but acquired six chloroplast-like tRNAs. Among the Cruciferae, to maintain the same set of genes that are necessary for mitochondrial function, the exons of the genes have changed at the lowest rates, as indicated by the numbers of single nucleotide polymorphisms. The open reading frames (ORFs) of unknown function in the cruciferous genomes are not conserved. Evolutionary events, such as mutations, genome reorganizations and sequence insertions or deletions (indels), have resulted in the non- conserved ORFs in the cruciferous mitochondrial genomes, which is becoming significantly different among mitotypes. This work represents the first phylogenic explanation of the evolution of genes of known function in the Cruciferae family. It revealed significant variation in ORFs and the causes of such variation.  相似文献   

8.
昆虫基因组及其大小   总被引:5,自引:0,他引:5  
薛建  程家安  张传溪 《昆虫学报》2009,52(8):901-906
昆虫基因组大小是由于基因组各种重复序列在扩增、缺失和分化过程中所致的数量差异造成的。这些差异使得昆虫不同类群间、种间和同种的不同种群间表现出基因组大小的不同。目前有59种昆虫已经列入基因组测序计划, 其中6种昆虫(黑腹果蝇Drosophila melanogaster、冈比亚按蚊Anopheles gambiae、家蚕Bombyx mori、意大利蜜蜂Apis mellifera、埃及伊蚊Aedes aegypti和赤拟谷盗Tribolium castaneum)的全基因组序列已经报道。有725种昆虫的基因组大小得到了估计, 大小在0.09~16.93 pg (88~16 558 Mb)之间。本文还介绍了昆虫基因组大小的估计方法, 讨论了昆虫基因组大小的变化及其意义。  相似文献   

9.
Bread wheat (Triticum aestivum) is one of the most important crops worldwide. However, because of its large, hexaploid, highly repetitive genome it is a challenge to develop efficient means for molecular analysis and genetic improvement in wheat. To better understand the composition and molecular evolution of the hexaploid wheat homoeologous genomes and to evaluate the potential of BAC-end sequences (BES) for marker development, we have followed a chromosome-specific strategy and generated 11 Mb of random BES from chromosome 3B, the largest chromosome of bread wheat. The sequence consisted of about 86% of repetitive elements, 1.2% of coding regions, and 13% remained unknown. With 1.2% of the sequence length corresponding to coding sequences, 6000 genes were estimated for chromosome 3B. New repetitive sequences were identified, including a Triticineae-specific tandem repeat (Fat) that represents 0.6% of the B-genome and has been differentially amplified in the homoeologous genomes before polyploidization. About 10% of the BES contained junctions between nested transposable elements that were used to develop chromosome-specific markers for physical and genetic mapping. Finally, sequence comparison with 2.9 Mb of random sequences from the D-genome of Aegilops tauschii suggested that the larger size of the B-genome is due to a higher content in repetitive elements. It also indicated which families of transposable elements are mostly responsible for differential expansion of the homoeologous wheat genomes during evolution. Our data demonstrate that BAC-end sequencing from flow-sorted chromosomes is a powerful tool for analysing the structure and evolution of polyploid and highly repetitive genomes.  相似文献   

10.
Phytoplasmas are cell wall-less prokaryotes living as obligate parasites and pathogens of plants and insects, making them attractive subjects for studies to gain a greater understanding of transkingdom parasitism and pathogenicity. During a study of two phytoplasma genomes, we obtained evidence for previously unreported clustering of genes, pseudogenes, mobile genetic elements, intergenic repeat units, and repetitive extragenic palindromes that occur in multiple, homologous clusters in some phytoplasma genomes. The clusters represent previously unrecognized mosaics, possibly assembled through multiple events of targeted mobile element attack, duplication, recombination, and rearrangement. Multiple clusters could conceivably afford potential for genome reduction through homologous recombination. Differences in the sizes and multiplicity of such clusters possibly account for some of the previously reported but unexplained variations in genome size among closely related phytoplasma strains.  相似文献   

11.
The genomes of grasses are very different in terms of size, ploidy level and chromosome number. Despite these significant differences, it was found by comparative mapping that the linear order (colinearity) of genetic markers and genes is very well conserved between different grass genomes. The potential of such conservation has been exploited in several directions, e.g. in defining rice as a model genome for grasses and in designing better strategies for positional cloning in large genomes. Recently, the development of large insert libraries in species such as maize, rice, barley and diploid wheat has allowed the study of large stretches of DNA sequence and has provided insight into gene organization in grasses. It was found that genes are not distributed randomly along the chromosomes and that there are clusters of high gene density in species with large genomes. Comparative analysis performed at the DNA sequence level has demonstrated that colinearity between the grass genomes is retained at the molecular level (microcolinearity) in most cases. However, detailed analysis has also revealed a number of exceptions to microcolinearity, which have given insight into mechanisms that are involved in grass-genome evolution. In some cases, the use of rice as a model to support gene isolation from other grass genomes will be complicated by local rearrangements. In this Botanical Briefing, we present recent progress and future prospects of comparative genomics in grasses.  相似文献   

12.
Genomic data are important for understanding the origin and evolution of traits. Under the context of rapidly developing of sequencing technologies and more widely available genome sequences, researchers are able to study evolutionary mechanisms of traits via comparative genomic methods. Compared with other vertebrates, bird genomes are relatively small and exhibit conserved synteny with few repetitive elements, which makes them suitable for evolutionary studies. Increasing genomic progress has been reported on the evolution of powered flight, body size variation, beak morphology, plumage colouration, high-elevation colonization, migration, and vocalization. By summarizing previous studies, we demonstrate the genetic bases of trait evolution, highlighting the roles of small-scale sequence variation, genomic structural variation, and changes in gene interaction networks. We suggest that future studies should focus on improving the quality of reference genomes, exploring the evolution of regulatory elements and networks, and combining genomic data with morphological, ecological, behavioural, and developmental biology data.  相似文献   

13.
In plant species with large genomes such as wheat or barley, genome organization at the level of DNA sequence is largely unknown. The largest sequences that are publicly accessible so far from Triticeae genomes are two 60 kb and 66 kb intervals from barley. Here, we report on the analysis of a 211 kb contiguous DNA sequence from diploid wheat (Triticum monococcum L.). Five putative genes were identified, two of which show similarity to disease resistance genes. Three of the five genes are clustered in a 31 kb gene-enriched island while the two others are separated from the cluster and from each other by large stretches of repetitive DNA. About 70% of the contig is comprised of several classes of transposable elements. Ten different types of retrotransposons were identified, most of them forming a pattern of nested insertions similar to those found in maize and barley. Evidence was found for major deletion, insertion and duplication events within the analysed region, suggesting multiple mechanisms of genome evolution in addition to retrotransposon amplification. Seven types of foldback transposons, an element class previously not described for wheat genomes, were characterized. One such element was found to be closely associated with genes in several Triticeae species and may therefore be of use for the identification of gene-rich regions in these species.  相似文献   

14.
Transposable elements and the evolution of genome size in eukaryotes   总被引:32,自引:2,他引:30  
Kidwell MG 《Genetica》2002,115(1):49-63
It is generally accepted that the wide variation in genome size observed among eukaryotic species is more closely correlated with the amount of repetitive DNA than with the number of coding genes. Major types of repetitive DNA include transposable elements, satellite DNAs, simple sequences and tandem repeats, but reliable estimates of the relative contributions of these various types to total genome size have been hard to obtain. With the advent of genome sequencing, such information is starting to become available, but no firm conclusions can yet be made from the limited data currently available. Here, the ways in which transposable elements contribute both directly and indirectly to genome size variation are explored. Limited evidence is provided to support the existence of an approximately linear relationship between total transposable element DNA and genome size. Copy numbers per family are low and globally constrained in small genomes, but vary widely in large genomes. Thus, the partial release of transposable element copy number constraints appears to be a major characteristic of large genomes.  相似文献   

15.
Asymmetric compositional and mutation bias between the two strands occurs in mitochondrial genomes, and an asymmetric mechanism of mtDNA replication is a potential source of this bias. Some evidence indicates that during replication the heavy strand is subject to a gradient of time spent in a single-stranded state (D ssH) and a gradient of mutational damage. The nucleotide composition bias among genes varies with D ssH. Consequently, partial genome duplications (PGD) will alter the skew for genes located downstream of the duplication, relatively to nascent light strand synthesis, and in the same way, gene rearrangements (GRr) will affect genes by changing their skews. We examined cases where there had been PGD or GRr and determined whether this left a trace in the form of unusual patterns of base composition. We compared the skew of genes differently located on the mtDNA genome of previously published whole mtDNA genomes from amphibians, a group that shows considerable levels of both GRr and PGD. After observing a significant correlation between AT and GC skew with D ssH at fourfold redundant sites, we ran our analysis and detected 31.3% of the species with GRr and/or PGD. By comparing the nucleotide composition at fourfold redundant sites in normal and “abnormal” species, we found that A/C variation occurs and is associated with GRr/PGD. These results show that by analyzing the nucleotide skews of only three genes, it may be possible to predict some mitochondrial GRr and/or PGD without knowing the complete mtDNA genome sequence. [Reviewing Editor: Dr. David Pollock]  相似文献   

16.
The complete genomic sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7 which optimally grows at 80 degrees C, at low pH, and under aerobic conditions, has been determined by the whole genome shotgun method with slight modifications. The genomic size was 2,694,756 bp long and the G + C content was 32.8%. The following RNA-coding genes were identified: a single 16S-23S rRNA cluster, one 5S rRNA gene and 46 tRNA genes (including 24 intron-containing tRNA genes). The repetitive sequences identified were SR-type repetitive sequences, long dispersed-type repetitive sequences and Tn-like repetitive elements. The genome contained 2826 potential protein-coding regions (open reading frames, ORFs). By similarity search against public databases, 911 (32.2%) ORFs were related to functional assigned genes, 921 (32.6%) were related to conserved ORFs of unknown function, 145 (5.1%) contained some motifs, and remaining 849 (30.0%) did not show any significant similarity to the registered sequences. The ORFs with functional assignments included the candidate genes involved in sulfide metabolism, the TCA cycle and the respiratory chain. Sequence comparison provided evidence suggesting the integration of plasmid, rearrangement of genomic structure, and duplication of genomic regions that may be responsible for the larger genomic size of the S. tokodaii strain7 genome. The genome contained eukaryote-type genes which were not identified in other archaea and lacked the CCA sequence in the tRNA genes. The result suggests that this strain is closer to eukaryotes among the archaea strains so far sequenced. The data presented in this paper are also available on the internet homepage (http://www.bio.nite.go.jp/E-home/genome_list-e.html/).  相似文献   

17.
Prevotella intermedia is a pathogenic bacterium involved in periodontal diseases. Here, we present the complete genome sequence of a clinical strain, OMA14, of this bacterium along with the results of comparative genome analysis with strain 17 of the same species whose genome has also been sequenced, but not fully analysed yet. The genomes of both strains consist of two circular chromosomes: the larger chromosomes are similar in size and exhibit a high overall linearity of gene organizations, whereas the smaller chromosomes show a significant size variation and have undergone remarkable genome rearrangements. Unique features of the Pre. intermedia genomes are the presence of a remarkable number of essential genes on the second chromosomes and the abundance of conjugative and mobilizable transposons (CTns and MTns). The CTns/MTns are particularly abundant in the second chromosomes, involved in its extensive genome rearrangement, and have introduced a number of strain-specific genes into each strain. We also found a novel 188-bp repeat sequence that has been highly amplified in Pre. intermedia and are specifically distributed among the Pre. intermedia-related species. These findings expand our understanding of the genetic features of Pre. intermedia and the roles of CTns and MTns in the evolution of bacteria.  相似文献   

18.
何芳  姜爱兰  李神斌  吴运梅  王国秀 《昆虫学报》2009,52(10):1083-1089
为完善昆虫病原索科线虫线粒体基因组全序列数据库, 更系统地研究其基因组特征和系统演化规律, 进而为发挥该线虫生防潜力打下基础, 我们开展了中华卵索线虫Ovomermis sinensis线粒体全基因组的研究。该研究通过线粒体基因组滚环复制及酶切图谱, 揭示了中华卵索线虫线粒体基因组具有种内遗传多态性, 即群体中单体线虫具有独特的酶切条带, 且条带累加之和变化范围较大, 为16.5~24.5 kb。为进一步了解线粒体基因组多态性特征及产生的分子机制, 采用两步长PCR方法对2条代表性成虫线粒体基因组进行了测序及拼接, 得其全长分别为18 864和16 777 bp。对这2条序列的比对表明, 线粒体基因组中位于ND2和ND4之间的可变区域, 不仅基因排列顺序不同, 且存在ND3基因重复现象, 这是导致中华卵索线虫线粒体基因组呈现多态性的主要原因。通过对以上研究结果的分析及与GenBank中已有的6种索科线虫线粒体基因组序列进行比对, 概括出其线粒体基因组基本特点: ①线粒体基因排列顺序各不相同;②部分线虫线粒体基因存在重复现象, 且重复次数不同;③线粒体基因组大小存在很大差异。  相似文献   

19.
20.

Background

The recent determination of the complete nucleotide sequence of several Mycobacterium tuberculosis (MTB) genomes allows the use of comparative genomics as a tool for dissecting the nature and consequence of genetic variability within this species. The multiple alignment of the genomes of clinical strains (CDC1551, F11, Haarlem and C), along with the genomes of laboratory strains (H37Rv and H37Ra), provides new insights on the mechanisms of adaptation of this bacterium to the human host.

Findings

The genetic variation found in six M. tuberculosis strains does not involve significant genomic rearrangements. Most of the variation results from deletion and transposition events preferentially associated with insertion sequences and genes of the PE/PPE family but not with genes implicated in virulence. Using a Perl-based software islandsanalyser, which creates a representation of the genetic variation in the genome, we identified differences in the patterns of distribution and frequency of the polymorphisms across the genome. The identification of genes displaying strain-specific polymorphisms and the extrapolation of the number of strain-specific polymorphisms to an unlimited number of genomes indicates that the different strains contain a limited number of unique polymorphisms.

Conclusion

The comparison of multiple genomes demonstrates that the M. tuberculosis genome is currently undergoing an active process of gene decay, analogous to the adaptation process of obligate bacterial symbionts. This observation opens new perspectives into the evolution and the understanding of the pathogenesis of this bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号