首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A restriction endonuclease with a novel site-specificity has been isolated from the Escherichia coli strain RFL31. The nucleotide sequences around a single Eco31I cut on pBR322 DNA and two cuts of λ DNA have been compared. A common 5′GAGACC3′CTCTGG sequence occurs near each cleavage site. Precise mapping of the cleavages in both DNA strands places the cuts five nucleotides to the left of the upper sequence and one nucleotide to the left of the lower sequence. This enabled us to deduce the following recognition and cleavage specificity of Eco31I: 5 ′ G G T C T C N ↓ 3 ′ C C A G A G N N N N N ↑  相似文献   

2.
Type II restriction endonucleases (ENases) have served as models for understanding the enzyme-based site-specific cleavage of DNA. Using the knowledge gained from the available crystal structures, a number of attempts have been made to alter the specificity of ENases by mutagenesis. The negative results of these experiments argue that the three-dimensional structure of DNA-ENase complexes does not provide enough information to enable us to understand the interactions between DNA and ENases in detail. This conclusion calls for alternative approaches to the study of structure-function relationships related to the specificity of ENases. Comparative analysis of ENases that manifest divergent substrate specificities, but at the same time are evolutionarily related to each other, may be helpful in this respect. The success of such studies depends to a great extent on the availability of related ENases that recognise partially overlapping nucleotide sequences (e.g. sets of enzymes that bind to recognition sites of increasing length). In this study we report the cloning and sequence analysis of genes for three Type IIS restriction-modification (RM) systems. The genes encoding the ENases Alw26I, Eco31I and Esp3I (whose recognition sequences are 5'-GTCTC-3', 5'-GGTCTC-3' and 5'-CGTCTC-3', respectively) and their accompanying methyltransferases (MTases) have been cloned and the deduced amino acid sequences of their products have been compared. In pairwise comparisons, the degree of sequence identity between Alw26I, Eco31I and Esp3I ENases is higher than that observed hitherto among ENases that recognise partially overlapping nucleotide sequences. The sequences of Alw26I, Eco31I and Esp3I also reveal identical mosaic patterns of sequence conservation, which supports the idea that they are evolutionarily related and suggests that they should show a high level of structural similarity. Thus these ENases represent very attractive models for the study of the molecular basis of variation in the specific recognition of DNA targets. The corresponding MTases are represented by proteins of unusual structural and functional organisation. Both M. Alw26I and M. Esp3I are represented by a single bifunctional protein, which is composed of an m(6)A-MTase domain fused to a m(5)C-MTase domain. In contrast, two separate genes encode the m(6)A-MTase and m(5)C-MTase in the Eco31I RM system. Among the known bacterial m(5)C-MTases, the m(5)C-MTases of M. Alw26I, M. Eco31I and M. Esp3I represent unique examples of the circular permutation of their putative target recognition domains together with the conserved motifs IX and X.  相似文献   

3.
Eukaryotic DNA topoisomerase I introduces transient single-stranded breaks on double-stranded DNA and spontaneously breaks down single-stranded DNA. The cleavage sites on both single and double-stranded SV40 DNA have been determined by DNA sequencing. Consistent with other reports, the eukaryotic enzymes, in contrast to prokaryotic type I topoisomerases, links to the 3'-end of the cleaved DNA and generates a free 5'-hydroxyl end on the other half of the broken DNA strand. Both human and calf enzymes cleave SV40 DNA at the identical and specific sites. From 827 nucleotides sequenced, 68 cleavage sites were mapped. The majority of the cleavage sites were present on both double and single-stranded DNA at exactly the same nucleotide positions, suggesting that the DNA sequence is essential for enzyme recognition. By analyzing all the cleavage sequences, certain nucleotides are found to be less favored at the cleavage sites. There is a high probability to exclude G from positions -4, -2, -1 and +1, T from position -3, and A from position -1. These five positions (-4 to +1 oriented in the 5' to 3' direction) around the cleavage sites must interact intimately with topo I and thus are essential for enzyme recognition. One topo I cleavage site which shows atypical cleavage sequence maps in the middle of a palindromic sequence near the origin of SV40 DNA replication. It occurs only on single-stranded SV40 DNA, suggesting that the DNA hairpin can alter the cleavage specificity. The strongest cleavage site maps near the origin of SV40 DNA replication at nucleotide 31-32 and has a pentanucleotide sequence of 5'-TGACT-3'.  相似文献   

4.
B C Lin  M C Chien    S Y Lou 《Nucleic acids research》1980,8(24):6189-6198
A type II restriction endonuclease Xmn I with a novel site specificity has been isolated from Xanthomonas manihotis. Xmn I does not cleave SV40 DNA, but cleaves phi X174 DNA into three fragments, which constitute 76.61%, 18.08% and 5.31% of the total length of 5386 base pairs, and cleaves pBR322 DNA into two fragments of 55.71% and 44.29% of the entire 4362 base pairs. The nucleotide sequences around the cleavage sites made by Xmn I are not exactly homologous, but they have a common sequence of 5' GAANNNNTTC 3' according to a simple computer program analysis on nucleotide sequences of phi X174 DNA, pBR322 DNA and SV40 DNA. The results suggest that the cleavage site of Xmn I is located within its recognition sequence of 5' GAANNNNTTC 3'.  相似文献   

5.
Fourteen restriction endonucleases and 4 methylases were isolated and purified from 14 strains of Citrobacter freundii and Escherichia coli, which were isolated from natural sources. To determine the nucleotide sequence recognized by the endonucleases a comparison of DNA cleavage patterns, the evaluation of the cleavage frequency of some DNA with known recognition sequences and mapping was used. It was determined that Cfr101 is a new enzyme recognizing 5'PuCCGGPy. Other restriction enzymes isolated were isoschizomers of: Cfr5I, Cfr11I, Eco60I, Eco61I--EcoRII; Cfr4I, Cfr8I, Cfr13I--Sau96I; Cfr6I--PvuII, Cfr9I--SmaI, Eco26I--HgiJII; Eco32I--EcoRV; Eco52I--XmaIII; Eco56I--NaeI. Some of the enzymes in C. freundii and E. coli were found for the first time. The methylases MCfrI; MCfr6I, MCfr9I and MCfr10I recognize the same nucleotide sequence as specific endonucleases isolated from the same strain. DNA modification in vitro by MCfrI and MCfr10I yields 5-methylcytosine and 4-methylcytosine by MCfr6I and MCfr9I.  相似文献   

6.
A new class-IIS restriction endonuclease, Ksp632I, with novel sequence specificity has been discovered in a non-pathogenic species of Kluyvera. The presence of only a single site-specific activity in this Kluyvera sp. strain 632 enables Ksp632I to be isolated in highly purified form free of contaminating nucleases. Ksp632I recognition sites and cleavage positions were deduced using experimental and computer-assisted mapping and sequencing. The cleavage specificity corresponds to the sequence 5'-CTCTTCN decreases NNN-N-3' 3'-GAGAAGN-NNN increases N-5'. The enzyme recognizes an asymmetric hexanucleotide sequence and cleaves in the presence of Mg2+ ions specific phosphodiester bonds in both DNA strands, 1 and 4 nucleotides distal to the recognition sequence. The staggered cuts generate 5'-protruding ends with single-stranded 5'-phosphorylated trinucleotides. Several slow cleavage sites for Ksp632I were observed on lambda cI857Sam7 DNA. Ksp632I may complement other class-IIS enzymes in the universal restriction approach and may serve as a tool for generating defined unidirectional deletions or insertions.  相似文献   

7.
Type IIS restriction endonuclease Eco31I harbors a single HNH active site and cleaves both DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). A two-domain organization of Eco31I was determined by limited proteolysis. Analysis of proteolytic fragments revealed that the N-terminal domain of Eco31I is responsible for the specific DNA binding, while the C-terminal domain contains the HNH nuclease-like active site. Gel-shift and gel-filtration experiments revealed that a monomer of the N-terminal domain of Eco31I is able to bind a single copy of cognate DNA. However, in contrast to other studied type IIS enzymes, the isolated catalytic domain of Eco31I was inactive. Steady-state and transient kinetic analysis of Eco31I reactions was inconsistent with dimerization of Eco31I on DNA. Thus, we propose that Eco31I interacts with individual copies of its recognition sequence in its monomeric form and presumably remains a monomer as it cleaves both strands of double-stranded DNA. The domain organization and reaction mechanism established for Eco31I should be common for a group of evolutionary related type IIS restriction endonucleases Alw26I, BsaI, BsmAI, BsmBI and Esp3I that recognize DNA sequences bearing the common pentanucleotide 5'-GTCTC.  相似文献   

8.
Type IIS restriction endonuclease Eco31I is a "short-distance cutter", which cleaves DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). Previously, it has been proposed that related endonucleases recognizing a common sequence core GTCTC possess two active sites for cleavage of both strands in the DNA substrate. Here, we present bioinformatic identification and experimental evidence for a single nuclease active site. We identified a short region of homology between Eco31I and HNH nucleases, constructed a three-dimensional model of the putative catalytic domain and validated our predictions by random and site-specific mutagenesis. The restriction mechanism of Eco31I is suggested by analogy to the mechanisms of phage T4 endonuclease VII and homing endonuclease I-PpoI. We propose that residues D311 and N334 coordinate the cofactor. H312 acts as a general base-activating water molecule for the nucleophilic attack. K337 together with R340 and D345 are located in close proximity to the active center and are essential for correct folding of catalytic motif, while D345 together with R264 and D273 could be directly involved in DNA binding. We also predict that the Eco31I catalytic domain contains a putative Zn-binding site, which is essential for its structural integrity. Our results suggest that the HNH-like active site is involved in the cleavage of both strands in the DNA substrate. On the other hand, analysis of site-specific mutants in the region, previously suggested to harbor the second active site, revealed its irrelevance to the nuclease activity. Thus, our data argue against the earlier prediction and indicate the presence of a single conserved active site in type IIS restriction endonucleases that recognize common sequence core GTCTC.  相似文献   

9.
10.
The GIY-YIG nuclease domain has been identified in homing endonucleases, DNA repair and recombination enzymes, and restriction endonucleases. The Type II restriction enzyme Eco29kI belongs to the GIY-YIG nuclease superfamily and, like most of other family members, including the homing endonuclease I-TevI, is a monomer. It recognizes the palindromic sequence 5′-CCGC/GG-3′ (“/” marks the cleavage position) and cuts it to generate 3′-staggered ends. The Eco29kI monomer, which contains a single active site, either has to nick sequentially individual DNA strands or has to form dimers or even higher-order oligomers upon DNA binding to make a double-strand break at its target site. Here, we provide experimental evidence that Eco29kI monomers dimerize on a single cognate DNA molecule forming the catalytically active complex. The mechanism described here for Eco29kI differs from that of Cfr42I isoschisomer, which also belongs to the GIY-YIG family but is functional as a tetramer. This novel mechanism may have implications for the function of homing endonucleases and other enzymes of the GIY-YIG family.  相似文献   

11.
Two restriction endonucleases from Bacillus globiggi.   总被引:32,自引:15,他引:17       下载免费PDF全文
The sites of action of the restriction enzyme Bgl II on lambda DNA are mapped. This enzyme recognises the sequence 5' ...AGATCT...3' and makes staggered cuts producing sticky ends. In lambda DNA, the second A in this sequence is methylated about 50% of the time by a bacterial methylase absent in E. coli dam. In contrast to Bgl II, Bgl I makes many cuts in lambda DNA and produces 5' terminals which are not substrates for polynucleotide kinase.  相似文献   

12.
F Laue  L R Evans  M Jarsch  N L Brown  C Kessler 《Gene》1991,97(1):87-95
A series of class-II restriction endonucleases (ENases) was discovered in the halophilic, phototrophic, gas-vacuolated cyanobacterium Dactylococcopsis salina sp. nov. The six novel enzymes are characterized by the following recognition sequences and cut positions: 5'-C decreases CRYGG-3' (DsaI); 5'-GG decreases CC-3' (DsaII); 5'-R decreases GATCY-3' (DsaIII); 5'-G decreases GWCC-3' (DsaIV); 5'-decreases CCNGG-3' (DsaV); and 5'-GTMKAC-3' (DsaVI), where W = A or T, M = A or C, K = G or T, and N = A, G, C or T. In addition, traces of further possible activity were detected. DsaI has a novel sequence specificity and DsaV is an isoschizomer of ScrFI, but with a novel cut specificity. A purification procedure was established to separate all six ENases, resulting in their isolation free of contaminating nuclease activities. DsaI cleavage is influenced by N6-methyladenine residues [derived from the Escherichia coli-encoded DNA methyltransferase (MTase) M.Eco damI] within the overlapping sequence, 5'-CCRYMGGATC-3'; DsaV hydrolysis is inhibited by a C-5-methylcytosine residue in its recognition sequence (5'-CMCNGG-3'), generated in some DsaV sites by the E. coli-encoded MTase, M.Eco dcmI.  相似文献   

13.
The role of two sequence motifs (SM) as putative cleavage catalytic centers (77)PDX(13)EAK (SM I) and (811)PDX(20)DQK (SM II) of type IV restriction endonuclease Eco57I was studied by site-directed mutational analysis. Substitutions within SM I; D78N, D78A, D78K, and E92Q reduced cleavage activity of Eco57I to a level undetectable both in vivo and in vitro. Residual endonucleolytic activity of the E92Q mutant was detected only when the Mg(2+) in the standard reaction mixture was replaced with Mn(2+). The mutants D78N and E92Q retained the ability to interact with DNA specifically. The mutants also retained DNA methylation activity of Eco57I. The properties of the SM I mutants indicate that Asp(78) and Glu(92) residues are essential for cleavage activity of the Eco57I, suggesting that the sequence motif (77)PDX(13)EAK represents the cleavage active site of this endonuclease. Eco57I mutants containing single amino acid substitutions within SM II (D812A, D833N, D833A) revealed only a small or moderate decrease of cleavage activity as compared with wild-type Eco57I, indicating that the SM II motif does not represent the catalytic center of Eco57I. The results, taken together, allow us to conclude that the Eco57I restriction endonuclease has one catalytic center for cleavage of DNA.  相似文献   

14.
DNA interaction and nucleotide sequence cleavage of copper-streptonigrin   总被引:2,自引:0,他引:2  
The copper-accelerated DNA binding and cleavage of streptonigrin have been investigated by 1H-NMR, ESR spectrometry and nucleotide sequence analysis. In the DNA breakage by the streptonigrin-Cu(II)-NADPH system, the somewhat preferred cleavage sites were several cytosine bases adjacent to purine bases such as GCGG(5'----3'), ACGC(5'----3') and GGCG(5'----3') sequences. The proton chemical shifts for the streptonigrin-Cu(I)-poly(dA-dT) complex demonstrated the interaction between the pyridine ring of the drug and the purine bases of the nucleic acid. Indeed, the temperature profile of adenine H-2 proton clearly showed the Tm to shift from 70 degrees C in the binary streptonigrin-poly(dA-dT) system to 75 degrees C in the ternary streptonigrin-Cu(I)-poly(dA-dT) system. The interaction of the streptonigrin-Cu(II) complex with DNA also induced the apparent change of ESR parameters. The tricyclic phenanthidium ring system including the copper chelate ring appears to significantly contribute to the present DNA interaction and cleavage of copper-streptonigrin.  相似文献   

15.
High sequence specificity of micrococcal nuclease.   总被引:58,自引:31,他引:27       下载免费PDF全文
The substrate specificity of micrococcal nuclease (EC 3.1.4.7.) has been studied. The enzyme recognises features of nucleotide composition, nucleotide sequence and tertiary structure of DNA. Kinetic analysis indicates that the rate of cleavage is 30 times greater at the 5' side of A or T than at G or C. Digestion of end-labelled linear DNA molecules of known sequence revealed that only a limited number of sites are cut, generating a highly specific pattern of fragments. The frequency of cleavage at each site has been determined and it may reflect the poor base overlap in the 5' T-A 3' stack as well as the length of contiguous A and T residues. The same sequence preferences are found when DNA is assembled into nucleosomes. Deoxyribonuclease 1 (EC 3.1.4.5.) recognises many of the same sequence features. Micrococcal nuclease also mimics nuclease S1 selectively cleaving an inverted repeat in supercoiled pBR322. The value of micrococcal nuclease as a "non-specific" enzymatic probe for studying nucleosome phasing is questioned.  相似文献   

16.
To create new, effective reagents for affinity modification of restriction-modification (R-M) enzymes, a regioselective method for reactive dialdehyde group incorporation into oligonucleotides, based on insertion of a 1-beta-D-galactopyranosylthymine residue, has been developed. We synthesized DNA duplex analogs of the substrates of the Eco RII and Mva I R-M enzymes that contained a galactose or periodate-oxidized galactose residue as single substituents either in the center of the Eco RII (Mva I) recognition site or in the flanking nucleotide sequence. The dependence of binding, cleavage and methylation of these substrate analogs on the modified sugar location in the duplex was determined. Cross-linking of the reagents to the enzymes under different conditions was examined. M. Eco RII covalent attachment to periodate-oxidized substrate analogs proceeded in a specific way and to a large extent depended on the location of the reactive dialdehyde group in the substrate. The yield of covalent attachment to a DNA duplex with a dialdehyde group in the flanking sequence with Eco RII or Mva I methylases was 9-20% and did not exceed 4% for R. Eco RII.  相似文献   

17.
The specific nucleotide recognition and sequence-specific cleavage of DNA by bleomycin (BLM) antibiotics are a typical example of macromolecular receptor-drug interaction in the field of chemotherapy. The present results demonstrate that ethidium bromide, distamycin A, and actinomycin D evidently altered the nucleotide sequence-specific mode of DNA breakage by the iron-BLM system, which cleaves isolated DNA preferentially at G-C (5' leads to 3') and G-T (5' leads to 3') sequences. In the presence of ethidium bromide, the most preferred cleavage site was the sequence G-T at position 52 to 53. Of special interest is marked alteration of the nucleotide sequence-specific mode by distamycin A. This intercalator masked the cleavages at G-T and G-A sequences, and produced higher specificity for G-C sequences than that of iron-BLM only. In the case of actinomycin D, the preferred sequence groups of DNA breakage were shifted from G-C sequences to G-A (43 to 44) and G-T (52 to 53) sequences. Certain intercalating agents are very available for the investigations of site-specific recognition and cleavage of DNA by DNA-cleaving drugs such as BLM.  相似文献   

18.
The specificity of three DNA methyltransferases M.Alw26I, M.Eco31I and M.Esp3I, isolated from Acinetobacter Iwoffi RFL26, Escherichia coli RFL31 and Hafnia alvei RFL3+, respectively, was determined. All the enzymes methylate both strands of asymmetric recognition sites yielding m5C in the top-strand and m6A in the bottom-strand, as below: 5'-GTm5CTC 5'-GGTm5CTC 5'-CGTm5CTC 3'-Cm6AGAG 3'-CCm6AGAG 3'-GCm6AGAG (M.Alw26I) (M.Eco31I) (M.Esp3I) They are the first members of type IIs methyltransferases that modify different types of nucleotides in the recognition sequence.  相似文献   

19.
Isolation and characterization of a cloned rat insulin gene.   总被引:38,自引:0,他引:38  
  相似文献   

20.
Type II restriction endonuclease Mva1269I recognizes an asymmetric DNA sequence 5'-GAATGCN / -3'/5'-NG / CATTC-3' and cuts top and bottom DNA strands at positions, indicated by the "/" symbol. Most restriction endonucleases require dimerization to cleave both strands of DNA. We found that Mva1269I is a monomer both in solution and upon binding of cognate DNA. Protein fold-recognition analysis revealed that Mva1269I comprises two "PD-(D/E)XK" domains. The N-terminal domain is related to the 5'-GAATTC-3'-specific restriction endonuclease EcoRI, whereas the C-terminal one resembles the nonspecific nuclease domain of restriction endonuclease FokI. Inactivation of the C-terminal catalytic site transformed Mva1269I into a very active bottom strand-nicking enzyme, whereas mutants in the N-terminal domain nicked the top strand, but only at elevated enzyme concentrations. We found that the cleavage of the bottom strand is a prerequisite for the cleavage of the top strand. We suggest that Mva1269I evolved the ability to recognize and to cleave its asymmetrical target by a fusion of an EcoRI-like domain, which incises the bottom strand within the target, and a FokI-like domain that completes the cleavage within the nonspecific region outside the target sequence. Our results have implications for the molecular evolution of restriction endonucleases, as well as for perspectives of engineering new restriction and nicking enzymes with asymmetric target sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号