首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro treatment of crude particulate fractions of male rat ventral prostate and female rat liver with membrane fluidizers (aliphatic alcohols) has been previously reported by us to increase prolactin (PRL) receptor levels, presumably by unmasking cryptic prolactin receptors. The objective of this study was to determine if similar in vitro treatment of purified plasma membrane- and Golgi-rich fractions of male rat prostate and female rat liver with ethanol produced differential effects on prolactin binding in these two subcellular fractions. The degree of fluidization was monitored by a fluorescence polarization method using 1,6-diphenylhexatriene. 125I-PRL specific binding to Golgi-rich fractions of male ventral prostate and female liver was approximately 4-fold higher than that observed in plasma membrane-rich fractions. The microviscosity parameter, inversely related to lipid fluidity, was consistently lower in Golgi-rich fractions than that in plasma membrane-rich fractions in both prostate and liver. In vitro ethanol treatment of prostatic and hepatic plasma membrane fractions produced a dose-related increase and then decline in prolactin binding and a maximal (60-75%) increase in prolactin binding was observed at 4.8% and 2.0% ethanol in prostatic and hepatic membranes, respectively. This in vitro treatment also produced a significant increase in apparent lipid fluidity of plasma membrane-rich fractions of prostate gland and liver. However, similar in vitro ethanol treatment of Golgi fractions of both prostate gland and liver exhibited little increase in prolactin binding without changing microviscosity. Our observations are consistent with the direct relationship between membrane fluidity and prolactin receptor levels. The changes in prostatic and hepatic plasma membrane fractions following in vitro ethanol treatment suggest that prolactin receptors located on the plasma membranes may be modulated (via membrane lipid microviscosity changes) in vivo to a greater extent by various physiological agents than those located within the Golgi fraction.  相似文献   

2.
The objectives of this study were (i) to determine if in vivo administration of ethanol to rats produced changes in apparent lipid fluidity and prolactin binding capacity of male prostatic and female hepatic membranes and (ii) to compare the effects of membrane fluidizers (aliphatic alcohols) in vitro on prolactin binding of prostatic and hepatic membranes in control and alcohol-fed animals. In vitro ethanol has been shown by us previously to increase prolactin receptor levels presumably by unmasking cryptic prolactin receptors. The degree of fluidization was monitored by a fluorescence polarization method using 1,6-diphenylhexatriene. Adult male and female rats were given either water or 4% ethanol as the sole source of drinking fluid for a period of 6 weeks. No significant changes in plasma prolactin were observed between control and ethanol-treated groups of either sex. However, the microviscosity parameter, inversely related to lipid fluidity, was increased approx. 34% and 40%, respectively, in male prostatic and female rat hepatic membranes after ethanol feeding. Furthermore, 125I-prolactin binding capacity was decreased approx. 30% and 26%, respectively, in prostatic and hepatic membranes of alcohol fed animals. In vitro treatment with aliphatic alcohols had no effect on either microviscosity or prolactin binding in hepatic or prostatic membranes from ethanol-fed rats, but both fluidized and increased prolactin binding in the same membrane preparations from control rats. Our observations are consistent with the direct relationship between membrane fluidity and prolactin receptor levels. The changes in prostatic and hepatic membranes after alcohol feeding, namely decreased prolactin receptor levels, decreased fluidity and increased resistance to the fluidizing effects of in vitro aliphatic alcohols may reflect a fundamental membrane defect.  相似文献   

3.
The objectives of this study were to determine (i) if the age-related changes in 125I-labeled ovine prolactin specific binding of rat ventral prostate was correlated with changes in membrane lipid microviscosity and (ii) if membrane fluidizers produced age-dependent effects on prolactin binding of prostatic membranes. The degree of fluidization was monitored by a fluorescence polarization method using 1,6-diphenylhexatriene. Membrane preparations of ventral prostate glands obtained from immature (24-25 days old), young-adult (80-90 days old) and aged (550-610 days old) male rats were used for prolactin binding and membrane lipid microviscosity measurements. Relative to immature rats, prostatic prolactin binding decreased approximately 50% in young-adult rats and 75% in aged rats. Membrane lipid microviscosity, relative to immature rats, was increased 72% in young-adult rats and 140% in aged rats. Prostatic membranes obtained from immature animals exhibited no significant effects of in vitro alcohol treatment on prolactin binding, whereas, those obtained from aged animals exhibited maximal increase in prolactin binding. The value of the microviscosity parameter, after in vitro alcohol exposure, exhibited no significant changes in immature animals, whereas, this parameter was decreased approximately 15% in young-adults and approximately 30% in aged animals. These data suggest that in vitro fluidization of prostatic membrane exhibits an age-dependent modification of prolactin binding.  相似文献   

4.
The objectives of this study were to determine (i) if the age-related changes in 125I-labeled ovine prolactin specific binding of rat ventral prostate was correlated with changes in membrane lipid microviscosity and (ii) if membrane fluidizers produced age-dependent effects on prolactin binding of prostatic membranes. The degree of fluidization was monitored by a fluorescence polarization method using 1,6-diphenylhexatriene. Membrane preparations of ventral prostate glands obtained from immature (24–25 days old), young-adult (80–90 days old) and aged (550–610 days old) male rats were used for prolactin binding and membrane lipid microviscosity measurements. Relative to immature rats, prostatic prolactin binding decreased approximately 50% in young-adult rats and 75% in aged rats. Membrane lipid microviscosity, relative to immature rats, was increased 72% in young-adult rats and 140% in aged rats. Prostatic membranes obtained from immature animals exhibited no significant effects of in vitro alcohol treatment on prolactin binding, whereas, those obtained from aged animals exhibited maximal increase in prolactin binding. The value of the microviscosity parameter, after in vitro alcohol exposure, exhibited no significant changes in immature animals, whereas, this parameter was decreased approximately 15% in young-adults and approximately 30% in aged animals. These data suggest that in vitro fluidization of prostatic membrane exhibits an age-dependent modification of prolactin binding.  相似文献   

5.
The concentrations of two structurally distinct membrane fluidizers, the local anesthetic benzyl alcohol (BA) and heptanol (HE), were used at concentrations so that their addition to K562 cells caused identical increases in the level of plasma membrane fluidity as tested by 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy. The level of membrane fluidization induced by the chemical agents on isolated membranes at such concentrations corresponded to the membrane fluidity increase seen during a thermal shift up to 42 degrees C. The formation of isofluid membrane states in response to the administration of BA or HE resulted in almost identical downshifts in the temperature thresholds of the heat shock response, accompanied by increases in the expression of genes for stress proteins such as heat shock protein (HSP)-70 at the physiological temperature. Similarly to thermal stress, the exposure of the cells to these membrane fluidizers elicited nearly identical increases of cytosolic Ca2+ concentration in both Ca2+-containing and Ca2+-free media and also closely similar extents of increase in mitochondrial hyperpolarization. We obtained no evidence that the activation of heat shock protein expression by membrane fluidizers is induced by a protein-unfolding signal. We suggest, that the increase of fluidity in specific membrane domains, together with subsequent alterations in key cellular events are converted into signal(s) leading to activation of heat shock genes.  相似文献   

6.
We recently reported that a mild heat shock induces a long lasting stimulation of TRAIL-induced apoptosis of leukemic T-lymphocytes and myeloid cell lines, but not normal T-lymphocytes, which correlates with an enhanced ability of TRAIL to recognize its receptors. As shown here, this phenomenon could be inhibited by the xanthogenate agent D609, a sphingomyelin/ceramide pathway inhibitor. A caspase-dependent and D609-sensitive two-fold increase in ceramide level was elicited by heat shock plus TRAIL combined treatment. One day after heat shock, a similar increase in ceramide was induced by TRAIL. Sphingolipids/ceramides are known to regulate membrane integrity, and heat shock increases membrane fluidity. In this regard, the heat shock plus TRAIL combined treatment resulted in a D609-sensitive membrane fluidization which was far more intense than that induced by heat shock only. We also report that membrane fluidizers, that mimic the effect of heat shock, such benzyl alcohol and ethanol, potently stimulated TRAIL-induced apoptosis. As heat shock, these alcohols increased, in a D609-sensitive manner, membrane fluidity in the presence of TRAIL, the recognition of TRAIL death receptors, and ceramide levels. These results suggest that stress agents that trigger ceramide production and an overall increase in membrane fluidity are stimulators of TRAIL apoptosis.  相似文献   

7.
Benzyl alcohol and ethanol, at aqueous concentrations that cause local anesthesia of rat sciatic nerve, affect structural and functional properties of rat adipocytes. The data strongly suggest that structurally-intact membrane lipids are required for the proper cellular uptake of glucose and for the physiologic response of adipocytes to insulin. The structure of adipocyte membrane lipids was examined with the spin label method. Isolated adipocyte ‘ghost’ membranes were labeled with the 5-nitroxide stearate spin probe I(12,3). Order parameters that are sensitive to the fluidity of the lipid environment of the incorporated probe were calculated from ESR spectra of labeled membranes. Benzyl alcohol and ethanol dramatically increased the fluidity of the adipocyte ghost membrane, as indicated by decreases in the polarity-corrected order parameter S. This concentration-dependent fluidization commenced at approx. 10 mM benzyl alcohol and progressively increased at all higher concentrations tested (up to 107 mM). S decreased approx. 5.7% at 40 mM benzyl alcohol, a change in S comparable in magnitude to that induced by a 6°C increase in the incubation temperature. Benzyl alcohol and ethanol inhibited basal glucose uptake in adipocytes and uptake maximally stimulated by insulin. Temperature-induced increases in membrane fluidity, detected with 1(12,3), that closely paralleled the fluidity effects of alcohols were associated only with increases in basal and insulin-stimulated glucose uptake. The contention that the membrane lipid fluidity plays a role in insulin action needs further study.  相似文献   

8.
The objective of this study was to determine if arachidonic acid, a precursor of prostaglandin synthesis, bradykinin, a decapeptide known to stimulate membrane phospholipid methylation, arachidonic acid release and prostacyclin synthesis, and enzyme phospholipase A2, capable of liberating arachidonic acid, alter the fluidity of hepatic membranes which could in turn modify the functionality of prolactin receptors. Liver homogenates of adult C3H female mice incubated at 28°C for various times with 1–20 μg/ml arachidonic acid, 1–100 μg/ml bradykinin or 0.26–0.00026 U/ml phospholipase A2 provided the 100,000 × g membrane pellets for subsequent ovine prolactin binding and membrane fluidity studies. Membrane microviscosity was determined by fluorescence polarization techniques using the lipid probe 1,6 diphenylhexatriene. Arachidonic acid, bradykinin and phospholipase A2 stimulated specific oPRL binding, in a dose-related fashion, with maximum increases of 73%, 21% and 46%, at 4 μg/ml arachidonic acid, 5 μg/ml bradykinin and 0.026 U/ml PLA2, respectively. This induction, occurring within 30 min of incubation, was found to be due to an increase in the number of receptor sites. Under the same conditions, arachidonic acid, bradykinin and PLA2 induced 22%, 16%, and 18% decreases in membrane microviscosity, respectively. These data suggest that prostaglandin synthesis modifying agents may modulate the number of prolactin receptors in vivo by changing the lipid fluidity of the target cell membranes by either of their known effects: arachidonic acid release from the phospholipid matrix, synthesizing appropriate prostaglandins at correct concentration or methylation of membrane phospholipids.  相似文献   

9.
After cold shock, the Bacillus subtilis desaturase Des introduces double bonds into the fatty acids of existing membrane phospholipids. The synthesis of Des is regulated exclusively by the two-component system DesK/DesR; DesK serves as a sensor of the state of the membrane and triggers Des synthesis after a decrease in membrane fluidity. The aim of our work is to investigate the biophysical changes in the membrane that are able to affect the DesK signalling state. Using linear alcohols (ethanol, propanol, butanol, hexanol, octanol) and benzyl alcohol, we were able to suppress Des synthesis after a temperature downshift. The changes in the biophysical properties of the membrane caused by alcohol addition were followed using membrane fluorescent probes and differential scanning calorimetry.We found that the membrane fluidization induced by alcohols was reflected in an increased hydration at the lipid-water interface. This is associated with a decrease in DesK activity. The addition of alcohol mimics a temperature increase, which can be measured isothermically by fluorescence anisotropy. The effect of alcohols on the membrane periphery is in line with the concept of the mechanism by which two hydrophilic motifs located at opposite ends of the transmembrane region of DesK, which work as a molecular caliper, sense temperature-dependent variations in membrane properties.  相似文献   

10.
Although the effects of ethanol on protein receptors and lipid membranes have been studied extensively, ethanol’s effect on vesicles fusing to lipid bilayers is not known. To determine the effect of alcohols on fusion rates, we utilized the nystatin/ergosterol fusion assay to measure fusion of liposomes to a planar lipid bilayer (BLM). The addition of ethanol excited fusion when applied on the cis (vesicle) side, and inhibited fusion on the trans side. Other short-chain alcohols followed a similar pattern. In general, the inhibitory effect of alcohols (trans) occurs at lower doses than the excitatory (cis) effect, with a decrease of 29% in fusion rates at the legal driving limit of 0.08% (w/v) ethanol (IC50 = 0.2% v/v, 34 mM). Similar inhibitory effects were observed with methanol, propanol, and butanol, with ethanol being the most potent. Significant variability was observed with different alcohols when applied to the cis side. Ethanol and propanol enhanced fusion, butanol also enhanced fusion but was less potent, and low doses of methanol mildly inhibited fusion. The inhibition by trans addition of alcohols implies that they alter the planar membrane structure and thereby increase the activation energy required for fusion, likely through an increase in membrane fluidity. The cis data are likely a combination of the above effect and a proportionally greater lowering of the vesicle lysis tension and hydration repulsive pressure that combine to enhance fusion. Alternate hypotheses are also discussed. The inhibitory effect of ethanol on liposome-membrane fusion is large enough to provide a possible biophysical explanation of compromised neuronal behavior.  相似文献   

11.
Membrane effects of ethanol: bulk lipid versus lipid domains   总被引:3,自引:0,他引:3  
It has been well-established that ethanol fluidizes the bulk lipid of membranes and that this effect may alter cell function and be involved in ethanol sensitivity and tolerance. This hypothesis has been supported in several studies, however, there is also a considerable amount of data that do not support such an explanation, e.g., direct effect of ethanol on proteins, other membrane acting drugs, temperature effects, effects of ethanol on aged membranes and inconsistent effects of chronic ethanol consumption on lipid content. This review examined the bulk membrane fluidization hypothesis in light of those data and proposed a modification of the bulk membrane hypothesis that is based on recent data that show that ethanol and other alcohols have a specific effect on the structural properties of different membrane domains. This specific effect of ethanol is discussed within the context of how changes in fluidity of domains may alter membrane function.  相似文献   

12.
Treatment of mouse cortical brain membranes with dioleoylphosphatidylcholine produced a large (50%) decrease in serotonin binding sites. The time course for this effect paralleled an increase in oleic acid in membrane phosphatidycholine and an increase in membrane fluidity. “Active Lipid” produced a similar decrease in serotonin binding sites, while fluidizing the membranes even more strongly. Distearoylphosphatidylcholine had no effect on serotonin binding sites or membrane fluidity by itself, but was capable of counteracting both the reduction in binding sites and membrane fluidity produced by “Active Lipid”. The data indicate that specific phosphatidylcholines can have profound effects on serotonin receptors, but a clear picture of the relative importance of membrane fluidity per se versus more specific phospholipid effects will require further investigation.  相似文献   

13.
The objective of these studies was to determine if prolactin, known to induce its own receptors, alters the prostaglandin (PG) synthesis which could, in turn, modify the fluidity of the membrane and thus alter the functionality of prolactin receptors. Adult male C3H mice were injected subcutaneously with 100 μg of oPRL every 4 h for 0, 24 or 48 h and sacrificed 8 h after receiving the last injection. Liver 100,000 × g membrane pellets were used in the measurement of these parameters. The amount of binding of prolactin to these membranes increased with the duration of injections, the values being 179 and 244% of control values after 24 and 48 h of injections, respectively. The amounts of PGF and PGE synthesized also increased after these injections, the values being 127 and 270% of control for PGF and 634 and 695% of control values for PGE after 24 and 48 h of injections, respectively. Fluorescence polarization, an index of microviscosity, was decreased by 14 and 20% after 24 and 48 h of PRL administration, respectively. Previous studies have demonstrated simultaneous in vitro effects of prostaglandin on both prolactin receptors and membrane fluidity. The current data are in agreement with those observations and suggest that prolactin may modulate its own receptor by increasing the fluidity of the membrane in which it exists by alterations within the PG cascade. Such biochemical changes may then modify existing restraints and allow the hormone receptor to assume a more functional configuration.  相似文献   

14.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 degrees C). Incorporation of cholesterol (30-50%) increased the microviscosity of lipid phases by 200-500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since tha latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracain and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at 25 degrees C varied as follows: polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erythrocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol: phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important functional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

15.
The effect of environmental ethanol concentration on the fatty acid composition of strains of Lactobacillus hilgardii, differing in their tolerance to ethanol, was determined. A marked increase in the proportion of lactobacillic acid (a cyclopropane fatty acid) and a decrease in oleic and vaccenic acids with increasing ethanol concentration was observed. The amount of lactobacillic acid determined at standard conditions (25°C, 0% ethanol) was found to be proportional to the ethanol tolerance of the strains studied. The effect of this alcohol on plasma membrane fluidity was studied by differential scanning calorimetry. The adaptive response to growth in the presence of high concentrations of ethanol produced membranes which, within the limits of ethanol tolerance, maintained the fluidity and integrity in an environment which tends to increase membrane rigidity. When pre-adapted cells are analysed in the absence of environmental ethanol there is a measurabie increase in fluidity. It is proposed that this phenomenon may be correlated with the increase in the proportion of lactobacillic acid. The existence of a relationship between membrane fluidity and ethanol tolerance is discussed.  相似文献   

16.
J K Carr  L M Keefer  J C Cohen 《Life sciences》1987,41(12):1507-1515
Endotoxin or lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria, produces profound physiologic changes in most mammals. The effects of LPS on ovine prolactin (oPRL) binding by hepatic membranes of lactating mice is explored in this report. Specific 125I-oPRL binding by liver membranes from LPS-responder C3HfB/HeN mice increased two-fold within fifteen minutes of the injection of LPS, while no change was observed in the non-responder C3H/HeJ mice. Specific 125I-insulin binding did not change. Scatchard analysis of equilibrium binding of oPRL to C3HfB/HeN liver membranes indicated that within fifteen minutes of LPS injection, a receptor of differing binding affinity appears and then disappears by one hour post-injection. We propose that these rapid alterations in the specific binding of oPRL by liver membranes from LPS-injected, lactating C3HfB/HeN mice are due to the transient creation or unmasking of a novel class of PRL receptor.  相似文献   

17.
NK cell-mediated cytotoxicity results from membrane interactions between NK effector and target cells. The role of membrane fluidity in these events is not known. The present study was undertaken to investigate the effect of changes in membrane lipid fluidity of NK effector and NK-sensitive target cells on the lytic pathway of NK cell-mediated cytotoxicity. Fluidity was modulated by various lipids and measured by fluorescence polarization. NK effector cells treated with phosphatidylcholine complexed with polyvinylpyrrolidone (PVP) and bovine serum albumin (BSA) showed increased membrane fluidity. This fluidization of the effector cell membrane resulted in a significant inhibition of cytotoxic activity in the 51Cr-release assay. Single cell analysis revealed that the inhibition was due to a decrease in the frequency of NK target conjugates and reduced killing of conjugated targets. Rigidification of the NK effector cell membranes by treatment with cholesteryl hemisuccinate complexed with PVP and BSA also resulted in inhibition of cytotoxicity. This inhibition was post binding, because binding was increased and lysis was abrogated. Fluidization of K562 target cell membranes caused a slight but insignificant increase in their lysis by NK cells without affecting the binding step. On the other hand, rigidification of K562 membranes decreased the sensitivity of these target cells to lysis. Single cell analysis revealed that this inhibition of NK lysis is post binding, because the frequency of killers was significantly decreased. It was also shown that membrane rigidification of target cells that were programmed for lysis during the lethal hit stage and subsequently separated from effector cells, rendered the programmed cells resistant to killing during the killer cell-independent lysis step. These results demonstrate that fluidization or rigidification of the plasma membrane of either effector or target cells affect different stages of the NK cell-mediated cytolytic events.  相似文献   

18.
19.
The effect of membrane-fluidizing agents on the adhesion of CHO cells   总被引:3,自引:0,他引:3  
Treatment of CHO cells with drugs which are known to increase membrane lipid fluidity reduced the cells' ability to adhere to protein coated substrates, The concentrations of local anesthetics, nonionic detergents or aliphatic alcohols required to reduce CHO cell adhesion by 50% were similar to those reported to block nerve conduction, indicating that these drugs can affect the membrane at physiologically significant concentrations. Nonionic detergents and aliphatic alcohols, but not local anesthetics, caused increases in the fluidity of CHO plasma membranes (measured by fluorescence polarization) at concentrations which inhibited cell adhesion. The adhesion versus temperature profile had a sigmoidal shape, suggesting that a temperature dependent cooperative process such as a lipid phase transition, might be involved. However, the temperature profile for CHO membrane fluidity manifested no discontinuities, indicating the absence of any discrete phase transitions of the lipid matrix. This observation, coupled with the result that the inhibition of CHO cell adhesion produced by low temperatures was not relieved by drugs which can increase membrane fluidity, suggests that the reduced adhesion seen at low temperature is probably not due to reduced lipid fluidity.  相似文献   

20.
A change in the environment of rat brain membranes by dialysis from phosphate buffered saline (PBS) to 10 mM potassium phosphate (pH 7.2) led to a 35% loss in delta opioid receptor binding, while alteration of membrane structure on freezing at -20 degrees C for 55 days led to 85% loss of receptor binding. The dialysate, 200 mM KCI and NaCl restored receptor binding lost on dialysis. This K+ and Na+ restabilization of the receptor can be through cation-pi bonding, interactions that are suited to the lipid bilayer. In membranes stored at -20 degrees C, the loss of binding is attributed to increased membrane fluidity by phospholipase A2 action on membrane phospholipids, resulting in an increase of free fatty acids. K+ but not Na+ restabilization of these membrane receptors may be due to the ability of K+ to decrease membrane fluidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号