首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
丘雪红  曹莉  韩日畴 《昆虫知识》2010,47(5):824-833
嗜线虫致病杆菌属Xenorhabdus和发光杆菌属Photorhabdus细菌隶属肠杆菌科Enterobacteriaceae,对多种害虫致病能力强,分别与斯氏属Steinernema和异小杆属Heterorhabditis昆虫病原线虫互惠共生。该两属共生细菌既存在对昆虫寄主的病原性,又存在与线虫寄主的共生性。共生细菌与其线虫寄主的共生性主要表现以下4方面:(1)细菌产生食物信号诱导滞育不取食的感染期线虫恢复;(2)细菌为线虫生长与繁殖提供营养;(3)细菌能于感染期线虫的肠道定殖与生长;(4)细菌产生杀线虫毒素杀死非共生线虫。本文综述了共生菌以上4方面的共生性及其相关的分子机制。  相似文献   

2.
Gram-negative bacteria, Photorhabdus luminescens and P. temperata, form a mutualistic association with entomopathogenic heterorhabditid nematodes while P. asymbiotica is known as an opportunistic human pathogen that causes disseminated bacteremic spread on two continents, the United States and Australia. In the course of our phylogenetic study of Photorhabdus bacteria associated with Japanese Heterorhabditis nematodes, we found two Photorhabdus isolates (Photorhabdus sp. Cbkj163 and OnIr40) whose partial 16S rRNA gene sequence showed high similarities to clinical isolates of this pathogen from Heterorhabditis indica. The phylogenetic study, based upon the gyrase subunit B gene sequences of the two isolates, revealed clustering with these clinical isolates of P. asymbiotica from both the United States and Australia but not with other Photorhabdus bacteria associated with nematodes. The two bacterial isolates were also found to share microbiological and biochemical characteristics with clinical and entomopathogenic Photorhabdus strains. Moreover, not only the two novel Photorhabdus isolates but also an Australian clinical isolate of P. asymbiotica formed mutualistic association with H. indica isolates. These data suggest that the bacteria isolated from H. indica CbKj163 and OnIr40 are a novel subspecies of P. asymbiotica, and that some clinical isolates of P. asymbiotica could have originated from bacteria associated with entomopathogenic nematodes.  相似文献   

3.
Photorhabdus and Xenorhabdus bacteria colonize the intestines of the infective soil-dwelling stage of entomophagous nematodes, Heterorhabditis and Steinernema, respectively. These nematodes infect susceptible insect larvae and release the bacteria into the insect blood. The bacteria kill the insect larvae and convert the cadaver into a food source suitable for nematode growth and development. After several rounds of reproduction the nematodes are recolonized by the bacteria before emerging from the insect cadaver into the soil to search for a new host. Photorhabdus and Xenorhabdus bacteria therefore engage in both pathogenic and mutualistic interactions with different invertebrate hosts as obligate components of their life cycle. In this review we aim to describe current knowledge of the molecular mechanisms utilized by Photorhabdus and Xenorhabdus to control their host-dependent interactions. Recent work has established that there is a trade-off between pathogenicity and mutualism in both these species of bacteria suggesting that the transition between these interactions must be under regulatory control. Despite the superficial similarity between the life cycles of these bacteria, it is now apparent that the molecular components of the regulatory networks controlling pathogenicity and mutualism in Photorhabdus and Xenorhabdus are very different.  相似文献   

4.
The regulation of pathogenicity and mutualism in Photorhabdus   总被引:2,自引:0,他引:2  
Photorhabdus is a genus of insect-pathogenic bacteria that also maintains a mutualistic interaction with Heterorhabditid nematodes. Bacteria in this genus are members of the family Enterobacteriaceae and are, therefore, closely related to many important mammalian pathogens. This bacteria-nematode complex has been exploited as a biocontrol agent that is active against several insect pests. However, this model system is also uniquely placed to address important fundamental questions about pathogenicity and mutualism. Indeed, recent genetic studies have suggested that there is a significant overlap in the genetic requirements of Photorhabdus for these contrasting interactions. In addition, the identification of key regulators of pathogenicity and symbiosis only serves to highlight the similarities between Photorhabdus, a genus of bacteria that infects invertebrate hosts, and closely related mammalian enteric pathogens.  相似文献   

5.
Photorhabdus is a genus of entomopathogenic Gram-negative bacteria that belong to the family Enterobactericeae. Remarkably, at the same time as being pathogenic to insect larvae, Photorhabdus also have a mutualistic relationship with entomophagous nematodes of the family Heterorhabditiae. Photorhabdus can be isolated in two phenotypically distinct forms, termed the primary and secondary variant. Both variants grow equally well and are equally virulent when injected into insect larvae. However, only the primary variant can colonize the intestinal tract of the IJ stage of the nematode and support nematode growth and development. The primary variant expresses several phenotypes that are absent from the secondary variant, including the production of extracellular enzymes, pigments, antibiotics and light. In this study, we use Photorhabdus temperata strain K122 to show that these primary-specific products are symbiosis factors, i.e. factors that are required for nematode growth and development. We also show that, in P. temperata K122, the production of these symbiosis factors is repressed in the secondary variant by the protein encoded by a gene with homology to hexA from Erwinia. Moreover, the derepression of the symbiosis factors in the secondary variant results in a significant attenuation of virulence to larvae of the greater wax moth, Galleria mellonella. This suggests that, during a normal infection, pathogenicity and symbiosis must be temporally separated and that HexA is involved in the regulation of this pathogen-symbiont transition.  相似文献   

6.
Invertebrate animal models are experimentally tractable and have immunity and disease symptoms that mirror those of vertebrates. Therefore they are of particular utility in understanding fundamental aspects of pathogenesis. Indeed, artificial models using human pathogens and invertebrate hosts have revealed conserved and novel molecular mechanisms of bacterial infection and host immune responses. Additional insights may be gained from investigating interactions between invertebrates and pathogens they encounter in their natural environments. For example, enteric bacteria in the genera Photorhabdus and Xenorhabdus are pathogens of insects that also mutualistically associate with nematodes in the genera Heterorhabditis and Steinernema respectively. These bacteria serve as models to understand naturally occurring symbiotic associations that result in disease in or benefit for animals. Xenorhabdus nematophila is the best-studied species of its genus with regard to the molecular mechanisms of its symbiotic associations. In this review, we summarize recent advances in understanding X. nematophila –host interactions. We emphasize regulatory cascades involved in coordinating transitions between various stages of the X. nematophila life cycle: infection, reproduction and transmission.  相似文献   

7.
Photorhabdus luminescens is a species of Gram‐negative bacteria that is pathogenic to insects while also maintaining a mutualistic association with nematodes from the family Heterorhabditis. P. luminescens elaborates an extensive secondary metabolism during the post‐exponential phase of growth that includes the production of an antibiotic called 3‐5‐dihydroxy‐4‐isopropylstilbene (ST), an anthraquinone pigment (AQ) and bioluminescence. In this study we identified a mutant that was unable to produce ST, AQ and light. This mutation was found to be in the mdh gene, encoding malate dehydrogenase, a key enzyme in the tricarboxylic acid (TCA) cycle. Interestingly the mdh mutant was unaffected in virulence but was unable to support nematode growth and development in vivo or in vitro. This clearly establishes that secondary metabolism in P. luminescens is required for the mutualistic interaction with the nematode. Furthermore, the construction of mutations in key genes in other central metabolic pathways confirmed the critical role for the TCA cycle in both secondary metabolism and mutualism, but not in virulence. Therefore, we conclude that the TCA cycle is required for the transition of P. luminescens from pathogen to mutualist implicating the involvement of a metabolic switch in the regulation of lifestyle decisions in this bacterium.  相似文献   

8.
Mutualistic association between entomopathogenic Photorhabdus bacteria and Heterorhabditis nematodes represents one of the emerging model systems in symbiosis studies, yet little is known about this partnership from a coevolutionary perspective. Herein, we investigated phylogenetic and cophylogenetic relationships of Heterorhabditis and Photorhabdus strains using molecular markers Internal Transcribed Spacer and gyrase B gene sequences, respectively. The phylogenies presented consistent, well supported, monophyletic groups in the parsimonious and likelihood analyses for both the nematode and bacterial strains and supported the placement of currently recognized taxa, from which a potentially new Heterorhabditis species represented by a Thailand strain MP68 was identified. While the nematode strains with distant geographic distributions showed no detectable phylogenetic divergence within H. bacteriophora or H. georgiana monophyletic groups, their respective symbiotic bacteria speciated into two Photorhabdus species: P. luminescens and P. temperata, indicating the occurrence of duplication. Although such evolutionary process reduces the phylogenetic congruence between Heterorhabditis nematodes and Photorhabdus bacteria, global cophylogenetic tests using ParaFit detected a highly significant correlation between the two phylogenies (ParaFitGlobal = 0.001). Further, the associations between H. zealandica, H. indica and H. megidis strains and their symbiotic bacteria exhibited significant contribution to the overall cophylogenetic structure. Overall, this study reveals evidence of coevolution between Photorhabdus bacteria and Heterorhabditis nematodes and provides a framework for further examination of the evolution of these associations.  相似文献   

9.
The interaction between legumes and rhizobia has been well studied in the context of a mutualistic, nitrogen‐fixing symbiosis. The fitness of legumes, including important agricultural crops, is enhanced by the plants’ ability to develop symbiotic associations with certain soil bacteria that fix atmospheric nitrogen into a utilizable form, namely, ammonia, via a chemical reaction that only bacteria and archaea can perform. Of the bacteria, members of the alpha subclass of the protebacteria are the best‐known nitrogen‐fixing symbionts of legumes. Recently, members of the beta subclass of the proteobacteria that induce nitrogen‐fixing nodules on legume roots in a species‐specific manner have been identified. In this issue, Bontemps et al. reveal that not only are these newly identified rhizobia novel in shifting the paradigm of our understanding of legume symbiosis, but also, based on symbiotic gene phylogenies, have a history that is both ancient and stable. Expanding our understanding of novel plant growth promoting rhizobia will be a valuable resource for incorporating alternative strategies of nitrogen fixation for enhancing plant growth.  相似文献   

10.
The tc genes of Photorhabdus: a growing family   总被引:7,自引:0,他引:7  
The toxin complex (tc) genes of Photorhabdus encode insecticidal, high molecular weight Tc toxins. These toxins have been suggested as useful alternatives to those derived from Bacillus thuringiensis for expression in insect-resistant transgenic plants. Although Photorhabdus luminescens is symbiotic with nematodes that kill insects, tc genes have recently been described from other insect-associated bacteria such as Serratia entomophila, an insect pathogen, and Yersinia pestis, the causative agent of bubonic plague, which has a flea vector. Here, recent advances in our understanding of the tc gene family are reviewed in view of their potential development as insect-control agents.  相似文献   

11.
In the review, the life cycles and mutualistic relations within the nematode-bacteria associations are analyzed: nematodes Bursaphelenchus xylophilus (PWN) with bacteria Pseudomonas fluorescens, Bacillus spp., Burkholderia arboris; entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis with bacteria of the genera Xenorhabdus and Photorhabdus. The life cycles of PWN and EPN show traits of the primary detrital trophism. Both cycles include invasion of the living host and are completed with death of the host, which is an obligate condition for dispersal of the nematodes and their associated bacteria. Nematodes and bacteria stimulate each other to reproduce fast; the diverse forms of their interactions are considered, including direct and indirect ones (via the plant or insect host). Bacteria of both mutualistic associations produce siderophores and antibiotics that prevent reproduction of other pathogenic and putrefactive microorganisms. Ectosymbiotic bacteria of PWN may be recruited into the association from among the inhabitants of the mucous cover of the nematode body, as well as from the pathogenic bacterial biota of local conifers; thus the PWN and bacteria are facultative synergists in the phytopathogenic process. Endosymbiotic bacteria of EPN are not capable of independent life; they have developed obligate associations with highly specific nematode hosts.  相似文献   

12.
Xenorhabdus budapestensis can produce a variety of proteins that help this bacterium and its mutualistic nematode vector kill the host insect. In this report, we purified one protein fraction from the intracellular extract of X. budapestensis D43, which was designated HIP57. By injection, HIP57 caused Galleria mellonella larval bodies to blacken and die with an LD(50) of 206.81 ng/larva. Analyzes of HIP57 by two-dimensional gel electrophoresis showed that this protein was a single spot on the gel with a molecular weight of 57 kDa and a pI of ~5. Sequencing and bioinformatic analysis suggested that the HIP57 toxin was homologous to GroEL. GroEL has been accepted as molecule chaperon; however, our research revealed that HIP57 (GroEL) possesses another novel function as an insecticide. A GroEL phylogenetic tree defined the relationship among the related species of mutualistic bacteria (Xenorhabdus and Photorhabdus) from the entomopathogenic nematodes and the evolution within the family Enterobacteriaceae. Thus, GroEL could be a complement to 16S rDNA for studying the molecular phylogenies of the family Enterobacteriaceae. Phenoloxidase (PO) activity analysis of G. mellonella larvae injected with HIP57 suggested that the toxin activates the PO cascade, which provides an extensive defense reaction that potentially responsible for G. mellonella larval death.  相似文献   

13.
14.
Many models of mutualisms show that mutualisms are unstable if hosts lack mechanisms enabling preferential associations with mutualistic symbiotic partners over exploitative partners. Despite the theoretical importance of mutualism-stabilizing mechanisms, we have little empirical evidence to infer their evolutionary dynamics in response to exploitation by non-beneficial partners. Using a model mutualism—the interaction between legumes and nitrogen-fixing soil symbionts—we tested for quantitative genetic variation in plant responses to mutualistic and exploitative symbiotic rhizobia in controlled greenhouse conditions. We found significant broad-sense heritability in a legume host''s preferential association with mutualistic over exploitative symbionts and selection to reduce frequency of associations with exploitative partners. We failed to detect evidence that selection will favour the loss of mutualism-stabilizing mechanisms in the absence of exploitation, as we found no evidence for a fitness cost to the host trait or indirect selection on genetically correlated traits. Our results show that genetic variation in the ability to preferentially reduce associations with an exploitative partner exists within mutualisms and is under selection, indicating that micro-evolutionary responses in mutualism-stabilizing traits in the face of rapidly evolving mutualistic and exploitative symbiotic bacteria can occur in natural host populations.  相似文献   

15.
Plants display a tremendous diversity of developmental and physiological features, resulting from gains and losses of functional innovations across the plant phylogeny. Among those, the most impactful have been undoubtedly the ones that allowed plant terrestrializations, the transitions from an aquatic to a terrestrial environment. Although the embryophyte terrestrialization has been particularly scrutinized, others occurred across the plant phylogeny with the involvement of mutualistic symbioses as a common theme. Here, we review the current pieces of evidence supporting that the repeated colonization of land by plants has been facilitated by interactions with mutualistic symbionts. In that context, we detail two of these mutualistic symbioses: the arbuscular mycorrhizal symbiosis in embryophytes and the lichen symbiosis in chlorophyte algae. We suggest that associations with bacteria should be revisited in that context, and we propose that overlooked symbioses might have facilitated the emergence of other land plant clades.

Diverse plant lineages have independently colonized emerged lands over the last 450 million years and were helped in this process by mutualistic associations with fungi and potentially bacteria.  相似文献   

16.
Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans.  相似文献   

17.
Plant-pollinator associations are often seen as purely mutualistic, while in reality they can be more complex. Indeed they may also display a diverse array of antagonistic interactions, such as competition and victim–exploiter interactions. In some cases mutualistic and antagonistic interactions are carried-out by the same species but at different life-stages. As a consequence, population structure affects the balance of inter-specific associations, a topic that is receiving increased attention. In this paper, we developed a model that captures the basic features of the interaction between a flowering plant and an insect with a larval stage that feeds on the plant’s vegetative tissues (e.g. leaves) and an adult pollinator stage. Our model is able to display a rich set of dynamics, the most remarkable of which involves victim–exploiter oscillations that allow plants to attain abundances above their carrying capacities and the periodic alternation between states dominated by mutualism or antagonism. Our study indicates that changes in the insect’s life cycle can modify the balance between mutualism and antagonism, causing important qualitative changes in the interaction dynamics. These changes in the life cycle could be caused by a variety of external drivers, such as temperature, plant nutrients, pesticides and changes in the diet of adult pollinators.  相似文献   

18.
Bacteriocins are proteins produced by bacteria to destroy other bacteria occupying their ecological niche. Photorhabdus luminescens is an insect pathogenic bacterium carried by an entomopathogenic nematode and occupies several different niches in its life cycle. The nematode enters the insect and releases a single strain of P. luminescens. The bacteria then kill the host and the bacteria and nematodes replicate within the cadaver. Strikingly, at the end of the infection the cadaver is still occupied by a single strain of bacterium, suggesting that P. luminescens can destroy other bacteria entering, or present within, the insect. Here we describe four loci encoding 'lumicins' in P. luminescens subsp. akhurstii strain W14. The lumicins are novel bacteriocins capable of killing other strains of Photorhabdus and Escherichia coli. These loci predict killer proteins and multiple dual type immunity proteins with domains similar to pyocins and colicins. The killer proteins are chimeric in nature with multiple domains, one of which is similar to the uropathogenic-specific protein (USP) described from uropathogenic E. coli. The implications of these novel bacteriocins for the lifestyle of Photorhabdus and the potential role of USP as a bacteriocin in E. coli are discussed.  相似文献   

19.
Photorhabdus is a genus of gram-negative Enterobacteriaceae that is pathogenic to insect larvae while also maintaining a mutualistic relationship with nematodes from the family Heterorhabditis, where the bacteria occupy the gut of the infective juvenile (IJ) stage of the nematode. In this study we describe the identification and characterization of a mutation in the pbgE1 gene of Photorhabdus luminescens TT01, predicted to be the fifth gene in the pbgPE operon. We show that this mutant, BMM305, is strongly attenuated in virulence against larvae of the greater wax moth, Galleria mellonella, and we report that BMM305 is more sensitive to the cationic antimicrobial peptide, polymyxin B, and growth in mildly acidic pH than the parental strain of P. luminescens. Moreover, we also show that the lipopolysaccharide (LPS) present on the surface of BMM305 does not appear to contain any O antigen. Complementation studies reveal that the increased sensitivity to polymyxin B and growth in mildly acidic pH can be rescued by the in trans expression of pbgE1, while the defects in O-antigen assembly and pathogenicity require the in trans expression of pbgE1 and the downstream genes pbgE2 and pbgE3. Finally, we show that BMM305 is defective in symbiosis as this mutant is unable to colonize the gut of the IJ stage of the nematode. Therefore, we conclude that the pbgPE operon is required for both pathogenicity and symbiosis in P. luminescens.  相似文献   

20.
Plant-interacting bacteria can establish either mutualistic or pathogenic interactions that cause beneficial or detrimental effects respectively, to their hosts. In spite of the completely different outcomes, accumulating evidence indicates that similar molecular bases underlie the establishment of these two contrasting plant-bacteria associations. Recent findings observed in the mutualistic nitrogen-fixing Rhizobium-legume symbiosis add new elements to the increasing list of similarities. Amongst these, in this review we describe the role of plant resistance proteins in determining host specificity in the Rhizobium-legume symbiosis that resemble the gene-for-gene resistance of plant-pathogen interactions, and the production of antimicrobial peptides by certain legumes to control rhizobial proliferation within nodules. Amongst common bacterial strategies, cyclic diguanylate (c-di-GMP) appears to be a second messenger used by both pathogenic and mutualistic bacteria to regulate key features for interaction with their plant hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号