首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A simple approximation is developed to account for the dominant effects of solvation in molecular dynamics simulations of biopolymers. A small number of water molecules are included explicitly in the primary hydration shell around the biopolymer. A nonspherical confining potential responding dynamically to the conformational changes of the biopolymer is applied to prevent evaporation and to approximate the conditions of constant pressure of a bulk solution. Simulations of a spherical system of 25 water molecules are lined to adjust the empirical restraining potential to yield a uniform density distribution close to that in the bulk liquid. The primary hydration shell approach is tested with molecular dynamics simulations of simple hydrated peptides. The conformational equilibrium of alanine dipeptide and alanine tripeptide is examined using umbrella sampling calculations. The relative free energies of the C7ax (? = 60, ψ = ?80) and αL (? = 60, ψ = 60) conformations of the alanine dipeptide and the opened and closed conformations of a reversed β-turn modeled with the alanine tripeptide were calculated. The results indicate that the primary hydration shell can reproduce the influence of solvent on small peptides that was observed in simulations involving a much larger number of water molecules. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Many biologically interesting functions such as allosteric switching or protein-ligand binding are determined by the kinetics and mechanisms of transitions between various conformational substates of the native basin of globular proteins. To advance our understanding of these processes, we constructed a two-dimensional free energy surface (FES) of the native basin of a small globular protein, Trp-cage. The corresponding order parameters were defined using two native substructures of Trp-cage. These calculations were based on extensive explicit water all-atom molecular dynamics simulations. Using the obtained two-dimensional FES, we studied the transition kinetics between two Trp-cage conformations, finding that switching process shows a borderline behavior between diffusive and weakly-activated dynamics. The transition is well-characterized kinetically as a biexponential process. We also introduced a new one-dimensional reaction coordinate for the conformational transition, finding reasonable qualitative agreement with the two-dimensional kinetics results. We investigated the distribution of all the 38 native nuclear magnetic resonance structures on the obtained FES, analyzing interactions that stabilize specific low-energy conformations. Finally, we constructed a FES for the same system but with simple dielectric model of water instead of explicit water, finding that the results were surprisingly similar in a small region centered on the native conformations. The dissimilarities between the explicit and implicit model on the larger-scale point to the important role of water in mediating interactions between amino acid residues.  相似文献   

3.
The conformational preferences of blocked alanine dipeptide (ADP), Ac‐Ala‐NHMe, in aqueous solution were studied using vibrational circular dichroism (VCD) together with density functional theory (DFT) calculations. DFT calculations of three most representative conformations of ADP surrounded by six explicit water molecules immersed in a dielectric continuum have proven high sensitivity of amide III VCD band shape that is characteristic for each conformation of the peptide backbone. The polyproline II (PII) and αR conformation of ADP are associated with a positive VCD band while β conformation has a negative VCD band in amide III region. Knowing this spectral characteristic of each conformation allows us to assign the experimental amide III VCD spectrum of ADP. Moreover, the amide III region of the VCD spectrum was used to determine the relative populations of conformations of ADP in water. Based on the interpretation of the amide III region of VCD spectrum we have shown that dominant conformation of ADP in water is PII which is stabilized by hydrogen bonded water molecules between CO and NH groups on the peptide backbone. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 814–818, 2014.  相似文献   

4.
A model for the simulation of a solution of an alanine dipeptide in water is presented that combines a previous model for bulk water (ST2) with that used in conformational energy studies on small molecules and proteins. The results of a pilot molecular dynamics study indicate that the model leads to reasonable solvent–solute interactions. No evidence is found for substantial changes in the structure or dynamics of the dipeptide in solution as compared to in vacuo. Furthermore, at the elevated temperature examined, there appear to be no significant effects on the dynamics or intermolecular bonding of the water molecules in contact with the solute.  相似文献   

5.
We have used molecular dynamics simulations to determine the stability in water of a model beta-sheet formed by two alanine dipeptide molecules with two intermolecular hydrogen bonds in the closely spaced antiparallel arrangement. In this paper we describe our computations of the binding free energy of the model sheet and a portion of the free energy surface as a function of a reaction co-ordinate for sheet formation. We used the free energy surface to identify stable conformations along the reaction co-ordinate. To determine whether or not the model sheet with two hydrogen bonds is more stable than a single amide hydrogen bond in water, we compared the results of the present calculations to results from our earlier study of linear hydrogen bond formation between two formamide molecules (the formamide "dimer"). The free energy surfaces for the sheet and formamide dimer each have two minima corresponding to locally stable hydrogen-bonded and solvent-separated configurations. The binding free energies of the model sheet and the formamide dimer are -5.5 and -0.34 kcal/mol, respectively. Thus, the model sheet with two hydrogen bonds is quite stable while the simple amide hydrogen bond is only marginally stable. To understand the relative stabilities of the model sheet and formamide dimer in terms of solute-solute and solute-water interactions, we decomposed the free energy differences between hydrogen-bonded and solvent-separated conformations into energetic and entropic contributions. The changes in the peptide-peptide energy and the entropy are roughly twice as large for the sheet as they are for the formamide dimer. The magnitude of the peptide-water energy difference for the sheet is less than twice (by about 3.5 kcal/mol) that for the formamide dimer, and this accounts for the stability of the sheet. The presence of the side-chains and/or blocking groups apparently prevents the amide groups in the sheet from being solvated as favorably in the separated arrangement as in the formamide dimer, where the amide groups are completely exposed to the solvent.  相似文献   

6.
A molecular dynamics simulation has been carried out for the mixture of an ice nucleus, supercooled water and a molecule of alanine dipeptide (AD). The dipeptide molecule has been allocated near the nucleus surface which corresponds to the prism plane of ice crystal. The molecule is found to approach the ice surface so that the two hydrophilic sites on one side of the molecule (Oc2 and Hn1) are closest to the surface. The hydrogen bond between Hn1 site and the oxygen atom on the prism plane of the ice nucleus is expected. The perturbations of two hydrophilic sites (Oc1 and Hn2), which are surrounded by hydrophobic sites and are pointing away from the surface, attenuate the approach of water molecules to these sites. Thus, these water molecules diffuse. The hydrogen bond between the oxygen atoms on the prism plane and the hydrogen atoms of water molecules is attenuated by the diffusion.  相似文献   

7.
The conformations of 23 terminally blocked dipeptide sequences were examined by conformational energy calculations that included the effects of the aqueous solvent. Starting structures were derived from combinations of minimum-energy conformations of hydrated single residues. Their conformational energies were then minimized using the ECEPP potential (Empirical Conformational Energy Program for Peptides) with hydration included. Short-range interactions dominate in stabilizing the conformations of the hydrated dipeptides. Differences between conformational stabilities of hydrated and unhydrated dipeptides in many cases are due to the competition of solute–water and intramolecular hydrogen bonds. In other cases, perturbation of the hydration shell of the solute by close approach of solute atoms alters conformational preferences. Probabilities of formation of bends were calculated and compared to the corresponding quantities for unhydrated dipeptides and to those calculated from x-ray structures. For bends in dipeptides containing two nonpolar amino acids, computations omitting hydration yield better results. However, better agreement with experimental (x-ray) bend probabilities for dipeptides containing glycine or polar amino acids is obtained only in some sequences when hydration is included. The results are rationalized by the observation that, in proteins, bends containing nonpolar sequences occur on the inside, shielded from the solvent. Bends containing glycine or polar amino acids occur frequently on the surface of the protein, but they are not completely hydrated.  相似文献   

8.
The crystal structures of the complexes of oxalic acid with glycyl-L-histidine and L-histidyl-L-alanine were determined. The three crystallographically independent peptide molecules in the complexes have closed conformations. The terminal carboxyl group of the dipeptide and the oxalate ion in the Gly-His complex exhibit unusual ionization states and are connected by a symmetric O- - -O hydrogen bond. The peptide aggregation in the complex is almost identical to that in the corresponding semisuccinate complex and is similar to one of the predicted aggregation patterns for Ala-Ala, demonstrating that dipeptide aggregation is controlled primarily by main-chain interactions and is substantially unaffected by disturbing influences such as those arising from polar side chains, ions and water molecules. The peptide molecules in the highly pseudosymmetric crystals of the His-Ala complex, however, exhibit a hitherto unobserved aggregation pattern. Thus, in spite of the repeated occurrence of a few patterns, the possibility of the existence of new patterns needs to be taken into account.  相似文献   

9.
S Lande 《Biopolymers》1969,7(6):879-886
The amide bond in L ,L - and L ,D -α-chloropropionylalanine methyl ester is shown to be trans by molar polarization and infrared spectroscopy. In these dipeptide diastereoisomer analogues, therefore, differences in physical properties, i.e., melting points, crystalline forms, gas chromatographic mobilities, etc., depend on preferred molecular conformations and not peptide bond configuration. Nuclear magnetic resonance spectra of both compounds were identical, indicating that no major chemical environment differences exist, which might have resulted from dissimilar side group interactions. Based on the data reported here and those of others, most dipeptide conformations can be eliminated because of contradiction with limits set by experimental or theoretical considerations. Of the remaining conformational possibilities, a single pair accounts for observed physical differences in dipeptide diastereoisomers, free or blocked. The preferred form contains α-hydrogens trans to each other and in the plane of the peptide bond. In this conformation, R1–R2 and amino–carboxyl distances are minimal in L ,D diastereomers and maximal in L ,L forms.  相似文献   

10.
Renfrew PD  Butterfoss GL  Kuhlman B 《Proteins》2008,71(4):1637-1646
Amino acid side chains adopt a discrete set of favorable conformations typically referred to as rotamers. The relative energies of rotamers partially determine which side chain conformations are more often observed in protein structures and accurate estimates of these energies are important for predicting protein structure and designing new proteins. Protein modelers typically calculate side chain rotamer energies by using molecular mechanics (MM) potentials or by converting rotamer probabilities from the protein database (PDB) into relative free energies. One limitation of the knowledge‐based energies is that rotamer preferences observed in the PDB can reflect internal side chain energies as well as longer‐range interactions with the rest of the protein. Here, we test an alternative approach for calculating rotamer energies. We use three different quantum mechanics (QM) methods (second order Møller‐Plesset (MP2), density functional theory (DFT) energy calculation using the B3LYP functional, and Hartree‐Fock) to calculate the energy of amino acid rotamers in a dipeptide model system, and then use these pre‐calculated values in side chain placement simulations. Energies were calculated for over 36,000 different conformations of leucine, isoleucine, and valine dipeptides with backbone torsion angles from the helical and strand regions of the Ramachandran plot. In a subset of cases these energies differ significantly from those calculated with standard molecular mechanics potentials or those derived from PDB statistics. We find that in these cases the energies from the QM methods result in more accurate placement of amino acid side chains in structure prediction tests. Proteins 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

11.
C Dalvit  C Ho 《Biochemistry》1985,24(14):3398-3407
Proton nuclear Overhauser effect (NOE) measurements have been used extensively to investigate the detailed conformations of peptides, proteins, and nucleic acids in the solution state. However, much of the published work has dealth with molecules of molecular weight less than 15 000. It is generally thought that specific NOEs cannot be observed in larger molecules (due to spin diffusion), so that NOE is of little use in conformational studies of such systems. By use of truncated-driven NOE with an irradiation time of 100 ms, specific NOEs are observed in a protein of the size of human normal adult hemoglobin (Hb A, 65 000 daltons). This technique has permitted us to assign several proton proton resonances arising from heme groups and from amino acid residues situated in the vicinity of the ligand binding site (such as E7 histidine and E11 valine) of the alpha and beta chains of Hb A. In addition, two-dimensional 1H[1H] J-correlated spectroscopy (COSY) experiments as well as theoretical ring-current calculations have confirmed the spectral assignments obtained by the one-dimensional NOE experiments. These new results not only have permitted us to map the heme pockets and to investigate the conformational differences in the heme pockets between oxy and carbonmonoxy forms of Hb A but also have demonstrated that the technique of truncated-driven NOE can be used to investigate the detailed conformations of selected regions in larger macromolecules in a way heretofore thought not to be feasible.  相似文献   

12.
Biological systems provide a complex environment that can be understood in terms of its dielectric properties. High concentrations of macromolecules and cosolvents effectively reduce the dielectric constant of cellular environments, thereby affecting the conformational sampling of biomolecules. To examine this effect in more detail, the conformational preference of alanine dipeptide, poly-alanine, and melittin in different dielectric environments is studied with computer simulations based on recently developed generalized Born methodology. Results from these simulations suggest that extended conformations are favored over alpha-helical conformations at the dipeptide level at and below dielectric constants of 5-10. Furthermore, lower-dielectric environments begin to significantly stabilize helical structures in poly-alanine at epsilon = 20. In the more complex peptide melittin, different dielectric environments shift the equilibrium between two main conformations: a nearly fully extended helix that is most stable in low dielectrics and a compact, V-shaped conformation consisting of two helices that is preferred in higher dielectric environments. An additional conformation is only found to be significantly populated at intermediate dielectric constants. Good agreement with previous studies of different peptides in specific, less-polar solvent environments, suggest that helix stabilization and shifts in conformational preferences in such environments are primarily due to a reduced dielectric environment rather than specific molecular details. The findings presented here make predictions of how peptide sampling may be altered in dense cellular environments with reduced dielectric response.  相似文献   

13.
N Sreerama  R W Woody 《Proteins》1999,36(4):400-406
A significant fraction of the so-called "random coil" residues in globular proteins exists in the left-handed poly(Pro)II conformation. In order to compare the behavior of this secondary structure with that of the other regular secondary structures, molecular dynamics simulations, with the GROMOS suite of programs, of an alanine octapeptide in water, in alpha-helix, beta-strand, and left-handed poly(Pro)II conformations, have been performed. Our results indicate a limited flexibility for the alpha-helix conformation and a relatively larger flexibility for the beta-strand and poly(Pro)II conformations. The behavior of oligopeptides with a starting configuration of beta-strand and poly(Pro)II conformations, both lacking interchain hydrogen bonds, were similar. The (phi, psi) angles reflect a continuum of structures including both beta and P(II) conformations, but with a preference for local P(II) regions. Differences in the network of water molecules involved in hydrogen bonding with the backbone of the polypeptide were observed in local regions of beta and P(II) conformations. Such water bridges help stabilize the P(II) conformation relative to the beta conformation. Proteins 1999;36:400-406.  相似文献   

14.
The effects of urea and glycine-betaine (GB) osmolytes on the hydrophobic interactions of neopentane in water have been studied using molecular dynamics simulations. From the study of the potentials of mean force, it is observed that both urea and GB decrease the association and solvation of neopentane. The calculated equilibrium constants show that urea and GB decrease the population of solvent-separated minima of neopentane. The hydrophobic association as well as solvation of neopentane molecules are stabilised by entropy and enthalpy in the mixtures. The radial distribution functions (RDFs) and running coordination numbers of water, urea and GB molecules show that neopentane shows salting-in behaviour in aqueous-GB, aqueous-urea and aqueous-urea-GB mixtures. Neopentane is preferentially solvated by GB in aqueous-GB and preferentially solvated by urea in aqueous-urea-GB solutions. The preferential solvation of neopentane by GB suggests that GB decreases the interaction between neopentane molecules i.e. salting-in of neopentane. The calculated solvation free energies and radial density profiles of neopentane also support the salting-in behaviour of neopentane in the mixtures of these osmolytes.  相似文献   

15.
The canonical transformation method applied to the Schrödinger equation to transform it into a second-order differential equation of hypergeometric-type is presented. Starting from there, those exactly solvable multiparameter exponential-type (ME-T) potentials with hypergeometric wavefunctions that belong to the families of radial (singular) and one-dimensional (non-singular) potentials, are obtained. Furthermore, we show how the choice of the involved parameters leads, as particular cases, to different deformed or non-deformed potential models already used in the study of electronic properties of diatomic molecules. Also, the analysis of parameters lets us identify the couple of potential partners (singular/non-singular) that correspond to each choice of the parameters appearing in the ME-T potential. As a useful application of the proposal, the most important non-deformed exponential potential models are considered for which it can be viewed as a unified treatment with the following advantages: (1) It is not necessary to use a special method to solve the Schrödinger equation for a specific potential model because solution is obtained as particular case by the simple choice of the involved parameters; (2) The families of singular and non-singular potentials are straightforward identified; (3) The corresponding associated partners, between radial and one-dimensional non-deformed potentials, are found; (4) New potentials, as interesting alternatives for quantum applications, are obtained. In addition, from the conditions that parameters must meet to have physically acceptable solutions, we establish the requirements for the existence or not of singular/non-singular potential partners.  相似文献   

16.
The minimization procedure has been used for calculation of the local minimum conformations of threepeptide--Ac-(L-Ala)3-NHMe without intramolecular H-bonds. The significant energy deviations from additivity found, arising with increase backbone length to three links, can be considered as the evidence for mutual dependence of conformational states of the neighbouring and terminal amino acid residues. It have been shown that stability of alpha-helix form for alanine threepeptide in contrary to corresponding dipeptide is noticeably higher due to stabilizing effect of dispersion interactions. The results of calculations are compared with the data on conformational distrubution of the threepeptide fragments in proteins with known three dimensional structure. The important role of the backbone interaction in protein chain have been marked.  相似文献   

17.
Native intact bovine PTH was studied by proton nuclear magnetic resonance (NMR) techniques, at pH 3.5 and pH 6.3. The 1H-NMR spectra had good resolution and many multiplet structures were observed. Assignment of the NMR resonances corresponding to specific amino acids was approached using 1H chemical shifts, coupling constants, and pH dependence in the one-dimensional spectra and the 1H-1H connectivities revealed in two-dimensional homonuclear correlated spectroscopy (COSY) experiments. All the aromatic proton resonances were assigned. Two histidine residues had lower pK than the other two. The methyl groups of two residues were moved significantly downfield: using COSY and two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) correlations, these were assigned to an alanine residue close to both Trp-23 and Tyr-43, and a valine residue in close spatial proximity to Trp-23. The NOESY spectrum also showed cross-peaks between the residues of the upfield valine-leucine-isoleucine methyl envelope. Many of the H alpha protons moved upfield as the pH was increased. These results indicate that intact native PTH exists in a preferred conformation in solution at pH 6.5. Our studies have provided new information on the three-dimensional spatial proximity of several amino acids along the polypeptide chain. The observed interactions are consistent with the currently accepted model suggesting that the hormone has two separate structural domains associated with the amino- and carboxy-terminal regions of the molecule respectively. The potential implications of this model for the expression of biological activity are discussed.  相似文献   

18.
Hydration around the DNA fragment d(C5T5).(A5G5) is presented from two molecular dynamics simulations of 10 and 12 ns total simulation time. The DNA has been simulated as a flexible molecule with both the CHARMM and AMBER force fields in explicit solvent including counterions and 0.8 M additional NaCl salt. From the previous analysis of the DNA structure B-DNA conformations were found with the AMBER force-field and A-DNA conformations with CHARMM parameters. High-resolution hydration patterns are compared between the two conformations and between C.G and T.A base-pairs from the homopolymeric parts of the simulated sequence. Crystallographic results from a statistical analysis of hydration sites around DNA crystal structures compare very well with the simulation results. Differences between the crystal sites and our data are explained by variations in conformation, sequence, and limitations in the resolution of water sites by crystal diffraction. Hydration layers are defined from radial distribution functions and compared with experimental results. Excellent agreement is found when the measured experimental quantities are compared with the equivalent distribution of water molecules in the first hydration shell. The number of water molecules bound to DNA was found smaller around T.A base-pairs and around A-DNA as compared to B-DNA. This is partially offset by a larger number of water molecules in hydrophobic contact with DNA around T.A base-pairs and around A-DNA. The numbers of water molecules in minor and major grooves have been correlated with helical roll, twist, and inclination angles. The data more fully explain the observed B-->A transition at low humidity.  相似文献   

19.
The cis/trans conformational equilibrium of the two Ac-Pro isomers of the beta-turn model dipeptide [13C]-Ac-L-Pro-D-Ala-NHMe, 98% 13C enriched at the acetyl carbonyl atom, was investigated by the use of variable temperature gradient enhanced 1H-nmr, two-dimensional (2D) 1H,1H nuclear Overhauser effect spectroscopy (NOESY), 13C,1H one-dimensional steady-state intermolecular NOE, and molecular dynamics calculations. The temperature dependence of the cis/trans Ala(NH) protons are in the region expected for random-coil peptides in H2O (delta delta/delta T = -9.0 and -8.9 ppb for the cis and trans isomers, respectively). The trans NH(CH3) proton indicates smaller temperature dependence (delta delta/delta T approximately -4.8 ppb) than that of the cis isomer (-7.5 ppb). 2D 1H,1H NOESY experiments at 273 K demonstrate significant NOEs between ProH alpha-AlaNH and AlaNH-NH(R) for the trans isomer. The experimental NOE data, coupled with computational analysis, can be interpreted by assuming that the trans isomer most likely adopts an ensemble of folded conformations. The C-CONH(CH3) fragment exhibits significant conformational flexibility; however, a low-energy conformer resembles closely the beta II-turn folded conformations of the x-ray structure of the related model peptide trans-BuCO-L-Pro-Me-D-Ala-NHMe. On the contrary, the cis isomer adopts open conformations. Steady-state intermolecular solute-solvent (H2O) 13C,1H NOE indicates that the water accessibility of the acetyl carbonyl carbons is nearly the same for both isomers. This is consistent with rapid fluctuations of the conformational ensemble and the absence of a highly shielded acetyl oxygen from the bulk solvent. Variable temperature 1H-nmr studies of the cis/trans conformational equilibrium indicate that the trans form is enthalpically favored (delta H degree = -5.14 kJ mole-1) and entropically (delta S degree = -5.47 J.K-1.mole-1) disfavored relative to the cis form. This demonstrates that, in the absence of strongly stabilizing sequence-specific interresidue interactions involving side chains and/or charged terminal groups, the thermodynamic difference of the cis/trans isomers is due to the combined effect of intramolecular and intermolecular (hydration) induced conformational changes.  相似文献   

20.
Mounting spectroscopic evidence indicates that alanine predominantly adopts extended polyproline II (PPII) conformations in short polypeptides. Here we analyze Raman optical activity (ROA) spectra of N-acetylalanine-N′-methylamide (Ala dipeptide) in H2O and D2O using density functional theory on Monte Carlo (MC) sampled geometries to examine the propensity of Ala dipeptide to adopt compact right-handed (αR) and left-handed (αL) helical conformations. The computed ROA spectra based on MC-sampled αR and PPII peptide conformations contain all the key spectral features found in the measured spectra. However, there is no significant similarity between the measured and computed ROA spectra based on the αL- and β-conformations sampled by the MC methods. This analysis suggests that Ala dipeptide populates the αR and PPII conformations but no substantial population of αL- or β-structures, despite sampling αL- and β-structures in our MC simulations. Thus, ROA spectra combined with the theoretical analysis allow us to determine the dominant populated structures. Including explicit solute-solvent interactions in the theoretical analysis is essential for the success of this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号