首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The adenovirus (Ad) DNA-binding protein (DBP) is essential for the elongation phase of Ad DNA replication by unwinding the template in an ATP-independent fashion, employing its capacity to form multimers. DBP also enhances the rate of initiation, with the highest levels obtained at low concentrations of Ad DNA polymerase (Pol). Here, we show that stimulation of initiation depends on the template conformation. Maximal stimulation, up to 15-fold, is observed on double-stranded or viral TP-containing origins. The stimulation is reduced on partially single-stranded origins and DBP does not enhance initiation any more once the origin is completely unwound. This suggests a role for DBP in origin unwinding that is comparable to its unwinding capacity during elongation. However, mutant DBP proteins defective in unwinding and elongation can still enhance initiation on ds templates. DBP also stimulates the binding of nuclear factor I (NFI) to the origin and lowers the K(m) for coupling of the first nucleotide to the precursor terminal protein by Pol. Mobility shift experiments reveal that DBP stimulates the binding of Pol on double-stranded origin and nonorigin DNA but not on single-stranded DNA. This effect is specific for DBP and is also seen with other DNA Pols. Our results suggest that, rather than by origin unwinding, DBP enhances initiation by modulating the origin conformation such that DNA Pol can bind more efficiently.  相似文献   

2.
The RepK protein, which is encoded by the rolling-circle plasmid pKYM, binds to the PR I site in the pKYM DNA replication origin. We have identified HU as a protein that binds to the PR II and PR III sites in the replication-enhancing region which is downstream of PR I. DNA footprinting assays show that HU binds to these two sites only when RepK is bound to PR I, and that HU also enhances the binding of RepK to PR I. In vivo, pKYM was unable to transform an HU null strain. Two mutant RepK proteins, RepKW179Y, which contains a Trp-to-Tyr exchange at position 179, and RepKD277L, which contains an Asp-to-Leu mutation at residue 277, initiate DNA replication in vivo in the absence of HU. In vitro, these mutant RepK proteins form more stable complexes with the pKYM origin region than does the wild-type RepK protein. These results indicate that HU plays a role in the formation of a stable RepK-origin complex, which is required for the initiation of pKYM DNA replication. Received: 24 July 1996 / Accepted: 30 December 1996  相似文献   

3.
Replication of bovine papillomavirus requires two viral proteins, E1 and E2-TA. Previously we demonstrated that sequences within an imperfect 18-bp inverted repeat (IR) element were sufficient to confer specific binding of the E1 protein to the origin region (S. E. Holt, G. Schuller, and V. G. Wilson, J. Virol. 68:1094-1102, 1994). To identify critical nucleotides for E1 binding and origin function, a series of individual point mutations was constructed at each nucleotide position in the 18-bp IR. Binding of E1 to these point mutations established that both the position of the mutation and the specific nucleotide change were important for the E1-DNA interaction. Equivalent mutations from each half of the IR exhibited similar binding, suggesting that the halves were functionally symmetric for E1 interactions. Each of these mutations was evaluated also for origin function in vivo by a transient-replication assay. No single point mutation eliminated replication capacity completely, though many mutants were severely impaired, demonstrating an important functional contribution for the E1 binding site. Furthermore, E1 binding was not sufficient for replication, as several origin mutants bound E1 well in vitro but replicated poorly in vivo. This suggests that certain nucleotides within the 18-bp IR may be involved in postbinding events necessary for replication initiation. The results with the point mutations suggest that E1-E1 interactions are important for stable complex formation and also indicate that there is some flexibility with regard to formation of a functional E1 replication complex at the origin.  相似文献   

4.
Initiation of adenovirus DNA replication is dependent on a complex of the precursor of the terminal protein and the adenovirus-coded DNA polymerase (pTP-pol complex). This complex catalyzes the formation of a covalent linkage between dCMP and pTP in the presence of a functional origin of DNA replication residing in the terminal nucleotide sequence of adenovirus DNA. We have purified the pTP-pol complex of adenovirus type 5 and studied its binding to double-stranded DNA. Using DNA-cellulose chromatography it could be shown that the pTP-pol complex has a higher affinity for adenovirus DNA than for calf thymus or pBR322 DNA. From the differential binding of the pTP-pol complex to plasmids containing adenovirus terminal sequences with different deletions, it has been concluded that a sequence of 14 nucleotide pairs at positions 9-22 plays a crucial role in the binding of pTP-pol to adenovirus DNA. This region is conserved in the DNA's of all human adenovirus serotypes and is obviously an important structural element of the adenovirus origin of DNA replication. Comparative binding studies with adenovirus DNA polymerase and pTP-pol indicated that pTP is responsible for the binding. The nature of the binding of pTP-pol to the conserved sequence will be discussed.  相似文献   

5.
6.
Kinetoplast DNA, the mitochondrial DNA of trypanosomatids, is a remarkable DNA structure that contains, in the species Crithidia fasciculata, 5000 topologically linked duplex DNA minicircles. Their replication initiates at two conserved sequences, a dodecamer, known as the universal minicircle sequence (UMS), and a hexamer, which are located at the replication origins of the minicircle L and H strands, respectively. A UMS-binding protein (UMSBP) binds specifically the 12-mer UMS sequence and a 14-mer sequence that contains the conserved hexamer in their single-stranded DNA conformation. In vivo cross-linking analyses reveal the binding of UMSBP to kinetoplast DNA networks in the cell. Furthermore, UMSBP binds in vitro to native minicircle origin fragments, carrying the UMSBP recognition sequences. UMSBP binding at the replication origin induces conformational changes in the bound DNA through its folding, aggregation and condensation.  相似文献   

7.
Kinetoplast DNA, the mitochondrial DNA of the trypanosomatid Crithidia fasciculata, is a remarkable structure containing 5,000 topologically linked DNA minicircles. Their replication is initiated at two conserved sequences, a dodecamer, known as the universal minicircle sequence (UMS), and a hexamer, which are located at the replication origins of the minicircle L- and H-strands, respectively. A UMS-binding protein (UMSBP), binds specifically the conserved origin sequences in their single stranded conformation. The five CCHC-type zinc knuckle motifs, predicted in UMSBP, fold into zinc-dependent structures capable of binding a single-stranded nucleic acid ligand. Zinc knuckles that are involved in the binding of DNA differ from those mediating protein-protein interactions that lead to the dimerization of UMSBP. Both UMSBP DNA binding and its dimerization are sensitive to redox potential. Oxidation of UMSBP results in the protein dimerization, mediated through its N-terminal domain, with a concomitant inhibition of its DNA-binding activity. UMSBP reduction yields monomers that are active in the binding of DNA through the protein C-terminal region. C. fasciculata trypanothione-dependent tryparedoxin activates the binding of UMSBP to UMS DNA in vitro. The possibility that UMSBP binding at the minicircle replication origin is regulated in vivo by a redox potential-based mechanism is discussed.  相似文献   

8.
The initiation of adenovirus DNA takes place at the termini of the viral genome and requires the presence of specific nucleotide sequence elements. To define the sequence organization of the viral origin, we tested a large number of deletion, insertion, and base substitution mutants for their ability to support initiation and replication in vitro. The data demonstrate that the origin consists of at least three functionally distinct domains, A, B, and C. Domain A (nucleotides 1 to 18) contains the minimal sequence sufficient for origin function. Domains B (nucleotides 19 to 40) and C (nucleotides 41 to 51) contain accessory sequences that significantly increase the activity of the minimal origin. The presence of domain B increases the efficiency of initiation by more than 10-fold in vitro, and the presence of domains B and C increases the efficiency of initiation by more than 30-fold. Mutations that alter the distance between the minimal origin and the accessory domains by one or two base pairs dramatically decrease initiation efficiency. This critical spacing requirement suggests that there are specific interactions between the factors that recognize the two regions.  相似文献   

9.
As in other yeasts, ARS-containing plasmids can be maintained extrachromosomally in Kluyveromyces lactis. Although some fragments of K. lactis DNA have ARS activity in both K. lactis and Saccharomyces cerevisiae, it appears that the sequences required for ARS activity in the two yeasts are different. As an approach to a better understanding of ARS structure and function in K. lactis, we analyzed the replication of the circular plasmid pKD1. We identified a 159-bp sequence able to promote autonomous replication of pKD1 in both yeasts; this fragments contains both a sequence related to the S. cerevisiae ARS consensus sequence and a region of 53% identity to the 40-bp sequence essential for K. lactis KARS101 function. By the analysis of in vivo replication intermediates we provide the first direct evidence that DNA replication initiates at or near the K. lactis ARS element. Replication terminates at the cisacting stability locus of pKD1, which functions as a replication fork barrier (RFB) and is necessary for proper plasmid segregation. RFB activity requires the pKDI gene products that are important for plasmid segregation, suggesting a link between DNA replication termination and plasmid segregation in a eukaryotic organism.  相似文献   

10.
The origin binding protein (OBP) or herpes simplex virus 1 has been expressed in Escherichia coli and used to study the role of multiple OBP binding sites in the herpes simplex virus #1 origin of replication, oris. Our results showed that the sequence CGTTCGCACTT was required for the binding of OBP to duplex DNA with high affinity. The minimal oris contains three repeats of this sequence or close derivatives thereof. Filter binding experiments have demonstrated that specific binding occurs to two of these repeats, box I and box II. An investigation using the DNase I footprinting technique revealed that the binding of OBP to box I and box II was cooperative and led to the formation of a highly organized complex in which the entire oris sequence was induced. We observed furthermore that the AT-rich sequence of the oris dyad was readily accessible to macromolecules even in the OBP.oris complex. The DNase I cleavage pattern of this sequence was, however, altered radically, indicating that a significant conformational change had occurred. A tentative structural model for the OBP-oris interaction is discussed on the basis of these observations.  相似文献   

11.
E1 and T-antigen of the tumour viruses bovine papillomavirus (BPV-1) and Simian virus 40 (SV40) are the initiator proteins that recognize and melt their respective origins of replication in the initial phase of DNA replication. These proteins then assemble into processive hexameric helicases upon the single-stranded DNA that they create. In T-antigen, a characteristic loop and hairpin structure (the pre-sensor 1β hairpin, PS1βH) project into a central cavity generated by protein hexamerization. This channel undergoes large ATP-dependent conformational changes, and the loop/PS1βH is proposed to form a DNA binding site critical for helicase activity. Here, we show that conserved residues in BPV E1 that probably form a similar loop/hairpin structure are required for helicase activity and also origin (ori) DNA melting. We propose that DNA melting requires the cooperation of the E1 helicase domain (E1HD) and the origin binding domain (OBD) tethered to DNA. One possible mechanism is that with the DNA locked in the loop/PS1βH DNA binding site, ATP-dependent conformational changes draw the DNA inwards in a twisting motion to promote unwinding.  相似文献   

12.
13.
The Herpes simplex virus type I origin binding protein (OBP) is a sequence-specific DNA-binding protein and a dimeric DNA helicase encoded by the UL9 gene. It is required for the activation of the viral origin of DNA replication oriS. Here we demonstrate that the linear double-stranded form of oriS can be converted by heat treatment to a stable novel conformation referred to as oriS*. Studies using S1 nuclease suggest that oriS* consists of a central hairpin with an AT-rich sequence in the loop. Single-stranded oligonucleotides corresponding to the upper strand of oriS can adopt the same structure. OBP forms a stable complex with oriS*. We have identified structural features of oriS* recognized by OBP. The central oriS palindrome as well as sequences at the 5' side of the oriS palindrome were required for complex formation. Importantly, we found that mutations that have been shown to reduce oriS-dependent DNA replication also reduce the formation of the OBP-oriS* complex. We suggest that oriS* serves as an intermediate in the initiation of DNA replication providing the initiator protein with structural information for a selective and efficient assembly of the viral replication machinery.  相似文献   

14.
15.
The human RIF1 protein controls DNA replication, but the molecular mechanism is largely unknown. Here, we demonstrate that human RIF1 negatively regulates DNA replication by forming a complex with protein phosphatase 1 (PP1) that limits phosphorylation‐mediated activation of the MCM replicative helicase. We identify specific residues on four MCM helicase subunits that show hyperphosphorylation upon RIF1 depletion, with the regulatory N‐terminal domain of MCM4 being particularly strongly affected. In addition to this role in limiting origin activation, we discover an unexpected new role for human RIF1‐PP1 in mediating efficient origin licensing. Specifically, during the G1 phase of the cell cycle, RIF1‐PP1 protects the origin‐binding ORC1 protein from untimely phosphorylation and consequent degradation by the proteasome. Depletion of RIF1 or inhibition of PP1 destabilizes ORC1, thereby reducing origin licensing. Consistent with reduced origin licensing, RIF1‐depleted cells exhibit increased spacing between active origins. Human RIF1 therefore acts as a PP1‐targeting subunit that regulates DNA replication positively by stimulating the origin licensing step, and then negatively by counteracting replication origin activation.  相似文献   

16.
Polarity of human replication protein A binding to DNA   总被引:2,自引:4,他引:2       下载免费PDF全文
Replication protein A (RPA), the nuclear single-stranded DNA binding protein is involved in DNA replication, nucleotide excision repair (NER) and homologous recombination. It is a stable heterotrimer consisting of subunits with molecular masses of 70, 32 and 14 kDa (p70, p32 and p14, respectively). Gapped DNA structures are common intermediates during DNA replication and NER. To analyze the interaction of RPA and its subunits with gapped DNA we designed structures containing 9 and 30 nucleotide gaps with a photoreactive arylazido group at the 3′-end of the upstream oligonucleotide or at the 5′-end of the downstream oligonucleotide. UV crosslinking and subsequent analysis showed that the p70 subunit mainly interacts with the 5′-end of DNA irrespective of DNA structure, while the subunit orientation towards the 3′-end of DNA in the gap structures strongly depends on the gap size. The results are compared with the data obtained previously with the primer–template systems containing 5′- or 3′-protruding DNA strands. Our results suggest a model of polar RPA binding to the gapped DNA.  相似文献   

17.
The six-subunit origin recognition complex (ORC) is a DNA replication initiator protein in eukaryotes that defines the localization of the origins of replication. We report here that the smallest Drosophila ORC subunit, Orc6, is a DNA binding protein that is necessary for the DNA binding and DNA replication functions of ORC. Orc6 binds DNA fragments containing Drosophila origins of DNA replication and prefers poly(dA) sequences. We have defined the core replication domain of the Orc6 protein which does not include the C-terminal domain. Further analysis of the core replication domain identified amino acids that are important for DNA binding by Orc6. Alterations of these amino acids render reconstituted Drosophila ORC inactive in DNA binding and DNA replication. We show that mutant Orc6 proteins do not associate with chromosomes in vivo and have dominant negative effects in Drosophila tissue culture cells. Our studies provide a molecular analysis for the functional requirement of Orc6 in replicative functions of ORC in Drosophila and suggest that Orc6 may contribute to the sequence preferences of ORC in targeting to the origins.  相似文献   

18.
He X  Lehman IR 《Journal of virology》2000,74(12):5726-5728
A herpes simplex virus type 1 (HSV-1) Ori(S) analogue in which the A+T sequence linking the box I and II elements was replaced by two single-stranded oligo(dT)s is unwound by the UL9 protein-ICP8 complex. Unwinding of wild-type Ori(S) by the UL9 protein-ICP8 complex was also observed under conditions which destabilize the A+T sequence. These experiments support a model for the unwinding of Ori(S) in which destabilization of the A+T sequence can generate a single-stranded DNA binding site for ICP8, which then associates with the UL9 protein bound to boxes I and II to promote the bidirectional unwinding of Ori(S).  相似文献   

19.
S W Yang  H A Nash 《The EMBO journal》1995,14(24):6292-6300
We have quantitatively evaluated the affinity of a set of target sites for the integration host factor (IHF) protein of Escherichia coli by their performance as competitors in an electrophoretic mobility shift assay. We also determined how well each of these sites is filled by IHF in vivo. The data show that several natural sites have an affinity not much greater than that required for intracellular occupancy. The data also indicate that very little of the IHF in a cell is present as free protein available for binding, suggesting that binding to non-specific targets dominates the operation of this system. The correlation between in vitro affinity and in vivo occupancy provides a ready means to assess the likely physiological significance of putative IHF sites. It also provides a general method to assess the importance of non-specific interactions by DNA binding proteins inside a cell.  相似文献   

20.
Mitochondrial DNA from Drosophila contains high “A+T”-rich region. Its DNA replication starts in the “A+T”-rich region and proceeds unidirectionally around the molecule. In order to determine precise location of the DNA replication origin and elucidate unique feature of its nucleotide sequence, the “A+T”-rich region of mitochondrial DNA from Drosophilavirilis has been cloned in Escherichiacoli. The chimeric plasmid DNA containing the “A+T”-rich region stimulates invitro DNA replication system from Drosophilavirilis mitochondria about ten fold higher than the parental plasmid DNA, as does native mitochondrial DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号