首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The uptake of intracellular putrescine and spermidine was examined in B16 melanoma cells. It was found that difluoromethylornithine preferentially induced putrescine transport (28-fold) compared to that for spermidine (3.5-fold). Putrescine uptake was partially Na+ dependent, whereas spermidine uptake was not. Inhibition studies with the two polyamines showed that putrescine was a poor competitive inhibitor of spermidine uptake, exhibiting a Ki of 69-75 microM, whereas the estimated Km for putrescine uptake was only 5.36 microM. By contrast, spermidine inhibition of putrescine transport produced a non-linear Eadie-Scatchard plot suggesting that putrescine was taken up by a spermidine-sensitive and a spermidine-insensitive process. The estimated spermidine Ki for inhibition of the spermidine-sensitive process was 0.125 microM. Using a series of polypyridinium quaternary salts to inhibit transport, no correlation between inhibition of putrescine uptake and inhibition of spermidine uptake was seen. Finally, the photoaffinity label, 1,12-di(N5-azido-2-nitrobenzoyl)spermine selectively inactivated the putrescine transporter(s) without affecting spermidine uptake. From these observations, it was concluded that multiple polyamine transporters are present on B16 melanoma cells and that separate, distinct transporter(s) account for the uptake of putrescine and spermidine in this cell-line following induction with difluoromethylornithine. The present of different transporters for the two polyamines indicates that expression of uptake activity for putrescine and spermidine may be under separate cellular control.  相似文献   

2.
LLC-PK1 cells were brought to a quiescent state by treatment with DL-2-difluoromethylornithine (DFMO), a specific inhibitor of L-ornithine decarboxylase (ODC). The inhibition of ODC, which is the key enzyme for polyamine synthesis, strongly reduced the cellular content of putrescine and spermidine. The cells resumed DNA-synthesis followed by mitosis when exogenous putrescine was added. DFMO treatment strongly stimulated the putrescine uptake capability. A kinetic analysis of the initial uptake rates revealed a saturable Na+-dependent and a saturable Na+-independent pathway on top of non-saturable diffusion. The stimulation by DFMO was exclusively due to an effect on the Vmax values of the saturable pathways. The Na+-dependent transporter had a higher affinity for putrescine (apparent Km = 4.7 +/- 0.7 microM) than the Na+-independent transporter (apparent Km = 29.8 +/- 3.5 microM). As a consequence, although the latter transporter had a higher Vmax, the Na+-dependent transport was more important at a physiological putrescine concentration. Putrescine uptake by both transporters was inhibited with similar relative affinities by spermidine, spermine as well as by the antileukemic agent, methylglyoxal bis(guanylhydrazone), but not by amino acids. The activity of the Na+-dependent transporter was very much dependent on SH-group reagents, whereas the Na+-independent transporter was not affected. Both transporters were inhibited by metabolic inhibitors and by ionophores but the Na+-dependent transporter was affected to a greater extent. For both transporters there was a down-regulation in response to exogenous putrescine. This suggests that the polyamine transporters in LLC-PK1 are adaptively regulated and may contribute to the regulation of the cellular polyamine level and cellular proliferation.  相似文献   

3.
The effects of histamine on polyamine uptake and metabolism was studied in a mouse mast cell line (C57.1), as a cell model in which both biogenic amines are important for maintaining cell function and viability. Results obtained after incubations with exogenous histamine indicated that histamine prevents polyamine accumulation by affecting polyamine uptake. A plasma membrane transport system for polyamines has been also studied in mast cells. It seems to be a Na(+)-dependent uptake with high affinity for both spermine and spermidine and lower affinity for putrescine and agmatine. Polyamine uptake was reduced in both cells treated with exogenous histamine and histamine-preloaded cells. However, ornithine decarboxylase activity and cell proliferation were not affected by histamine. Incubation with histamine enhanced the spermidine/spermine acetyl transferase induction caused by N(1)-ethyl-N(11)-[(cyclopropyl)methyl]-4,8-diazaundecane, suggesting that polyamine acetylation could be another mechanism by which histamine prevents polyamine accumulation in C57.1 mast cells.  相似文献   

4.
5.
The mitogenic action of prolactin in Nb 2 node lymphoma cells was inhibited by two drugs which interfere with polyamine biosynthesis. At concentrations of 0.5 mM and above alpha-difluoromethyl ornithine (DFMO), which inhibits ornithine decarboxylase and the conversion of ornithine to putrescine, significantly attenuated the mitogenic effect of prolactin. This inhibition was prevented by the addition of putrescine, spermidine, or spermine to the culture medium. At concentrations of 1 microM and above methylglyoxal bis(guanylhydrazone) (MGBG), which inhibits S-adenosylmethionine decarboxylase and hence the conversion of putrescine to spermidine and spermine, abolished the mitogenic action of prolactin. This inhibition was prevented by the addition of spermidine or spermine, but not putrescine, to the culture medium. These studies show that ongoing polyamine biosynthesis is essential for prolactin to express its mitogenic effect in this lymphoma cell line.  相似文献   

6.
Isolated rat lens was punctured with a needle at a single point in the equatorial region and was incubated at 37 degrees C. Spermidine/spermine N1-acetyltransferase activity was increased about 5-fold at 8 h after the puncture. Concomitantly, putrescine content in the lens increased markedly at 8-16 h after the puncture, while spermidine levels were slightly depressed. Pretreatment of the lens with actinomycin D or cycloheximide blocked the increases of spermidine/spermine N1-acetyltransferase activity and putrescine content. Ornithine decarboxylase, on the other hand, was not induced to a detectable degree by this stimulus and 5 mM difluoromethylornithine could not block the increase of putrescine content. Polyamine oxidase showed a relatively constant activity that was sufficient for the metabolism of newly formed N1-acetylspermidine. These results suggested that, in the punctured lens, the polyamine levels were regulated predominantly by the activity of spermidine/spermine N1-acetyltransferase, but not by the induction of ornithine decarboxylase.  相似文献   

7.
A transport system for polyamines was studied with both intact cells and membrane vesicles of an Escherichia coli polyamine-deficient mutant. Polyamine uptake by intact cells and membrane vesicles was inhibited by various protonophores, and polyamines accumulated in membrane vesicles when D-lactate was added as an energy source or when a membrane potential was imposed artificially by the addition of valinomycin to K+-loaded vesicles. These results show that the uptake was dependent on proton motive force. Transported [14C]putrescine and [14C]spermidine were not excreted by intact cells upon the addition either of carbonyl cyanide m-chlorophenylhydrazone, A23187, and Ca2+ or of an excess amount of nonlabeled polyamine. However, they were excreted by membrane vesicles, although the degree of spermidine efflux was much lower than that of putrescine efflux. These results suggest that the apparent unidirectionality in intact cells has arisen from polyamine binding to nucleic acids, thus giving rise to a negligible free intracellular concentration of polyamines. Polyamine uptake, especially putrescine uptake, was inhibited strongly by monovalent cations. The Mg2+ ion inhibited spermidine and spermine uptake but not putrescine uptake.  相似文献   

8.
9.
10.
We present evidence that polyamine uptake into rat liver mitochondria is mediated by a specific polyamine uniporter. Polyamine transport is not mediated by the ornithine, lysine, or Ca2+ transporters of mitochondria. Polyamine transport is a saturable process, with apparent Km values of 0.13 mM for spermine, 0.26 mM for spermidine, and 1 mM for putrescine. These substrates are mutually competitive inhibitors, indicating a common transport system. Polyamine transport is strictly dependent on membrane potential and insensitive to medium pH, showing that these polycations are transported electrophoretically. Spermine, spermidine, and putrescine are taken up by rat liver mitochondria at rates that increase with increasing valence of the transported species. The activation enthalpies for transport were 24, 32, and 59 kJ/mol for putrescine, spermidine, and spermine, respectively. These values, which amount to about 12 kJ/mol per charge transferred, may be compared to a value of 76 kJ/mol observed for monovalent tetraethylammonium cation. Flux-voltage analysis is consistent with the hypothesis that the mitochondrial polyamine transporter catalyzes transport via a channel mechanism.  相似文献   

11.
Pulmonary alveolar macrophages express a polyamine transport system   总被引:1,自引:0,他引:1  
Polyamine transport is an important mechanism by which cells regulate their intracellular polyamine content. It is well established that the lung has a high capacity for polyamine transport, and recently the polyamine putrescine has been shown to be selectively accumulated into the type II pneumocyte of rabbit lung slices (Saunders et al.: Lab. Invest., 95:380-386, 1988). In addition, it has been suggested that there may be more than one polyamine transport system in lung tissue (Byers et al.: Am. J. Physiol., 252:C663-C669, 1987). In the present study, we have examined whether there are differences in the distribution of putrescine and spermidine uptake activities in isolated rabbit lung cells. We report that pulmonary alveolar macrophages have a greater rate of uptake of both putrescine and spermidine than the total lung cell population. Kinetic analysis of the polyamine uptake system present in macrophages showed putrescine uptake consisted of a saturable (Km = 2.1 microM) and nonsaturable component whilst spermidine uptake consisted of both a high- and a low-capacity saturable component (Km = 0.16 microM and 1.97 microM, respectively). The rate of polyamine transport was similar to those reported for many proliferative or tumor cell-lines and appears to be greater than any other major lung cell type. Inhibition studies of the transport of polyamines into pulmonary alveolar macrophages suggested that the uptake of both putrescine and spermidine was mediated by the same system, which could not be described by simple Michaelis-Menten kinetics. The transport appears to be reversible due to significant efflux. This is the first study to describe the presence of multiple polyamine transport systems in pulmonary alveolar macrophages.  相似文献   

12.
Treatment of rats with spermidine, spermine or sym-norspermidine led to a substantial induction of spermidine/spermine N1-acetyltransferase activity in liver, kidney and lung. The increase in this enzyme, which was determined independently of other acetylases by using a specific antiserum, accounted for all of the increased acetylase activity in extracts from rats treated with these polyamines. Spermine was the most active inducer, and the greatest effect was seen in liver. Liver spermidine/spermine N1-acetyltransferase activity was increased about 300-fold within 6 h of treatment with 0.3 mmol/kg doses of spermine; activity in kidney increased 30-fold and activity in the lung 15-fold under these conditions. The increased spermidine/spermine N1-acetyltransferase activity led to a large increase in the liver putrescine content and a decline in spermidine. These changes are due to the oxidation by polyamine oxidase of the N1-acetylspermidine formed by the acetyltransferase. Our results indicated that spermidine was the preferred substrate in vivo of the acetylase/oxidase pathway for the conversion of the higher polyamines into putrescine. The induction of the spermidine/spermine N1-acetyltransferase by polyamines may provide a mechanism by which excess polyamines can be removed.  相似文献   

13.
The properties and regulation of the polyamine transport system in brain are still poorly understood. The present study shows, for the first time, the existence of a polyamine transport system in cerebellar astrocytes and suggests that polyamine uptake is mediated by a single and saturable high-affinity transport system for putrescine, spermine, and spermidine (K:(m) = 3.2, 1.2, and 1.8 microM:, respectively). Although substitution of NaCl by choline chloride produced a decrease in the putrescine, spermine, and spermidine uptake, it seems that polyamine transport in cerebellar astrocytes is not mediated by an Na(+) cotransport as in the presence of Na(+) and cholinium, polyamine uptake was much lower than when measured in a sucrose-based medium. On the other hand, ouabain, gramicidin (a Na(+) ionophore), and ionomycin (a Ca(2+) ionophore) produced a strong inhibition of polyamine uptake, suggesting that membrane potential could have an important role in the functioning of the astroglial polyamine uptake system. Moreover, protein kinase C inhibition produced an enhancement of polyamine uptake, whereas stimulation of protein kinase C with phorbol esters inhibited polyamine uptake. Alternatively, the tyrosine kinase inhibitor genistein caused a marked reduction in the uptake. No effects on polyamine uptake were observed with inhibitors and activators of cyclic AMP-dependent protein kinase or when Ca(2+)/calmodulin-dependent protein kinase II was inhibited with KN-62. These results suggest that the polyamine uptake system in cerebellar astrocytes could be modulated by protein kinase C and tyrosine kinase activities.  相似文献   

14.
The subcellular localization of the polyamine transporter TPO1 of Saccharomyces cerevisiae was determined by sucrose gradient centrifugation and indirect immunofluorescence microscopy. When expressed from a multi-copy vector, TPO1 was located mainly on the plasma membrane, but with some localization on the vacuolar membrane. Polyamine transport by TPO1 was dependent on pH. Uptake of spermidine and spermine occurred at alkaline pH (pH 8.0), whereas inhibition of spermidine uptake, but not spermine uptake, was observed at acidic pH (pH 5.0). This suggests that TPO1 catalyzes polyamine excretion at acidic pH, similar to the PotE transporter in Escherichia coli. Paraquat, a polyamine analogue, was excreted by TPO1 at a rate comparable with the excretion of spermidine (deduced from the inhibition of spermidine uptake) at pH 5.0. However, excretion of preloaded radiolabeled spermidine and spermine was not observed in intact cells, suggesting that preloaded spermidine (or spermine) exists mainly as spermidine (or spermine)-ribosome complex in cells. The transport activity of TPO1 was enhanced through phosphorylation at Ser19 by protein kinase C and at Thr52 by casein kinase 1. Sorting of TPO1 from the endoplasmic reticulum to the plasma membrane was enhanced through phosphorylation at Ser342 by cAMP-dependent protein kinases 1 and 2.  相似文献   

15.
It has been reported that Gap1p on the plasma membrane of Saccharomyces cerevisiae can catalyze the uptake of many kinds of amino acids. In the present study, we found that Gap1p also catalyzed the uptake of putrescine and spermidine, but not spermine. The Km and Vmax values for putrescine and spermidine were 390 and 21 microM, and 4.6 and 0.59 nmol/min/mg protein, respectively. The uptake of putrescine was strongly inhibited by basic amino acids, lysine, arginine, and histidine, whose Ki values were 25-35 microM. Thus, it is deduced that spermidine and basic amino acids have almost the same affinity for Gap1p. When the concentrations of amino acids in the medium were reduced to one-third and 0.5 mM putrescine or 0.1 mM spermidine was added to the medium, accumulation of putrescine or spermidine by Gap1p was observed. Furthermore, when yeast was transformed with the GAP1 gene and cultured in the presence of 60 mM putrescine, cell growth was inhibited through overaccumulation of putrescine. GAP1 mRNA was found to be induced by polyamines. This is the first report of the identification, at a molecular level, of a polyamine uptake protein on the plasma membrane in eukaryotes.  相似文献   

16.
The effect of 5'-deoxy-5'-S-isobutylthioadenosine (SIBA) on polyamine biosynthesis has been studied by using cultured chick embryo fibroblasts. It has been shown that the drug inhibits the uptake of [14C]putrescine and its conversion into labelled spermidine or spermine. The inhibitory effect is reversed by removing the inhibitor after exposing the cells to the drug for 24 h. SIBA also caused a significant decrease in cellular spermine levels and an accumulation of putrescine. These changes are reversed by removing the inhibitor. SIBA had the same effect on chick embryo fibroblasts transformed by Rous sarcoma virus; a decrease in cellular spermine levels in SIBA-treated cells was observed. In all the experiments SIBA caused a reduction in the spermine/putrescine and spermidine/putrescine ratios. It is suggested that SIBA is not only an inhibitor of transmethylation but also interferes with polyamine biosynthesis, probably by blocking aminopropyltransferase.  相似文献   

17.
Polyamines (putrescine, spermidine, and spermine) are normal cellular constituents able to modulate cellular proliferation and differentiation in a number of developing systems. Ornithine decarboxylase (ODC), the rate-limiting enzyme in the polyamine biosynthetic pathway, has been shown to be causally related to an increase in glycosaminoglycan synthesis in murine embryonic palatal mesenchyme cells (MEPM). In order to understand other mechanisms that exist to regulate polyamine levels in cells derived from the developing craniofacial area, the present study investigated the capacity of MEPM cells to accumulate exogenous putrescine and tests the hypothesis that polyamine transport can serve as an adaptational response of MEPM cells to a change in their ability to synthesize polyamines. Transport was initiated in confluent cultures of MEPM cells by the addition of 0.1 microCi/ml of 14C-putrescine. The rate of transport, monitored for 20-120 minutes, was found to be a time-dependent saturable process. The rate of initial transport, determined by incubating MEPM cells for 15 minutes in the presence of different concentrations (1.0-20.0 microM) of 14C-putrescine, was also found to be saturable, suggesting a carrier-mediated event. Lineweaver-Burk analysis of these data revealed an apparent Km of 5.78 microM and a Vmax of 2.63 nmol/mg protein/15 minutes. Transport measured either at 4 degrees C or in the presence of 2-4 DNP was dramatically inhibited. Thus, putrescine transport is an active process, dependent upon metabolic energy. Conditions in which 1) NaCl was iso-osmotically replaced with choline chloride or 2) the Na+-electrochemical gradient was dissipated with Na+, K+-specific ionophores resulted in a decreased rate of transport indicating that putrescine transport in these cells is Na+ dependent. Noncompetitive inhibition assays utilizing sulfhydryl reagents that blocked sulfhydryl groups inhibited putrescine transport, suggesting that sulfhydryl groups are important for putrescine uptake. Competitive inhibition assays demonstrated that while spermidine and spermine inhibited putrescine uptake, ornithine did not inhibit transport. Spermidine, spermine, and putrescine thus appear to share a common transport system that is separate from that for ornithine. Putrescine transport is subject to adaptive regulation in both exponentially growing and confluent cultures of MEPM cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We have examined the effect of difluoromethylornithine on the ability of B16 melanoma cells to take up putrescine and the 4,4'-dipyridyl herbicide paraquat. Pretreatment with difluoromethylornithine for 24 hr enhanced putrescine uptake by inducing the maximum capacity of the transport system without affecting the Km for the substrate. Paraquat uptake was minor compared with that of putrescine and was not affected by difluoromethylornithine. Neither putrescine, spermidine or spermine at concentrations up to 100 microM inhibited the accumulation of paraquat. However, paraquat competitively inhibited putrescine transport (Ki = 54 +/- 10 microM). Exposure of the B16 melanoma cells for 24 hr to increasing concentrations of paraquat produced a dose-dependent inhibition of DNA synthesis. Difluoromethylornithine pretreatment did not affect paraquat toxicity. These data show that paraquat is not taken up into B16 melanoma cells by the uptake system responsible for transporting putrescine. Moreover, it is likely that the difluoromethylornithine inducible polyamine transport system in B16 melanoma cells is characteristically different to that previously described in normal mammalian lung since the latter is reportedly capable of transporting both putrescine and paraquat.  相似文献   

19.
New procedures for determining putrescine, spermidine and spermine were first established here by the end point assay method using polyamine oxidase from Penicillium chrysogenum or Aspergillus terreus and putrescine oxidase from Micrococcus rubens. Method 1: Spermidine and spermine were first oxidized with polyamine oxidase (step A). To the reaction mixture, putrescine oxidase was added to oxidize putrescine (step B). Putrescine and spermidine in another reaction mixture were oxidized with putrescine oxidase (step C). Method 2 : Putrescine and spermidine were first oxidized with putrescine oxidase (step A). To the reaction mixture, polyamine oxidase was added to oxidize spermine (step B). Spermidine and spermine in another reaction mixture were oxidized with polyamine oxidase (step C). The amounts of putrescine, spermidine and spermine were determined from the absorbance values at each steps A, B and C.  相似文献   

20.
The uptake of putrescine, spermidine and spermine by Fortner's hamster amelanocytic melanoma AMEL-3 cells was observed in this study to be time-dependent, temperature-sensitive, pH-dependent and saturable. Metabolic poisons nullified polyamine uptake, an indication that this is an energy-requiring mechanism. The presence of Na+ ions was found to be requisite to full activity. Valinomycin, gramicidin, monensin and the calcium ionophore calcimycin were also observed to inhibit the process substantially. The transporter active site would seem to contain sulfhydryl groups. Other diamines and polyamine analogues, as well as cationic diamidines, suppressed putrescine uptake. The presence of the ornithine decarboxylase inhibitor DFMO in the culture medium induced putrescine inflows. Putrescine, in turn, induced the negative expression of the carrier, thus suggesting that this influx mechanism is governed by up/down regulation. The cationic diamidine CGP 40215A and its analogue CGP039937A competitively inhibited putrescine transport, with Ki values of 1.9 and 15 microM, respectively. The role of polyamine uptake in these cultures is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号