首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Whether for conventional pretargeting, amplification pretargeting, or affinity enhancement pretargeting, it will be necessary to conjugate an antitumor antibody as the first injectate. This laboratory is investigating phosphorodiamidate morpholinos (MORFs) for pretargeting, and accordingly we are examining methods of attaching MORFs to antitumor antibodies that provide at least one group per molecule (gpm) without adversely influencing antibody properties. The aim of this investigation was to evaluate the commercial Hydralink for the conjugation of the anti-CEA MN14 antibody with an 18 mer amine-derivatized MORF. The conjugation was approached in both directions by first reacting MN14 with the NHS derivatives of 4-hydrozinonicotinate acetone hydrazone (SANH) or 4-formylbenzoate (SFB) and then combining with MORF that was previously reacted with SFB or SANH to yield MN14(SANH)-MORF and MN14(SFB)-MORF respectively. The storage stability, immunoreactive fraction, and the biodistribution in normal mice were compared for both conjugates. Thereafter, MN14(SANH)-MORF was used in a pretargeting study in tumored nude mice, and the results were compared to that obtained historically with MN14-MORF prepared by carbodiimide (EDC) coupling. Both new methods of conjugation provided between 1 and 2 gpm compared to 0.2 achieved previously by EDC. Furthermore, by repeat SE HPLC with and without CEA, both showed an unimpaired immunoreactive fraction. MN14(SANH)-MORF tolerated long-term storage best. More importantly, when labeled by hybridization with 99mTc-labeled complementary MORF (99mTc-cMORF), the biodistribution of MN14(SANH)-MORF was more favorable than that of MN14(SFB)-MORF in normal mice with lower liver (5.7 vs 9.4 %ID/g at 18 h) and spleen (3.5 vs 8.4 %ID/g) accumulations and higher blood levels (4.8 vs 3.4 %ID/g). Accordingly, only MN14(SANH)-MORF was used in a pretargeting study in tumored mice. When targeted with 99mTc-cMORF and at 2 days postinjection of antibody-MORF, the results obtained with 6 microg of antibody prepared in this way were essentially identical to that obtained previously with 30 microg of antibody prepared via EDC. Hydralink was used successfully to conjugate MORF to MN14 at higher gpm than that achieved earlier and without an obvious compromise of properties. Using MN14(SANH)-MORF, the influence of the higher gpm on pretargeting permitted lowering the dosages of MN14 administered and may permit administering higher levels of radioactivity in connection with therapy.  相似文献   

2.
While (188)Re has been used successfully in mice for tumor radiotherapy by MORF/cMORF pretargeting, previous radiolabeling of the amine-derivatized cMORF with (90)Y, a longer physical half-life nuclide, was not very successful. After developing a method involving a prepurification heating step during conjugation that increases labeling efficiency and label stability, the biodistribution of (90)Y-DOTA-Bn-SCN-cMORF ((90)Y-DOTA-cMORF) was measured in normal mice and in MORF-CC49 pretargeted mice that bear LS174T tumors. Absorbed radiation doses were then estimated and compared to those estimated for (188)Re. The pharmacokinetics of the (90)Y-DOTA-cMORF in normal mice and in the pretargeted nude mice was similar to that observed previously with (99m)Tc- and (188)Re-MAG(3)-cMORFs. While the (90)Y-DOTA-cMORF cleared rapidly from normal tissues, tumor clearance was very slow and tumor radioactivity accumulation was constant for at least 7 days such that the tumor/blood (T/B) ratio increased linearly from 6 to 25 over this period. Therefore, by extrapolation, normal tissue toxicities following administration of therapeutic doses of (90)Y may be comparable to that observed for (188)Re in which the T/B increased from 5 to 20. In conclusion, radiolabeling of DOTA-cMORF with (90)Y was improved by introducing a prepurification heating step during conjugation. The (90)Y-DOTA-cMORF provided a similar T/B ratio and biodistribution to that of (188)Re-MAG(3)-cMORF and was retained well in the tumor pretargeted with MORF-CC49. Because of the longer physical half-life, the T/NT absorbed radiation dose ratios were improved in most organs and especially in blood.  相似文献   

3.
Pretargeting with amplification using polymeric peptide nucleic acid   总被引:14,自引:0,他引:14  
One goal of this investigation was to develop a polymer conjugated with multiple copies of peptide nucleic acid (PNA) and with pharmacokinetic properties suitable for applications in vivo. The second goal was to establish whether the multiple copies of PNA on the polymer could be targeted by hybridization in vitro and in vivo with (99m)Tc-labeled complementary PNA (cPNA). If successful, this approach could then be considered in further investigations as an alternative to existing pretargeting approaches because of the potential for signal amplification in the target. A 80 KDa poly(methyl vinyl ether-alt-maleic acid) (PA) polymer was conjugated with multiple copies of PNA and with multiple copies of poly(ethylene glycol) (PEG) by reacting the NHS derivative of PA with the amine derivatives of PNA and PEG. Using (99m)Tc-MAG(3)-cPNA, targeting of PNA-PA-PEG was studied in vitro and in vivo in inflammation and tumor mouse models, in both cases relying upon nonspecific diffusion for localization. In addition, cPNA-avidin was considered as a clearing agent with biotinylated PNA-PA-PEG. About 80 PNAs could be conjugated to PA provided that about 200 PEGs were also conjugated to raise the aqueous solubility of the PNA-PA-PEG polymer lowered by the addition of the PNAs. About 70% of the PNAs on this polymer in vitro either in solution or attached to beads could be successfully targeted with (99m)Tc-cPNA. In both the inflammation and tumor mouse models, between 35 and 60% of these PNAs could be targeted in the lesions. The advantage of amplification was evident when less favorable results were obtained with PNA-PA-PEG conjugated with only six PNAs. We conclude that amplification can be achieved in vivo using polymers of PNA followed by radiolabeled complementary PNA and that the application of pretargeting using polymers of PNA for amplification can improve localization.  相似文献   

4.
The stability of hybridized duplexes is an important criterion for any radiopharmaceutical application of DNAs or their analogues such as phosphorodiamidate morpholinos (MORFs). OBJECTIVE: The stabilities in vitro and in mice of the duplex between MORF and its complement (cMORF) were investigated for two different chain lengths, a 15-mer MORF compared to the identical MORF but elongated to a 25-mer. METHODS: The hybridization characteristics of the 15-mer MORF with its complementary 15-mer and that of the 25-mer with its complementary 25-mer MORF were measured using surface plasmon resonance (SPR) analysis. For radiolabeling with (99m)Tc, the 15- and 25-mer MORF, both with a primary amine via a 10-member linker on the 3' equivalent end, were conjugated with NHS-MAG(3). The 15- and 25-mer cMORFs were conjugated via their amines to carbodiimidazole treated poly(methyl vinyl ether-alt-maleic acid) (PA) such that about 50 cMORFs were attached to each polymer molecule in both cases (estimated MWs about 300 and 450 kDa, respectively). After hybridization in vitro, both the PA-cMORF15-(99m)Tc-MORF15 and PA-cMORF25-(99m)Tc-MORF25 homoduplexes were evaluated by size exclusion HPLC in saline, after incubation in 37 degrees C serum and in urine obtained 30 min post IV administration to normal mice. Biodistributions were obtained up to 18 h post administration. RESULTS: By SPR, the affinity constants for the homoduplexes were both about 10(9) M(-)(1) with the 25/25 only about 25% higher than the 15/15. However, the affinity constants for the 15/25 and 25/15 heteroduplexes showed a surprisingly 13-fold difference. By HPLC analysis, all duplexes were stable in saline; however, analysis of serum incubates and urine containing PA-cMORF15-(99m)Tc-MORF15 showed an immediate and pronounced low molecular weight peak that was identified by a shift assay to be (99m)Tc-MORF15. The comparable peak in both fluids was much less pronounced in the case of PA-cMORF25-(99m)Tc-MORF25. Whole body radioactivity levels also fell much more rapidly in mice receiving the 15-mer conjugate (65 vs 30% eliminated at 18 h) and biodistribution results showed higher kidney levels for the 15-mer conjugate. Results with the PA-cMORF25-(99m)Tc-MORF15 heteroduplex were more similar to that obtained with the 15-mer homoduplex than the 25-mer homoduplex. CONCLUSION: Despite what is reported to be high hybridization affinities, both the homoduplex and heteroduplexes prepared with (99m)Tc-MORF15 were found to be unstable in serum and in vivo toward dissociation to free (99m)Tc-MORF15. By contrast, homoduplex prepared with (99m)Tc-MORF25 showed higher stability. These differences in hybridization stability may be important considerations in radiopharmaceutical design.  相似文献   

5.
Study of fluorophore and technetium labeling of poly(amido)-amine (PAMAM) generation 4 (G4) dendrimer and its evaluation as potential molecular imaging agent in both normal and melanoma-bearing mice, are described. Dendrimers were first conjugated with FITC (fluorescein isothiocyanate). Dendrimer-FITC was then incubated with the intermediate [(99m)Tc(CO)(3)(H(2)O)(3)](+) and purified by gel filtration. Biodistribution and scintigraphy images were performed administrating (99m)Tc(CO)(3)-dendrimer-FITC to normal mice (NM) or melanoma-bearing mice (MBM). Cryostat tissue sections from MBM mice were analyzed by confocal microscopy. Radiolabeling yield of dendrimer was approx. 90%. The (99m)Tc(CO)(3)-dendrimer-FITC complex was stable for at least 24h. Biodistribution studies in NM showed blood clearance with hepatic and renal depuration. MBM showed a similar pattern of biodistribution with high tumor uptake that allowed tumor imaging. Confocal microscopy analysis showed cytoplasmic distribution of (99m)Tc(CO)(3)-dendrimer-FITC.  相似文献   

6.
S-Acetyl MAG(3) (S-acetylmercaptoacetyltriglycine) has been used as a chelator for the (99m)Tc labeling of a variety of biomolecules. The objective of this study was to improve upon the labeling of morpholino (MORF), a DNA analogue, as a model biomolecule. A 15mer MORF with a primary amine was conjugated with NHS-MAG(3) in the usual manner, and the MORF-MAG(3) was purified over a P4 column as before. The conjugate was radiolabeled using stannous ion as usual, and the impurities were identified using size exclusion high-performance liquid chromatography (SE HPLC). Various methods were then investigated to remove the impurities. With tartrate as the transchelator, two impurities were identified as labeled MAG(3) and labeled tartrate. The labeled MAG(3) could not be removed by simply repurifying the conjugate using the usual pH 5.2 NH(4)OAc buffer before labeling. However, this impurity could be completely removed if the conjugate was adjusted to pH 7.6 and heated before repurification. The labeled tartrate impurity was removed by heating during labeling. On the basis of these observations, the following procedure for purification of the conjugation mixture and subsequent labeling was adopted. After MORF was conjugated with NHS-MAG(3) and purified over P4 with pH 5.2 NH(4)OAc eluant, the oligomer fractions were combined, adjusted to pH 7.6, and heated in a boiling water bath for 20 min. The conjugated oligomer was then repurified over P4 for storage at refrigerator temperatures. Labeling is achieved simply by adding fresh stannous ion to a solution of the MORF-MAG(3) in pH 7.6 containing tartrate followed by (99m)Tc-pertechnetate. After the mixture is heated for 20 min in boiling water, the labeling efficiency is always over 90% as determined by size exclusion HPLC and paper chromatography and the specific activities can exceed 7 mCi/microg. By making several relatively simple changes to the routine procedure used to conjugate and radiolabel biomolecules with (99m)Tc via MAG(3), a modified procedure was developed that results in labeling efficiency high enough to avoid postlabeling purification.  相似文献   

7.
A useful property of optical imaging is the potential to modulate the detectable signal to improve target/nontarget ratios. When administered as a dimer of a fluorophore- and a quencher-conjugated duplex arranged to inhibit fluorescence but designed to dissociate only in the presence of its target, the fluorescence signal should in principle appear only in the target. This laboratory has demonstrated the feasibility of this approach by using a duplex consisting of a linear oligomer conjugated with Cy5.5 (emitter) hybridized to another linear oligomer conjugated with Iowa Black (quencher) in a pretargeting optical study. Now eight duplexes consisting of combinations of 18 mer linear phosphodiester (PO) and phosphorothioate (PS) DNAs and phosphorodiamidate morpholinos (MORFs) conjugated with Cy5.5 (emitter) and Iowa Black (quencher) were variously screened for in vitro duplex stability. The MORF/PO duplex was selected for further study based on evidence of stability in 37 degrees C serum. Simultaneously, the kinetics of quenching were investigated in vitro and in vivo in mice. Thereafter, mice were implanted in one thigh with MORF/PO Cy 5.5 microspheres and the complementary PS Iowa Black administered iv to measure the extent and kinetics of duplex formation in the target. While all duplexes were stable in buffer, only the MORF/PO duplexes and possibly all PS containing duplexes were stable in 37 degrees C serum for at least 4 h. The kinetics of quenching were found to be rapid in vitro, with a 80-90% decrease in Cy5.5 fluorescence immediately following formation of a PS/PS homoduplex, and in vivo, with a 27 to 38% decrease in target thigh/nontarget ratio within 1 h following administration of the complementary PS Iowa Black complementary DNA but not the random control DNA to mice implanted with MORF/PO Cy5.5 microspheres. This investigation has provided additional evidence that Cy5.5 may be efficiently and rapidly quenched by Iowa Black when both are conjugated to complementary oligomers and that the resulting inhibition of fluorescence is sufficiently persistent for imaging.  相似文献   

8.
Partially acetylated generation five polyamidoamine (PAMAM) dendrimer (G5-Ac) was reacted with biotin and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetria minepentaacetic acid (1B4M-DTPA), respectively to form the complex Bt-G5-Ac-1B4M which was further conjugated with avidin to give the conjugate Av-G5-Ac-1B4M. Then both of the conjugates were radiolabeled with technetium-99m ((99m)Tc), respectively. Their in vitro cellular uptake study shows that the conjugate of Av-G5-Ac-1B4M-(99m)Tc exhibits much higher cellular uptake in HeLa cells than that of Bt-G5-Ac-1B4M-(99m)Tc. Accordingly the following evaluation such as in vitro/in vivo stability, biodistribution and micro-SPECT imaging was observed only for the conjugate of Av-G5-Ac-1B4M-(99m)Tc.  相似文献   

9.
Watson-Crick pairing between complementary oligomers is proving to be an effective means for rapidly directing radioisotopes specifically to the exterior surface of cancer cells in vivo. In such pretargeting applications, it is highly desirable that the excess of isotopically labeled oligomers, which do not bind to the cancer cells, be rapidly cleared from the body. In this context, understanding the influence of chain length and base sequence of the radiolabeled oligomers is critical. We had earlier determined that the kidneys are the principal targets of short-chain radiolabeled morpholino oligomers (MORFs). To explain these observations, MORFs consisting of uniform cytosines (Cs), uniform thymines (Ts), uniform adenines (As), and uniform AAG repeat were labeled with technetium-99m (99mTc) and studied in normal mice. In a limited investigation of the influence of oligomer backbone, a 20-mer MORF (MORF20) with a base sequence rich in Cs was compared with a phosphoromonothioate DNA (S-DNA20) of the same sequence. The in vivo behavior of the labeled MORFs was nearly identical in all organs, with the exception of kidneys. The kidney accumulations were about 25- to 80-fold higher for the uniform Cs relative to the other three uniform MORFs at 3 hours. The S-DNA20 rich in Cs showed only modest kidney accumulations compared with the equivalent MORF20, presumably because of preferential clearance of the S-DNA20 through the liver. Urine analysis showed no evidence of intact labeled S-DNA20 in contrast to fully intact labeled MORF20. We conclude that the high kidney levels observed by us previously for MORFs are most likely due largely to the C residues in the base sequence. In the case of S-DNAs, this phenomenon is partly disguised by the increased hepatic excretion and degradation. These results show that the base sequences of MORFs, and probably other oligomers as well, are an important determinant of biodistribution.  相似文献   

10.
Synthetic DNA analogues with improved stability are widely used in life science. The 3′and/or 5′ equivalent terminuses are often derivatized by attaching an active group for further modification, but a certain amount of non-derivatized impurity often remains. It is important to know to what extent the impurity would influence further modification. The reaction of an NHS ester with primary amine is one of the most widely used options to modify DNA analogues. In this short communication, a 3′-(NH2-biotin)-derivatized morpholino DNA analogue (MORF) was utilized as the model derivatized DNA analogue. Inclusion of a biotin concomitant with the primary amine at the 3′-terminus allows for the use of streptavidin to discriminate between the products from the derivatized MORF and non-derivatized MORF impurity. To detect the MORF reaction with NHS ester, S-acetyl NHS-MAG3 was conjugated to the DNA analogue for labeling with 99mTc, a widely used nuclide in the clinic. It was found that the non-derivatized MORF also reacted with the S-acetyl NHS-MAG3. Radiolabeling of the product yielded an equally high labeling efficiency. Nevertheless, streptavidin binding indicated that under the conditions of this investigation, the non-derivatized MORF was five times less reactive than the amine-derivatized MORF.  相似文献   

11.
Bivalent effectors have been reported to provide superior pretargeting by affinity enhancement. We recently reported that one bivalent MORF (phosphorodiamidate morpholino, a DNA analogue oligomer) exhibited affinity enhancement (ratio of bivalent to monovalent equilibrium constants for binding) to immobilized complementary DNA (cDNA) by surface plasmon resonance (SPR). Because bivalent effectors using oligomers are easily synthesized with molecular spacing between binding sites, an important determinant of binding, adjustable simply by selecting linkers of different dimensions and/or lengthening or shortening the oligomer chain length, they may have advantages over existing bivalent effectors. We synthesized four bivalent MORFs with different dimensions between binding sites and measured binding affinities and affinity enhancement by SPR. An 18 mer (MORF18) was made bivalent by dimerizing both with disuccinimidyl suberate (DSS) and disuccinimidyl glutarate (DSG) linkers. By again using DSS but adding seven nonbinding adenine bases and by eliminating six binding bases, a total of four bivalent effectors, DSS-MORF12, DSG-MORF18, DSS-MORF18, and DSS-MORF25, were prepared with two different hybridization affinities (i.e. MORF12 and MORF18/25) and three different spacings (i.e. 20, 25, and 100 angstroms) between binding sites. The biotinylated cDNA was immobilized on a sensor chip at 500 and 100 RU coating densities providing an average cDNA separation of 25 and 80 angstroms. As expected, bimolecular binding dominated monomolecular binding in all cases, especially at lower MORF effector concentrations and at higher coating densities. All bivalent MORFs showed equilibrium constants superior to their monovalent form and therefore affinity enhancement. DSS-MORF25 showed the highest equilibrium constant for bimolecular binding presumably because of its larger separation between binding sites. Nevertheless, DSS-MORF12 showed the largest affinity enhancement of almost 3 orders of magnitude presumably because the shorter chain lowered the equilibrium constant for monomolecular binding. We have shown that bivalent effectors may be easily synthesized using MORF. The results provide further evidence that the use of bivalent effectors can greatly improve MORF pretargeting and, finally, that bivalent MORFs with reduced equilibrium constants may actually exhibit higher affinity enhancement.  相似文献   

12.
Pretargeting with bivalent effectors capable of bridging antitumor antibodies has been reported to provide superior results by affinity enhancement. Morpholinos (MORFs) and other DNA analogues used for pretargeting are ideally suited as bivalent effectors since they are easily synthesized and the distance between binding regions, likely to be a determinant of binding, may be adjusted simply by lengthening the chain. The goal of this investigation was to synthesize a bivalent MORF and to determine by surface plasmon resonance (SPR) whether the bivalent MORF exhibited bimolecular binding and whether the MORFs showed improved in vitro hybridization affinity in its bivalent form compared to its monovalent form. An 18 mer amino-derivitized MORF was made bivalent by dimerizing with disuccinimidyl suberate (DSS) in 1-methyl-2-pyrrolidinone (NMP) with N,N-diisopropylethylamine (DIEA) followed by purification by ion exchange chromatography. The in vitro hybridization affinity of bivalent compared to monovalent MORF was then measured by SPR. For these measurements, the complementary biotinylated cDNA was immobilized at coating densities that provided an average spacing of 20-100 angstroms and used to investigate the influence of this spacing on binding of the bivalent MORF with its binding regions separated by 25 A. The yield of bivalent MORF was as high as 45%, and the structure was confirmed by MALDI-TOF mass spectroscopy. When the sensograms obtained by SPR were analyzed using different binding models, the evidence was consistent with bimolecular binding of the bivalent MORF. The dissociation rate constant of the bivalent compared to monovalent MORF was more than 10-fold lower at 2.14 compared to 0.27 x 10(-5) (1/s) (p < 0.05), and since the association rate constants were similar at 8.53 and 5.64 x 10(5) (1/M.s) (p = 0.08), the equilibrium constant for hybridization to the immobilized cDNA of the bivalent compared to the monovalent MORF was almost 20-fold higher at 3.99 compared to 0.21 x 10(10) (1/M) (p < 0.05). In addition, qualitative evidence for bivalent binding of the bivalent MORF was apparent in the lower concentrations necessary to saturate the cDNA. Finally, the stoichiometry interpretation of the binding data provided estimates of the fraction of bivalent MORF binding bimolecularly. Under one set of conditions, this value was 20%. In conclusion, a bivalent MORF was easily synthesized by dimerization of a monovalent MORF. A lower dissociation rate constant and higher equilibrium constant was measured by SPR for the bivalent compared to monovalent MORF in their binding to an immobilized cDNA. These results show that bimolecular binding was occurring in the case of the bivalent MORF and suggest that bivalency may be superior to monovalency in MORF pretargeting applications.  相似文献   

13.
Here we describe molecular imaging of cancer using signal amplification of a radiotracer in situ by pretargeting a multivalent, bispecific antibody to carcinoembryonic antigen (CEA), which subsequently also captures a radioactive hapten-peptide. Human colon cancer xenografts as small as approximately 0.15 g were disclosed in nude mice within 1 h of giving the radiotracer, with tumor/blood ratios increased by >or=40-fold (approximately 10:1 at 1 h, approximately 100:1 at 24 h), compared to a (99m)Tc-labeled CEA-specific F(ab') used clinically for colorectal cancer detection, while also increasing tumor uptake tenfold ( approximately 20% injected dose/g) under optimal conditions. This technology could be adapted to other antibodies and imaging modalities.  相似文献   

14.
A target-specific MRI contrast agent for tumor cells expressing high affinity folate receptor was synthesized using generation five (G5) ofpolyamidoamine (PAMAM) dendrimer. Surface modified dendrimer was functionalized for targeting with folic acid (FA) and the remaining terminal primary amines of the dendrimer were conjugated with the bifunctional NCS-DOTA chelator that forms stable complexes with gadolinium (Gd III). Dendrimer-DOTA conjugates were then complexed with GdCl3 followed by ICP-OES as well as MRI measurement of their longitudinal relaxivity (T1 s(-1) mM(-1)) of water. In xenograft tumors established in immunodeficient (SCID) mice with KB human epithelial cancer cells expressing folate receptor (FAR), the 3D MRI results showed specific and statistically significant signal enhancement in tumors generated with targeted Gd(III)-DOTA-G5-FA compared with signal generated by non-targeted Gd(III)-DOTA-G5 contrast nanoparticle. The targeted dendrimer contrast nanoparticles infiltrated tumor and were retained in tumor cells up to 48 hours post-injection of targeted contrast nanoparticle. The presence of folic acid on the dendrimer resulted in specific delivery of the nanoparticle to tissues and xenograft tumor cells expressing folate receptor in vivo. We present the specificity of the dendrimer nanoparticles for targeted cancer imaging with the prolonged clearance time compared with the current clinically approved gadodiamide (Omniscan) contrast agent. Potential application of this approach may include determination of the folate receptor status of tumors and monitoring of drug therapy.  相似文献   

15.
Single-chain Fv constructs comprising a biotin mimetic peptide (BMP) and scFv of CC49 monoclonal antibody were produced to improve pretargeted radioimmunotherapy. BMP units that bind streptavidin were added to the carboxyl terminus of the CC49 V(H) region. An engineered scFvBMP monomer and a sc(Fv)(2)BMP dimer showed an excellent antigen recognition in vitro with a specific binding of 72+/-5 and 81+/-4%, respectively. Properties of 125I-sc(Fv)(2)BMP in mice bearing LS-174T xenografts were comparable to these of the parent 125I-sc(Fv)(2). Complexing of scFvBMPs with streptavidin increased tumor targeting and gave exceptionally high tumor-to-blood values of 63+/-7 for 125I-sc(Fv)(2)BMP-streptavidin compared with 37+/-4 for sc(Fv)(2)BMP at 72h after administration. High tumor and negligible normal tissue levels of these novel pretargeting constructs indicate a great potential for pretargeted radioimmunotherapy.  相似文献   

16.
PurposeRadiolabeled oligomers complementary to the 16S rRNA in bacteria were investigated as bacterial infection imaging agents.Methods and resultsIdentical sequences with backbones phosphorodiamidate morpholino (MORF), peptide nucleic acid (PNA), and phosphorothioate DNA (PS-DNA) were 99mTc-labeled and evaluated for binding to bacterial RNA. MORF binding to RNA from Escherichia coli strains SM101 and K12 was 4- and 150-fold higher compared to PNA and PS-DNA, respectively. Subsequently MORF oligomer in fluorescence in situ hybridization showed a stronger signal with study MORF compared to control in fixed preparations of two E. coli strains and Klebsiella pneumoniae. Flow cytometry analysis showed study MORF accumulation to be 8- and 80-fold higher compared to the control in live K. pneumoniae and Staphylococcus aureus, respectively. Further, fluorescence microscopy showed increased accumulation of study MORF over control in live E. coli and K. pneumonia. Binding of 99mTc-study MORF to RNA from E. coli SM101 and K12 was 30.4 and 117.8 pmol, respectively, per 1010 cells. Mice with K. pneumoniae live or heat-killed (sterile inflammation) in one thigh at 90 min for both 99mTc-study MORF and control showed higher accumulation in target thighs than in blood and all other organs expect for kidneys and small intestine. Accumulation of 99mTc-study MORF was significantly higher (p = 0.009) than that of the control in the thigh with sterile inflammation.ConclusionA 99mTc-MORF oligomer complimentary to the bacterial 16S rRNA demonstrated binding to bacterial RNA in vitro with specific accumulation into live bacteria. Radiolabeled MORF oligomers antisense to the bacterial rRNA may be useful to image bacterial infection.  相似文献   

17.
Many oral care products incorporate an antibacterial compound to prevent the formation of dental plaque which predisposes teeth to dental caries or periodontal disease. Triclosan (TCN) is a commonly used antiplaque agent in toothpastes. Strategies to increase the delivery efficiency of antibacterials using formulation aids such as polyamidoamine (PAMAM) dendrimers are of interest. Solubilisation studies over the pH range 5-12 demonstrated an increase in the level of TCN solubilised with increasing dendrimer concentration (1 mM-5 mM). However, the dendrimer was unable to enhance TCN solubility at lower pH values and the solubilising effect observed was attributed to the ionization of TCN (pKa 8.14) resulting from dendrimer induced pH changes. End group modification of G3 PAMAM dendrimer with phenylalanine in order to promote solubility through pi-pi stacking between TCN and the amino acid has been carried out. Phenylalanine:G3 PAMAM conjugates of different ratios (32:1, 21:1, 16:1) were synthesized. The fully conjugated dendrimer (32:1) had poor aqueous solubility, whereas the 21:1 and 16:1 dendrimer conjugates were water soluble. The 21:1 conjugate was tested for its ability to solubilise TCN, however, again there was no increase over control buffer solutions of the same pH. An alternative approach under investigation is to directly conjugate TCN to PAMAM dendrimers via a hydrolysable linkage.  相似文献   

18.
Nanometer-scale architectures assembled on cell surface receptors from smaller macromolecular constituents generated a large amplification of fluorescence. A targeted dendrimer was synthesized from a cystamine-core G4 PAMAM dendrimer, and contained an anti-BrE3 monoclonal antibody as the targeting group, several fluorophores and an average of 12 aldehyde moieties as complementary bio-orthogonal reactive sites for the covalent assembly. A cargo dendrimer, derived from a PAMAM G4 dendrimer, contained several fluorophores as the cargo for delivery and five hydrazine moieties as complimentary bio-orthogonal reactive sites. The system is designed to be flexible and allow for facile incorporation of a variety of targeting ligands.  相似文献   

19.
In the present study, we report the synthesis and human growth factor receptor-2 (HER2) specific tumor targeting properties of a dendrimer conjugated to anti-HER2 mAb (monoclonal antibody) conjugate. The polyamidoamine (PAMAM) dendrimer generation five (G5) was labeled with alexaFluor 488 and conjugated to anti-HER2 mAb. The binding and internalization of the antibody-conjugated dendrimer to HER2-expressing cells was evaluated by flow cytometry and confocal microscopy. Uniquely, the conjugate demonstrated cellular uptake and internalization in HER2-expressing cells as compared to free antibody. The time course of internalization and blocking experiments with free antibody suggest that the rapid and efficient cellular internalization of the dendrimer-antibody conjugate was achieved without alterations in specificity of targeting. Animal studies demonstrated that the conjugate targets HER2-expressing tumors.  相似文献   

20.
Many oral care products incorporate an antibacterial compound to prevent the formation of dental plaque which predisposes teeth to dental caries or periodontal disease []. Triclosan (TCN) is a commonly used antiplaque agent in toothpastes []. Strategies to increase the delivery efficiency of antibacterials using formulation aids such as polyamidoamine (PAMAM) dendrimers are of interest.

Solubilisation studies over the pH range 5-12 demonstrated an increase in the level of TCN solubilised with increasing dendrimer concentration (1 mM–5 mM). However, the dendrimer was unable to enhance TCN solubility at lower pH values and the solubilising effect observed was attributed to the ionization of TCN (pKa 8.14) resulting from dendrimer induced pH changes.

End group modification of G3 PAMAM dendrimer with phenylalanine in order to promote solubility through π–π stacking between TCN and the amino acid has been carried out. Phenylalanine:G3 PAMAM conjugates of different ratios (32:1, 21:1, 16:1) were synthesized. The fully conjugated dendrimer (32:1) had poor aqueous solubility, whereas the 21:1 and 16:1 dendrimer conjugates were water soluble. The 21:1 conjugate was tested for its ability to solubilise TCN, however, again there was no increase over control buffer solutions of the same pH. An alternative approach under investigation is to directly conjugate TCN to PAMAM dendrimers via a hydrolysable linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号