首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While efficient glucose transport is essential for all cells, in the case of the human placenta, glucose transport requirements are two-fold; provision of glucose for the growing fetus in addition to the supply of glucose required the changing metabolic needs of the placenta itself. The rapidly evolving environment of placental cells over gestation has significant consequences for the development of glucose transport systems. The two-fold transport requirement of the placenta means also that changes in expression will have effects not only for the placenta but also for fetal growth and metabolism. This review will examine the localization, function and evolution of placental glucose transport systems as they are altered with fetal development and the transport and metabolic changes observed in pregnancy pathologies.  相似文献   

2.
Neurospora crassa sl, a mutant that lacks a rigid cell wall, exhibits transport systems for glucose similar to those of wild-type strain 1A. When the orgnism is grown in a medium containing 50 mM glucose as the carbon source, glucose is transported primarily by a glucose-facilitated diffusion system (GluI). When it is grown in a medium with little or no glucose present, a glucose active transport system (Glu II) is expressed. Both of these systems are similar kinetically to those in the wild type. Significant differences do exist between strains sl and 1A with respect to genetic regulation of the glucose active transport system.  相似文献   

3.
2-Deoxy-D-glucose resistant yeast with altered sugar transport activity   总被引:2,自引:0,他引:2  
S Novak  T D'Amore  G G Stewart 《FEBS letters》1990,269(1):202-204
The transport of glucose and maltose in Saccharomyces cerevisiae was observed to occur by both high and low affinity transport systems. A spontaneously isolated 2-deoxy-D-glucose resistant mutant was observed to transport glucose and maltose only by the high affinity transport systems. Associated with this was an increase in the Vmax values, indicating derepression of the high affinity transport systems. The low affinity transport systems could not be detected. This mutant will be important in examining the repression regulatory and sugar transport mechanisms in yeast.  相似文献   

4.
Glucose transport was studied in a methylotrophic yeast Hansenula polymorpha . Two kinetically different glucose transport systems were revealed in cells grown under different growth conditions. Glucose-repressed cells exhibited a low-affinity transport system ( K m for glucose 1.75 mM) while glucose-derepressed and ethanol-grown cells had a high-affinity transport system ( K m for glucose 0.05–0.06 mM). The high- and low-affinity transport systems differed in substrate specificity, sensitivity to pH, dinitrophenol and protonophore carbonyl cyanide- m -chlorophenyl-hydrazone. The kinetic rearrangement of the glucose transport system in response to altered growth conditions was dependent on de novo protein synthesis.  相似文献   

5.
Multiple glucose transport systems were distinguished in Rhizobium leguminosarum. We found nonlinear Lineweaver-Burk plots for the uptake of glucose, 2-deoxy-D-glucose, and alpha-methyl-D-glucoside, and this implied the existence of at least two uptake mechanisms. Different patterns of inhibition of 2-deoxy-D-glucose uptake and alpha-methyl-D-glucoside uptake at 0.1 mM by various carbohydrates revealed differences in the stereospecificities of the transport systems. Osmotic shock treatment abolished transport activities, and two independent glucose-binding activities were detected in the supernatants. Induction of glucose transport was repressed strongly by L-malate, even in the presence of excess D-glucose. Rhizobium bacteroids showed no significant glucose uptake activity at different oxygen concentrations. These results suggested that glucose transport is repressed by dicarboxylic acids during R. leguminosarum symbiosis.  相似文献   

6.
Summary Growth of yeast cells on glucose resulted in complete inactivation of maltose transport and repression of the high affinity glucose transport system. When the cells were grown on maltose or subjected to substrate starvation, an increase in glucose and maltose transport was observed in both brewing and non-brewing yeast strains. The concentration of glucose employed in the growth medium was also observed to affect sugar transport activity. The higher the glucose concentration, the more pronounced the repressive effect. In addition, the time of growth of yeast on glucose or maltose also intermining the rate of sugar transport. These results are consistent with the repressive effect of glucose on the high affinity glucose and maltose transport systems.  相似文献   

7.
Papaverin is shown to have a significant inhibitory effect on the intestinal transport systems for glucose, galactose and glycine but not for fructose. In vitro experiments have revealed that the inhibitory effect of papaverin on the glucose transport take place under mucosal application, nevertheless the serosal one is of a stimulatory character. Papaverin inhibits only the active component of the glucose transport.  相似文献   

8.
Uphill transport induced by counterflow   总被引:6,自引:2,他引:6       下载免费PDF全文
1. In a membrane transport system containing a mobile carrier with affinities for two substrates a concentration gradient with respect to one of the substrates under certain conditions is able to induce an "uphill" transport (against the concentration gradient) of the other. 2. In a kinetic treatment quantitative conditions for such a "flow-induced uphill transport" and some of its characteristics are derived. 3. Experimentally the uphill transport of labelled glucose induced by a concentration gradient for mannose or unlabelled glucose is demonstrated in the human red cell. 4. It is shown that the flow-induced uphill transport is a feature characteristic for mobile carrier systems only and is not to be expected in systems in which the substrate is bound to a fixed membrane component ("adsorption membrane"), although such a system may yield identical transport kinetics. Also with respect to Ussing's flux ratio the two systems are different, the adsorption membrane meeting Ussing's criterion, the carrier membrane not. 5. It is concluded that the transport system in the human red cells must contain a mobile carrier, identical for glucose and mannose.  相似文献   

9.
Incubation of the green alga Chlorella vulgaris (strain K, Tanner and Kandler, 1967) with glucose leads to the induction of a glucose transport system and of two amino acid transport systems. Because it was not clear whether the regulation of 3 different transport systems by glucose is specific to our strain of Chlorella or whether it is a general property of the genus Chlorella, 11 other free living and symbiotic Chlorella species and strains were tested for glucose-inducible glucose, arginine and proline transport. It was found that nearly all Chlorella species possess glucose and amino acid uptake systems. Often they were constitutive, although in some species they were induced or stimulated by glucose. According to the transport activities of the different Chlorella species and strains, a physiological classification of Chlorella was constructed, resulting in 3 groups: the C. fusca vacuolata, the C. vulgaris and the symbiotic Chlorella group. Our Chlorella (strain K) obviously belongs to the C. vulgaris group and forms a link to symbiotic Chlorella strains. This suggests that the possession of the glucose-regulated transport systems is of advantage for Chlorella in symbiotic situations, whereas the constitutive systems are useful for free living Chlorella.  相似文献   

10.
The derepressed high-affinity glucose transport system and the induced galactose transport system are catabolite inactivated when cells with these transport systems are incubated with glucose. The role of the cyclic AMP cascade in the catabolite inactivation of these transport systems was shown by using mutants affected in the activity of cyclic-AMP-dependent protein kinase (cAPK). In tpk1(w) mutants with reduced cAPK activity, the sugar transport systems were expressed but were not catabolite inactivated. In bcy1 mutants with unbridled cAPK activity resulting from a defective regulatory subunit, the transport systems were absent or present at low levels.  相似文献   

11.
An indicator dilution technique with 22Na+ as the intravascular marker was used to measure unidirectional transport of D-[6-3H]glucose from blood into the isolated, perfused dog brain. 18 compounds which are structurally related to glucose were tested for their ability to inhibit glucose transport. The data suggest that no single hydroxyl group is absolutely required for glucose transport, but rather that glucose binding to the carrier probably occurs through hydrogen bonding at several sites (hydroxyls on carbons 1, 3, 4 and 6). In addition, alpha-D-glucose has higher affinity for the carrier than does beta-D-glucose. A separate series of experiments demonstrated that phlorizin and phloretin are competitive inhibitors of glucose transport into brain; however, phloretin is partially competitive and inhibits at lower concentrations than does phlorizin. Inhibition by phlorizin and phloretin is mutually competitive, indicating that these compounds compete for binding to the glucose carrier. Comparison with the results reported in the literature for similar studies using the human erythrocyte demonstrates a fundamental similarity between glucose transport systems in the blood-brain barrier and erythrocyte.  相似文献   

12.
Abstract: Free-living bacteria are expert in adapting to variations in nutrient availability, often using an array of transport systems of different affinities to scavenge for particular substrates (multiport). This review concentrates on the regulation of expression of different transporters contributing to multiport in response to varying nutrient levels. A novel mechanism of controlling bacterial transport affinity under sugar limitation is described. In particular, switching from glucose-rich to glucose-limited conditions results in Escherichia coli orchestrating outer membrane changes as well as the induction of a periplasmic binding protein-dependent (ABC-type) transport system. The changes leading to the high affinity transport pathway are directed towards uptake of rapidly utilisable concentrations and are optimal close to 10−6 M medium glucose. High affinity transport is absent under both glucose-rich 'feast' and glucose-starved 'famine' conditions hence high affinity transporters are not simply repressed by excess nutrient. Rather, the improvement in glucose scavenging involves induction of genes in 2 distinct regulons ( mgl/gal and mal/lamB ) through synthesis of 2 different endogenous inducer molecules (galactose, maltotriose). Endoinducer levels are tightly controlled by extracellular glucose concentration at different glucose-limited growth rates. Aside from endoinducers, the elevated intracellular level of cAMP plays a role in induction of the high-affinity pathway but CAMP-mediated relief from catabolite repression is not itself sufficient for high affinity transport. In contrast to the repressive role of glucose when present at millimolar concentrations, micromolar glucose also leads to the induction of transport systems for other sugars, further broadening the scavenging potential of nutrient-limited bacteria for other substrates.  相似文献   

13.
When grown in fructose or glucose the cells of Zygosaccharomyces bailii were physiologically different. Only the glucose grown cells (glucose cells) possessed an additional transport system for glucose and malate. Experiments with transport mutants had lead to the assumption that malate and glucose were transported by one carrier, but further experiments proved the existence of two separate carrier systems. Glucose was taken up by carriers with high and low affinity. Malate was only transported by an uptake system and it was not liberated by starved malate-loaded cells, probably due to the low affinity of the intracellular anion to the carrier. The uptake of malate was inhibited by fructose, glucose, mannose, and 2-DOG but not by non metabolisable analogues of glucose. The interference of malate transport by glucose, mannose or 2-DOG was prevented by 2,4-dinitrophenol, probably by inhibiting the sugar phosphorylation by hexokinase. Preincubation of glucose-cells with metabolisable hexoses promoted the subsequent malate transport in a sugar free environment. Preincubation of glucose-cells with 2-DOG, but not with 2-DOG/2,4-DNP, decreased the subsequent malate transport. The existence of two separate transport systems for glucose and malate was demonstrated with specific inhibitors: malate transport was inhibited by sodium fluoride and glucose transport by uranylnitrate. A model has been discussed that might explain the interference of hexoses with malate uptake in Z. bailii.Abbreviations 2,4-DNP 2,4-dinitrophenol - 2-DOG 2-deoxyglucose - 6-DOG 6-deoxyglucose - pCMB para-hydroxymercuribenzoate  相似文献   

14.
Neutral amino acid transport in isolated rat pancreatic islets   总被引:1,自引:0,他引:1  
The neutral amino acid transport systems of freshly isolated rat pancreatic islets have been studied by first examining the transport of L-alanine and the nonmetabolizable analogue 2-(methylamino)isobutyric acid (MeAIB). By comparing the uptake of MeAIB and L-alanine for their pH dependency profile, choline and Li+ substitution for Na+, tolerance to N-methylation, and competition with other amino acids, the existence in pancreatic islets of both A and ASC amino acid transport systems was established. The systems responsible for the inward transport of five natural amino acids was studied using competition analysis and Na+ dependency of uptake. These studies defined three neutral amino acid transport systems: A and ASC (Na+-dependent) and L (Na+-independent). L-Proline entered rat islet cells mainly by system A; L-leucine by the Na+-independent system L. The uptake of L-alanine, L-serine, and L-glutamine was shared by systems ASC and L, the participation of system A being negligible for these three amino acids. An especially broad substrate specificity for systems L and ASC is therefore suggested for the rat pancreatic islet cells. The regulation of amino acid transport was also investigated in two conditions differing as to glucose concentration and/or availability, i.e. islets from fasted rats and islets maintained in tissue culture at high or low glucose concentrations. Neither alanine nor MeAIB transport was altered by fasting of the islet-donor rats. On the other hand, pancreatic islets maintained for 2 days in tissue culture at high (16.7 mM) glucose transported MeAIB at twice the rate of islets maintained at low (2.8 mM) glucose. Amino acid starvation of pancreatic islets during 11 h of tissue culture resulted in a 2-fold increase in MeAIB transport.  相似文献   

15.
The purpose of these studies was to define the properties of the systems that transport hexoses into adipocytes. Glucose appears to enter adipocytes on a single transport system whose maximum velocity is stimulated by insulin and which is competitively inhibited by cytochalasin B, 5-thioglucose, fructose, mannose and 3-O-methylglucose. In contrast, fructose enters adipocytes by at least two separate mechanisms, one an insulin-sensitive transporter (probably the glucose transporter) and the other a mechanism that is insensitive to insulin. The fructose concentration required for half-maximal rates of transport is at least an order of magnitude higher than that for glucose and the maximum velocity of fructose transport is more than double that for glucose.  相似文献   

16.
Debaryomyces hansenii is a yeast species that is known for its halotolerance. This organism has seldom been mentioned as a pentose consumer. In the present work, a strain of this species was investigated with respect to the utilization of pentoses and hexoses in mixtures and as single carbon sources. Growth parameters were calculated for batch aerobic cultures containing pentoses, hexoses, and mixtures of both types of sugars. Growth on pentoses was slower than growth on hexoses, but the values obtained for biomass yields were very similar with the two types of sugars. Furthermore, when mixtures of two sugars were used, a preference for one carbon source did not inhibit consumption of the other. Glucose and xylose were transported by cells grown on glucose via a specific low-affinity facilitated diffusion system. Cells derepressed by growth on xylose had two distinct high-affinity transport systems for glucose and xylose. The sensitivity of labeled glucose and xylose transport to dissipation of the transmembrane proton gradient by the protonophore carbonyl cyanide m-chlorophenylhydrazone allowed us to consider these transport systems as proton symports, although the cells displayed sugar-associated proton uptake exclusively in the presence of NaCl or KCl. When the V(max) values of transport systems for glucose and xylose were compared with glucose- and xylose-specific consumption rates during growth on either sugar, it appeared that transport did not limit the growth rate.  相似文献   

17.
Abstract: Understanding the mechanism of brain glucose transport across the blood-brain barrier is of importance to understanding brain energy metabolism. The specific kinetics of glucose transport have been generally described using standard Michaelis-Menten kinetics. These models predict that the steady-state glucose concentration approaches an upper limit in the human brain when the plasma glucose level is well above the Michaelis-Menten constant for half-maximal transport, K t. In experiments where steady-state plasma glucose content was varied from 4 to 30 m M , the brain glucose level was a linear function of plasma glucose concentration. At plasma concentrations nearing 30 m M , the brain glucose level approached 9 m M , which was significantly higher than predicted from the previously reported K t of ∼4 m M ( p < 0.05). The high brain glucose concentration measured in the human brain suggests that ablumenal brain glucose may compete with lumenal glucose for transport. We developed a model based on a reversible Michaelis-Menten kinetic formulation of unidirectional transport rates. Fitting this model to brain glucose level as a function of plasma glucose level gave a substantially lower K t of 0.6 ± 2.0 m M , which was consistent with the previously reported millimolar K m of GLUT-1 in erythrocyte model systems. Previously reported and reanalyzed quantification provided consistent kinetic parameters. We conclude that cerebral glucose transport is most consistently described when using reversible Michaelis-Menten kinetics.  相似文献   

18.
The pathway of glucose metabolism in Pseudomonas aeruginosa was regulated by the availability of glucose and related compounds. On changing from an ammonium limitation to a glucose limitation, the organism responded by adjusting its metabolism substantially from the extracellular direct oxidative pathway to the intracellular phosphorylative route. This change was achieved by repression of the transport systems for gluconate and 2-oxogluconate and of the associated enzymes for 2-oxogluconate metabolism and gluconate kinase, while increasing the levels of glucose transport, hexokinase and glucose 6-phosphate dehydrogenase. The role of gluconate, produced by the action of glucose dehydrogenase, as a major inhibitory factor for glucose transport, and the possible significance of these regulatory mechanisms to the organism in its natural environment, are discussed.  相似文献   

19.
Transport rates of a number of nutrients and ions have been surveyed in chicken embryo fibroblasts that were density inhibited, growing exponentially, or transformed by Rous sarcoma virus. All the transport systems examined displayed changes associated with changes in growth rate. The rate of ouabain-sensitive potassium transport declined in density-inhibited cells, and increased rapidly in response to serum stimulation. This transport system was regulated both by changes in the activity of the transporters and by the number of transporters in the cell membrane. The rate of transport of the amino acid analog alpha-aminoisobutyric acid declined when cells became density inhibited, but also showed alterations in regulation that were associated with malignant transformation. The rate of glucose transport displayed both growth state-related and transformation-specific changes. The increased rate of glucose transport seen in transformed cells is due to an increase in the number of glucose transporters in the cell membrane. Increased glucose transport is necessary for subsequent changes in glycolysis, and temporally precedes some of the changes in activity of glycolytic enzymes.  相似文献   

20.
Glucose transport in crabtree-positive and crabtree-negative yeasts   总被引:8,自引:0,他引:8  
The kinetic parameters of glucose transport in four Crabtree-positive and four Crabtree-negative yeasts were determined. The organisms were grown in aerobic glucose-limited chemostats at a dilution rate of 0.1 h-1. The results show a clear correlation between the presence of high-affinity glucose transport systems and the absence of aerobic fermentation upon addition of excess glucose to steady-state cultures. The presence of these H+-symport systems could be established by determination of intracellular accumulation of 6-deoxy-[3H]glucose and alkalinization of buffered cell suspensions upon addition of glucose. In contrast, the yeasts that did show aerobic alcoholic fermentation during these glucose pulse experiments had low-affinity facilitated-diffusion carriers only. In the yeasts examined the capacity of the glucose transport carriers was higher than the actual glucose consumption rates during the glucose pulse experiments. The relationship between the rate of sugar consumption and the rate of alcoholic fermentation was studied in detail with Saccharomyces cerevisiae. When S. cerevisiae was pulsed with low amounts of glucose or mannose, in order to obtain submaximal sugar consumption rates, fermentation was already occurring at sugar consumption rates just above those which were maintained in the glucose-limited steady-state culture. The results are interpreted in relation with the Crabtree effect. In Crabtree-positive yeasts, an increase in the external glucose concentration may lead to unrestricted glucose uptake by facilitated diffusion and hence, to aerobic fermentation. In contrast, Crabtree-negative yeasts may restrict the entry of glucose by their regulated H+-symport systems and thus prevent the occurrence of overflow metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号