首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of a temperature shift-up and various metabolic inhibitors on the protein synthesis of an endosymbiont isolated from the pea aphid were studied. The syntheses of at least three major polypeptides were stimulated transiently immediately after a temperature shift-up, and treatment with ethanol and heavy metals (Cd2+ and As2+). One of these proteins, the 63 kDa heat-shock protein (63-kDa HSP), was immunoprecipitated with antiserum raised against symbionin, which is selectively synthesized by the endosymbiont harbored by the aphid bacteriocytes. The 63 kDa heat-shock protein has a molecular mass of 800 kDa and is more acidic than symbionin. It was also shown that symbionin is subject to phosphorylation in vivo and in vitro after a temperature shift-up. It was thought likely that forms of environmental stress such as heat shock and metabolic inhibitors stimulate the synthesis of a phosphorylated form of symbionin. It was also suggested that the in vitro phosphorylation of symbionin is due to its own catalytic activity. Since symbionin is a homolog of the Escherichia coli groEL protein, a stress protein, it is likely that the endosymbiont suffers stress when harbored by the bacteriocytes and responds in a similar manner to environmental stress when outside these cells.  相似文献   

2.
An intracellular symbiont harbored by the aphid bacteriocyte, a specialized fat body cell, synthesizes in vivo substantially only one protein, symbionin, which is a member of the chaperonin-60 family of molecular chaperones. Nucleotide sequence determination of the symbionin region of the endosymbiont genome revealed that it contains the two-cistron operon sym. Just like the Escherichia coli groE operon, the sym operon was dually led by a heat shock and an ordinary promoter sequence. According to the nucleotide sequence, symbionin was 85.5% identical to GroEL of E. coli at the amino acid sequence level. SymS, another protein encoded in the sym operon, which is a member of chaperonin-10, was 79.6% identical to GroES. Complementation experiments with E. coli groE mutants showed that the chaperonin-10 and chaperonin-60 genes from the endosymbiont are expressed in E. coli and that they can function as molecular chaperones together with endogenous GroEL and GroES, respectively.  相似文献   

3.
Aphid endosymbionts in vivo in young hosts synthesized almost exclusively only one protein, symbionin. The synthesis of symbionin declined with age of the host and instead the endosymbiont began to express some of its own genes which were expressed in vitro but were repressed in vivo in young host. A prolonged treatment of young host with cycloheximide brought about a physiological state similar to that in old insect. Though in the very old insect symbionin was no longer produced by its endosymbiont, the host seemed to depend almost entirely upon the gene products of the endosymbiont.  相似文献   

4.
H Ishikawa  M Yamaji 《Bio Systems》1985,17(4):327-335
An aphid endosymbiont in vivo synthesizes symbionin almost exclusively which is not produced in vitro by the same symbiont. While symbionin produced by the endosymbiont of the pea aphid is an acidic protein with a molecular weight of 63,000, that by the symbiont of the kondo aphid, the closest relative to the former, is a distinct, less acidic, molecule. While the two endosymbionts in vivo in old insects synthesize about 11 protein species in common, they produce many different proteins when incubated extracellularly.  相似文献   

5.
《Insect Biochemistry》1986,16(2):299-306
Electron microscopic observations demonstrated that the male of the kondo aphid, A. kondoi harbors intracellular symbionts different in shape from those in the viviparous female. Two-dimensional gel electrophoresis indicated that the endosymbiont in the male is less active in synthesizing symbionin, an aphid endosymbiont-specific protein than that in the viviparous female. Symbionin was also found in the winter egg though it was much less in amount than proteins related to the yolk formation. In the fundatrix which hatches out of the fertilized winter egg, symbionin was the most abundant protein.  相似文献   

6.
《Insect Biochemistry》1990,20(4):429-436
Anti-symbionin antiserum was obtained by injecting symbionin purified from pea aphids into a rabbit. On immunoblotting, in addition to symbionin many smaller proteins cross-reacted with the antiserum suggesting that symbionin in the aphid tissue is prone to degradation. When estimated by immunoblotting with anti-symbionin antiserum, the symbionin content per unit wet weight of both symbiotic and aposymbiotic aphids was shown to decrease with age. Five distinct aphid species were shown to share a protein class related to symbionin in terms of molecular mass and immunogenicity. Immuno-histochemistry of aphid tissues with anti-symbionin antiserum indicated that symbionin is localized exclusively within the mycetocyte harboring the primary symbionts.  相似文献   

7.
《Insect Biochemistry》1985,15(2):155-163
Pea aphids, Acyrthosiphon pisum, injected with rifampicin gave birth to extremely undersized insects (RF-insects). RF-insects born later were significantly smaller in size than those born earlier by the same parents both at birth and 20 days later. RF-insects never produced progeny. Upon separation of the proteins from 20 days RF-insects, it was demonstrated that these insects neither contained nor synthesized symbionin, a protein synthesized by the endosymbiont of the aphid. Gel electrophoresis of RNA from RF-insects suggested that no ribosomal RNA species of the endosymbiont was present. Based on these results, it was concluded that RF-insects do not contain the endosymbiont.  相似文献   

8.
The homopteran sucking insect, Lipaphis erysimi (mustard aphid) causes severe damage to various crops. This pest not only affects plants by sucking on the phloem, but it also transmits single-stranded RNA luteoviruses while feeding, which cause disease and damage in the crop. The mannose-binding Allium sativum (garlic) leaf lectin has been found to be a potent control agent of L. erysimi. The lectin receptor protein isolated from brush border membrane vesicle of insect gut was purified to determine the mechanism of lectin binding to the gut. Purified receptor was identified as an endosymbiotic chaperonin, symbionin, using liquid chromatography-tandem mass spectrometry. Symbionin from endosymbionts of other aphid species have been reported to play a significant role in virus transmission by binding to the read-through domain of the viral coat protein. To understand the molecular interactions of the said lectin and this unique symbionin molecule, the model structures of both molecules were generated using the Modeller program. The interaction was confirmed through docking of the two molecules forming a complex. A surface accessibility test of these molecules demonstrated a significant reduction in the accessibility of the complex molecule compared with that of the free symbionin molecule. This reduction in surface accessibility may have an effect on other molecular interactive processes, including "symbionin virion recognition", which is essential for such symbionin-mediated virus transmission. Thus, garlic leaf lectin provides an important component of a crop management program by controlling, on one hand, aphid attack and on the other hand, symbionin-mediated luteovirus transmission.  相似文献   

9.
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.  相似文献   

10.
Many members of the suborder Heteroptera have symbiotic bacteria, which are usually found extracellularly in specific sacs or tubular outgrowths of the midgut or intracellularly in mycetomes. In this study, we describe the second molecular characterization of a symbiotic bacterium in a monophagous, seed-sucking stink bug of the family Lygaeidae (sensu stricto). Chilacis typhae possesses at the end of the first section of the midgut a structure which is composed of circularly arranged, strongly enlarged midgut epithelial cells. It is filled with an intracellular endosymbiont. This "mycetocytic belt" might represent an evolutionarily intermediate stage of the usual symbiotic structures found in stink bugs. Phylogenetic analysis based on the 16S rRNA and the groEL genes showed that the bacterium belongs to the Gammaproteobacteria, and it revealed a phylogenetic relationship with a secondary bacterial endosymbiont of Cimex lectularius and free-living plant pathogens such as Pectobacterium and Dickeya. The distribution and ultrastructure of the rod-shaped Chilacis endosymbiont were studied in adults and nymph stages using fluorescence in situ hybridization (FISH) and electron microscopy. The detection of symbionts at the anterior poles of developing eggs indicates that endosymbionts are transmitted vertically. A new genus and species name, "Candidatus Rohrkolberia cinguli," is proposed for this newly characterized clade of symbiotic bacteria.  相似文献   

11.
Cotton leaf curl virus (CLCuV) (Gemininiviridae: Begomovirus) is the causative agent of leaf curl disease in cotton plants (Gossypium hirsutum). CLCuV is exclusively transmitted by the whitefly species B. tabaci (Gennadius) (Hemiptera: Alerodidae). B. tabaci contains several biotypes which harbor dissimilar bacterial endo-symbiotic community. It is reported that these bacterial endosymbionts produce a 63 kDa chaperon GroEL protein which binds to geminivirus particles and protects them from rapid degradation in gut and haemolymph. In biotype B, GroEL protein of Hamiltonella has been shown to interact with Tomato yellow leaf curl virus (TYLCV). The present study was initiated to find out whether endosymbionts of B. tabaci are similarly involved in CLCuV transmission in Sriganganagar (Rajasthan), an area endemic with cotton leaf curl disease. Biotype and endosymbiont diversity of B. tabaci were identified using MtCO1 and 16S rDNA genes respectively. Analysis of our results indicated that the collected B. tabaci population belong to AsiaII genetic group and harbor the primary endosymbiont Portiera and the secondary endosymbiont Arsenophonus. The GroEL proteins of Portiera and Arsenophonus were purified and in-vitro interaction studies were carried out using pull down and co-immunoprecipitation assays. In-vivo interaction was confirmed using yeast two hybrid system. In both in-vitro and in-vivo studies, the GroEL protein of Arsenophonus was found to be interacting with the CLCuV coat protein. Further, we also localized the presence of Arsenophonus in the salivary glands and the midgut of B. tabaci besides the already reported bacteriocytes. These results suggest the involvement of Arsenophonus in the transmission of CLCuV in AsiaII genetic group of B. tabaci.  相似文献   

12.
In the present study, we characterized biologic and electrophysiologic consequences of A422T mutation in HERG K(+) channel and the role of pharmacologic or molecular chaperons by employing a heterogeneous expression system in HEK 293 cells. It was found that A422T mutation led to a marked decrease in whole-cell recording currents, and that a complexly glycosylated form protein band at 155 kDa was missing by Western blotting analysis compared to wild type (WT). And the mutant protein was mainly located in the cytoplasm as illustrated in immunocytochemical assay, indicating that the mutation underwent a trafficking defect. In addition, A422T mutation exerted remarkable dominant-negative suppression on WT, resulting in the alteration in the kinetic processes. Strikingly, trafficking-deficient A422T mutation was partially rescued by incubating the cells at a lower temperature, administration of pharmacologic chaperon, E4031 or overexpression of a chaperon molecule, Hsp90, but not Hsp70. In conclusion, missense A422T mutation in HERG K(+) channel results in its trafficking defect, which is rescurable by pharmacologic or molecular chaperones.  相似文献   

13.
Abiotic and biotic host-plant stress, such as desiccation and herbivory, may strongly affect sap-sucking insects such as aphids via changes in plant chemicals of insect nutritional or plant defensive value. Here, we examined (i) water deprivation and (ii) defoliation by the beetle Leptinotarsa decemlineata as stresses indirectly affecting the aphid Macrosiphum euphorbiae via its host plant Solanum tuberosum. For plant-induced stress, aphids were reared on healthy vs. continuously stressed potato for 14 days (no watering; defoliation maintained at approximately 40%). Aphid performance under stress was correlated with metabolic responses monitored by profiling of the aphid proteome. M. euphorbiae was strongly affected by water stress, as adult survival, total aphid number and biomass were reduced by 67%, 64%, and 79%, respectively. Aphids performed normally on defoliated potato, indicating that they were unaffected or able to compensate any stress induced by plant defoliation. Stressed aphid proteomes revealed 419-453 protein spots, including 27 that were modulated specifically or jointly under each kind of host-plant stress. Reduced aphid fitness on water-stressed plants mostly correlated with modulation of proteins involved in energy metabolism, apparently to conserve energy in order to prioritize survival. Despite normal performance, several aphid proteins that are known to be implicated in cell communication were modulated on defoliated plants, possibly suggesting modified aphid behaviour. The GroEL protein (or symbionin) of the endosymbiont Buchnera aphidicola was predominant under all conditions in M. euphorbiae. Its expression level was not significantly affected by aphid host-plant stresses, which is consistent with the high priority of symbiosis in stressed aphids.  相似文献   

14.
Thioredoxin reductase was unfolded in 2 M guanidine hydrochloride as revealed by fluorescence and CD spectroscopy. Spontaneous refolding of denatured species resulted in low recovery of 10% catalytic activity after 4 h incubation at 25 degrees C. Addition of groEL or protein disulfide isomerase to the renaturation buffer accelerated the rate of recovery of catalytic activity to a level of 35 and 15%, respectively. Fluorescence spectroscopy has been used to investigate the interaction of groEL and protein disulfide isomerase with denatured thioredoxin reductase tagged with a fluorescent probe. The fluorescence emitted by the denatured protein was quenched upon binding to either groEL or protein disulfide isomerase. It is suggested that encapsulation of the protein substrate by the chaperone plays an important role in the process of folding by facilitating the formation of correctly folded species.  相似文献   

15.
16.
Previous studies from our laboratory have shown that an allele of the heat shock protein GroEL (groEL411) is able to specifically suppress some of the physiological defects of the single-stranded DNA-binding protein mutation ssb-1. A search for additional alleles of the groE genes which may act as suppressors for ssb mutations has led to the identification of groEL46 as a specific suppressor of ssb-113. It has very little or no effect on ssb-1 or ssb-3. All of the physiological defects of ssb-113, including temperature-sensitive growth, temperature-sensitive DNA synthesis, sensitivity to UV irradiation, methyl methanesulfonate, and bleomycin, and reduced recombinational capacity, are restored to wild-type levels. The ssb-113 allele, however, is unable to restore sensitivity of groEL46 cells to phage lambda. The mechanism of suppression of ssb-113 by groEL46 appears to differ from that of ssb-1 by groEL411. The data suggest that GroEL may interact with single-stranded DNA-binding protein in more than one domain.  相似文献   

17.
以玉米蚜杨凌生物型为材料,设计特异性引物采用PCR的方法在国内首先克隆了一种玉米蚜体内参与传毒的共生菌groEL基因,序列测定结果表明:玉米蚜杨凌生物型共生菌groEL奏长为1647bp,编码548个氨基酸,登录Genebank,序列号为AF387863。构建了该基因的原核表达载体,用pBV221表达出63KDa的非融合目的蛋白,用pET-3a表达出69KDa的融合蛋白,二者均有较高的表达量。  相似文献   

18.
Molecular chaperones are a ubiquitous family of cellular proteins that mediate the correct folding of other target polypeptides. In our previous study, the recombinant anti-BNP scFv, which has promising applications for diagnostic, prognostic, and therapeutic monitoring of heart failure, was expressed in the cytoplasm of Escherichia coli. However, when the anti-BNP scFv was expressed, 73.4% of expressed antibodies formed insoluble inclusion bodies. In this study, molecular chaperones were coexpressed with anti-BNP scFv with the goal of improving the production of functional anti-BNP in the cytoplasm of E. coli. Five sets of molecular chaperones were assessed for their effects on the production of active anti-BNP scFv. These sets included the following: trigger factor (TF); groES/groEL; groES/groEL/TF; dnaK/dnaJ/grpE; groES/groEL/dnaK/dnaJ/grpE. Of these chaperones, the coexpression of anti-BNP scFv with the groES/groEL chaperones encoded in plasmid pGro7 exhibited the most efficient functional expression of anti-BNP scFv as an active form. Coexpressed with the groES/groEL chaperones, 64.9% of the total anti-BNP scFv was produced in soluble form, which is 2.4 times higher scFv than that of anti-BNP scFv expressed without molecular chaperones, and the relative binding activity was 1.5-fold higher. The optimal concentration of l-arabinose required for induction of the groES/groEL chaperone set was determined to be 1.0 mM and relative binding activity was 3.5 times higher compared with that of no induction with l-arabinose. In addition, soluble anti-BNP scFv was increased from 11.5 to 31.4 μg/ml with optimized inducer concentration (1.0 mM l-arabinose) for the coexpression of the groES/groEL chaperones. These results demonstrate that the functional expression of anti-BNP scFv can be improved by coexpression of molecular chaperones, as molecular chaperones can identify and help to refold improperly folded anti-BNP scFv.  相似文献   

19.
A native structure containing the major 60-kilodalton common antigen polypeptide (designated TpN60) was isolated from Treponema pallidum subsp. pallidum (Nichols strain) through a combination of differential centrifugation and sucrose density gradient sedimentation. Gel filtration chromatography indicated that this structure is a high-molecular-weight homo-oligomer of TpN60. Antisera to TpN60 reacted with the groEL polypeptide of Escherichia coli, as determined by immunoperoxidase staining of two-dimensional electroblots. Electron microscopy of the isolated complex revealed a ringlike structure with a diameter of approximately 16 nm which was very similar in appearance to the groEL protein. Comparison of the N-terminal amino acid sequence of TpN60 with the deduced sequences of the E. coli groEL protein, related chaperonin proteins from mycobacteria and Coxiella burnetti, the hsp60 protein of Saccharomyces cerevisiae, the wheat ribulose bisphosphate carboxylase-oxygenase-subunit-binding protein (alpha subunit), and the human P1 mitochondrial protein indicated sequence identity at 8 of 22 to 10 of 22 residues (36 to 45% identity). We conclude that the oligomer of TpN60 is homologous to the groEL protein and related chaperonins found in a wide variety of procaryotes and eucaryotes and thus may represent a heat shock protein involved in protein folding and assembly.  相似文献   

20.
The morphogenesis of lambda proheads is governed by the products of at least four bacteriophage-coded genes (B, C, E and Nu3) and two host-coded genes (groES (mopB) and groEL (mopA)). Earlier genetic experiments indicated that the phenotypes of some of the groES- mutations could be suppressed by mutations in the groEL gene, suggesting an interaction between the two groE proteins in vivo (Tilly, K., and Georgopoulos, C. P. (1982) J. Bacteriol. 149, 1082-1088). The Mr 15,000 groES protein was overproduced and purified to homogeneity by monitoring its presence after polyacrylamide gel electrophoresis. Both gel filtration on an AcA34 sizing column and glycerol gradient centrifugation indicate that the groES protein possesses an oligomeric structure of Mr 80,000. In agreement, electron microscopic pictures of the purified groES protein show that it possesses a symmetrical ring-like structure. The sequence of the first five amino acids and the overall composition of the purified protein match those predicted by the nucleotide sequence of the groES gene. The following results implicate a physical association between the groES and groEL proteins in vitro. The groES protein inhibits the weak ATPase activity of the groEL protein, with a maximal effect seen at a 1:1 molar ratio; the two proteins cosediment during glycerol gradient centrifugation in the presence of ATP and Mg2+; and the groES protein binds specifically to a groEL-affinity column. These results help explain why mutations in either of the groE genes exhibit similar phenotypes with respect to both lambda and bacterial growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号