首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Klaus Zetsche 《Planta》1966,68(3):240-246
Summary The reason for interest in the galactose metabolism of the unicellular green alga Acetabularia mediterranea lies in the question of how the different galactose content in the cell wall of the stalk and the cap is formed. The galactose content is low in the cell wall of the stalk and high in the membrane of the cap (Werz, 1963). Progress in this question presupposes information about the enzymes of galactose metabolism in this organism. The occurrence of the whole series of enzymes which are concerned with the synthesis of UDP-galactose from fructose-6-phosphate could be demonstrated. These enzymes are as follows: Phosphoglucose-isomerase [E.C.5.3.1.9], phosphoglucomutase [E.C.2.7.5.1], UDP-glucose pyrophosphorylase [E.C.2.7.7.9], UDP-glucose-4-epimerase [E.C.5.1.3.2], nucleosidediphosphate kinase [E.C.2.7.4.6] and inorganic pyrophosphatase [E.C.3.6.1.1].
Nachweis von Enzymen des Galactosestoffwechsels in der Grünalge Acetabularia mediterranea
Zusammenfassung In der einzelligen Grünalge Acetabularia mediterranea konnten die für die Synthese von UDP-galactose aus Fructose-6-phosphat notwendigen Enzyme Phosphoglucose-Isomerase, Phosphoglucomutase, UDP-glucose-Pyrophosphorylase und UDP-glucose-4-Epimerase nachgewiesen werden, außerdem Nucleosiddiphosphat-Kinase und anorganische Pyrophosphatase. Der Galactosestoffwechsel von A. mediterranea ist deshalb von Interesse, weil Stiel- und Hutmembran einen unterschiedlichen Galactosegehalt aufweisen.


Herrn Professor Dr. J. Hämmerling zum 65. Geburtstag gewidmet.  相似文献   

2.
The amino acid composition of stalk and cap cell wall polypeptides of the unicellular alga Polyphysa (A.) cliftonii has been investigated. In spite of chemical and physical differences between stalk and can cell wall polysaccharides, the amino acid composition of the cell wall polypeptides appeared qualitatively similar in both structures. however, quantitative differences have been observed. The results are discussed on the basis of a possible role of the polypeptides in the growth of the cell wall.  相似文献   

3.
Summary A mutant of Aspergillus nidulans lacking galactose phosphate-UDP glucose transferase could not grow on galactose but incorporated this sugar into cell constituents when supplied with another carbon source. 75% of the radioactivity taken up was found in the galactose and glucose monomers of the hyphal wall. Most of the remaining label was in a cytoplasmic polysaccharide and in free galactose and galactose phosphate. The composition of the cytoplasmic polysaccharide resembled that of the wall polymers. These findings are taken to indicate that enzymes not connected with the Leloir pathway can activate and epimerise galactose and that polymeric wall precursors may be present in the cytoplasm. The specific labelling obtained with galactose was combined with radioautography to show that glucose and galactose containing polymers are incorporated into the hyphal wall at the growing tip.  相似文献   

4.
When Lactococcus lactis subsp. lactis IL1403 or L. lactis subsp. cremoris MG1363 is grown in a medium with galactose as the carbon source, the culture lyses to a lesser extent in stationary phase than when the bacteria are grown in a medium containing glucose. Expression of AcmA, the major autolysin of L. lactis, is not influenced by the carbon source. Binding studies with a fusion protein consisting of the MSA2 protein of Plasmodium falciparum and the C-terminal peptidoglycan-binding domain of AcmA revealed that cell walls of cells from both subspecies grown on galactose bind less AcmA than cell walls of cells grown on glucose. Cells grown on glucose or galactose and treated with trichloroacetic acid prior to AcmA binding bind similar amounts of AcmA. Analysis of the composition of the lipoteichoic acids (LTAs) of L. lactis IL1403 cells grown on glucose or galactose showed that the LTA composition is influenced by the carbon source: cells grown on galactose contain LTA with less galactose than cells grown on glucose. In conclusion, growth of L. lactis on galactose changes the LTA composition in the cell wall in such a way that less AcmA is able to bind to the peptidoglycan, resulting in a decrease in autolysis.  相似文献   

5.
Carbohydrate composition was determined in isolated cell walls of meiospores of Allomyces arbuscula after incubation for 15 min (encysted meiospores: cysts), 150 min (germlings: cysts + rhizoids) and 24 h (cysts + rhizoids + hyphae). The principal constituent in all cell wall samples is chitin, accounting for about 75% of the recovered carbohydrates. In addition, cell walls of all stages examined contain polysaccharides which release galactose, glucose, mannose, arabinose, xylose, fucose, and rhamnose on acid hydrolysis. While different developmental stages show minor quantitative changes in chitin, the ratio of galactose to glucose decreases sharply during differentiation of ungerminated cysts into germlings with rhizoids and hyphae. The increase in glucose is accompanied by a decrease in the amount of xylose and/or fucose and of galactose.List of Abbreviation TFA trifluoroacetic acid  相似文献   

6.
The preparation and chemical poperties of the cell walls of Leptospira biflexa Urawa and Treponema pallidum Reiter are described. Both cell walls are composed mainly of polysaccharides and peptidoglycans. The data of chemical analysis indicate that the cell wall of L. biflexa Urawa contains rhamnose, arabinose, xylose, mannose, galactose, glucose and unidentified sugars as neutral sugars, and alanine, glutamic acid, α,ε-diaminopimelic acid, glucosamine and muramic acid as major amino acids and amino sugars. As major chemical constituents of the cell wall of T. pallidum Reiter, rhamnose, arabinose, xylose, mannose, galactose, glucose, alanine, glutamic acid, ornithine, glycine, glucosamine and muramic acid have been detected. The chemical properties of protein and polysaccharide fractions prepared from the cells of T. pallidum Reiter were also partially examined.  相似文献   

7.
A spontaneous maize mutant, brittle stalk-2 (bk2-ref), exhibits dramatically reduced tissue mechanical strength. Reduction in mechanical strength in the stalk tissue was highly correlated with a reduction in the amount of cellulose and an uneven deposition of secondary cell wall material in the subepidermal and perivascular sclerenchyma fibers. Cell wall accounted for two-thirds of the observed reduction in dry matter content per unit length of the mutant stalk in comparison to the wildtype stalk. Although the cell wall composition was significantly altered in the mutant in comparison to the wildtype stalks, no compensation by lignin and cell wall matrix for reduced cellulose amount was observed. We demonstrate that Bk2 encodes a Cobra-like protein that is homologous to the rice Bc1 protein. In the bk2-ref gene, a 1 kb transposon-like element is inserted in the beginning of the second exon, disrupting the open reading frame. The Bk2 gene was expressed in the stalk, husk, root, and leaf tissues, but not in the embryo, endosperm, pollen, silk, or other tissues with comparatively few or no secondary cell wall containing cells. The highest expression was in the isolated vascular bundles. In agreement with its role in secondary wall formation, the expression pattern of the Bk2 gene was very similar to that of the ZmCesA10, ZmCesA11, and ZmCesA12 genes, which are known to be involved in secondary wall formation. We have isolated an independent Mutator-tagged allele of bk2, referred to as bk2-Mu7, the phenotype of which is similar to that of the spontaneous mutant. Our results demonstrate that mutations in the Bk2 gene affect stalk strength in maize by interfering with the deposition of cellulose in the secondary cell wall in fiber cells.  相似文献   

8.
Candida bogoriensis, C.buffonii, C.diffluens, C.foliarum andC.javanica, produce an extracellular polysaccharide which contains galactose, glucose, mannose, fucose and rhamnose. These sugars were also found in cell-wall preparations of the same yeast species. The cell-wall preparations ofC.diffluens andC.foliarum included capsular material. The similarity in composition of the extracellular polysaccharides and components of the cell wall suggests that both are synthetized by the same enzymatic system. The fiveCandida species may be closely related.  相似文献   

9.
The epidermal salt glands of the grasses Cynodon and Distichlis consist of a small outer cap cell and a large, flask-shaped basal cell. The wall of the basal cell is contiguous with those of the adjacent epidermal cells and underlying mesophyll cells. The basal cell is connected symplastically with all adjoining cells via plasmodesmata. The outer, protruding portion of the glands is covered by a cuticle continuous with that of the adjoining epidermal cells. However, the lateral cell walls of the glands are not incrusted by this cuticle. The cap cell wall has a loose, mottled appearance quite different from the compact striated appearance of the basal cell wall. The cap cell is characterized by dense cytoplasm containing many organelles and a varying number of small vacuoles. The basal cell cytoplasm is distinguished by the presence of an intricate system of paired membranes that are closely associated with mitochondria and microtubules. These membranes are infoldings of the plasmalemma that originate adjacent to the wall separating the cap and basal cells. The space enclosed by the paired membranes, therefore, is an extracellular channel that is open only in the direction of secretory flow. The consistent orientation of this system of paired membranes suggests that it represents a structural specialization which is directly and functionally involved in the secretory process. The close association of mitochondria and microtubules with the paired membranes implies that these structures are also functionally related to the secretory process. Finally, the results of this study indicate that these glands are ultrastructurally similar to those of Spartina and that the glands of these three grasses are structurally distinct from those of dicotyledonous plants.  相似文献   

10.
Intact cells of Saccharomyces cerevisiae were examined as an aqueous paste by 13C-nmr spectroscopy with direct polarization and magic-angle spinning. The spectra obtained were highly resolved, showing numerous resonances in the 60-105 ppm range that were assigned to carbons of a liquid-like domain of the cell wall glucan. Assignments were confirmed by running the spectrum of S. cerevisiae in which the cell wall glucans were labeled with [13C] by feeding the cell [13C ] galactose. The spectra indicate that the glucan in the cell wall of intact S. cerevisiae assumes a helical conformation and suggest that strain 17A fed with galactose preferentially incorporates the resulting glucose into β(1 → 3)-linkages. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Analysis of the monosaccharide composition of purified cell walls of unicellular and filamentous ascomycetous fungi shows three patterns: (1) the mannose glucose type (for most hemiascomycetous yeasts) (2) the mannose glucose galactose type (for several members of all three main ascomycetous clades) and (3) the mannose glucose galactose rhamnose type (for members of the Euascomycetes and the Protomyces/ Schizosaccharomyces group).In order to estimate the usefulness of the carbohydrate patterns for phylogenetic analysis we compared them with a phylogenetic tree based on 18SrRNA-gene sequences using the Neighbor-Joining Method. In contrast with the situation for basidiomycetous fungi, the Ascomycota show no fixed cell wall type for the three classes. Based on cell wall carbohydrates, sequence data and molecular characters the Hemiascomycetes appear as the first branch within the Ascomycota. A second clade, comprising the genera Schizosaccharomyces, Pneumocystis, Taphrina, Protomyces, Neolecta and Saitoella, appears as a sister group of the Euascomycetes. We discuss the erection of a new class for this group of ascomycetous fungi for which we propose the name Protomycetes.  相似文献   

12.
Cell walls of Chlorococcum oleofadens Trainor & Bold were examined ultrastructurally and chemically. The wall of zoospores has a uniform 30 nm width and a regular lamellar pattern. Zoospores and young vegetative cell walk exhibit periodicities, consisting of 20 nm ridges on the outer layer. Vegetative cell walls have a variable thickness of Up to 800 nm and are composed of multiple layers of electron dense material. Further, vegetative walk contain a microfibrillar material composed predominantly of glucose and presumed to be cellulose. Except for this cellulose, vegetative cell wall chemistry is very similar to that of Chlamydomemas being composed of glycoprotein rich in hydroxyproline. The hydroxyproline in Chlorococcum walls is linked glycosidically to a mixture of hetrooligosaccharides composed of arabinose and galactose, and in one instance, an unknown 6-deoxyhexose. Altogether, the glycoprotein complex accounts for at least 52% of the wall. The amino acid composition of the walls is stikingly similar to those of widely different plant species. Indirect evidence indicates zoospore cell walls are also chemically similar to those of Chlamydomonas, and like them, are cellulose free. Thus a major chemical difference between zoospore and vegetative cell walk of Chlorococcum is the presence of cellulose in the latter. The contribution of this microfibrillar cellulose to the physical properties of the vegetative wall is discussed.  相似文献   

13.
Although d-galactose is normally toxic to sugarcane (Saccharum sp.) cells, a cell line that grows on 100 mm galactose has been propagated. Nonadapted cells in a medium containing galactose instead of sucrose accumulate UDP-galactose; these cells also have much lower UDP-galactose 4-epimerase (EC 5.1.3.2) activity than do adapted cells. This enzyme may determine whether or not galactose will cause toxicity symptoms to develop. The growth rate of galactose-adapted cells is similar to most cell lines on several other carbohydrates. The galactose-adapted cells are also similar to sucrose stock cells in cell wall composition and sugar phosphate concentrations, but, like the nonadapted cells, accumulate free galactose.  相似文献   

14.
We describe a method of separating prestalk and prespore cells of Dictyostelium discoideum slugs using a self-generating Percoll gradient. This method gives quantitative recovery of cells and good purity. Separated prestalk and prespore cells possess different levels of the enzymes UDP galactose :polysaccharide transferase, cAMP phosphodiesterase and glycogen phosphorylase. We have used this method, as well as mechanical dissection of slugs, to examine the fate of separated prestalk and prespore cells in Dictyostelium strains that are able to give rise to mature stalk and spore cells in cell monolayers. The results from such experiments provide direct evidence that prestalk and prespore cells from the migrating slug stage are programmed to differentiate into stalk and spore cells respectively.  相似文献   

15.
Eckhard Loos  Doris Meindl 《Planta》1982,156(3):270-273
Isolated cell walls of mature Chlorella fusca consisted of about 80% carbohydrate, 7% protein, and 13% unidentified material. Mannose and glucose were present in a ratio of about 2.7:1 and accounted for most of the carbohydrate. Minor components were glucuronic acid, rhamnose, and traces of other sugars; galactose was absent. After treatment with 2 M trifluoroacetic acid or with 80% acetic acid/HNO3 (10/1, v/v), a residue with a mannose/glucose ratio of 0.3:1 was obtained, probably representing a structural polysaccharide. An X-ray diffraction diagram of the walls showed one diffuse reflection at 0.44 nm and no reflections characteristic of cellulose. Walls from young cells contained about 51% carbohydrate, 12% protein, and 37% unidentified material. Mannose and glucose were also the main sugars; their absolute amounts per wall increased 6–7 fold during cell growth. Walls isolated with omission of a dodecylsulphate/mercaptoethanol/urea extraction step had a higher protein content and, with young walls, a significantly higher glucose and fucose content. These data and other published cell wall analyses show a wide variability in cell wall composition of the members of the genus Chlorella.Abbreviations GLC gas liquid chromatography - TFA trifluoroacetic acid  相似文献   

16.
THE DEVELOPMENT OF CELLULAR STALKS IN BACTERIA   总被引:39,自引:3,他引:36       下载免费PDF全文
Extensive stalk elongation in Caulobacter and Asticcacaulis can be obtained in a defined medium by limiting the concentration of phosphate. Caulobacter cells which were initiating stalk formation were labeled with tritiated glucose. After removal of exogenous tritiated material, the cells were subjected to phosphate limitation while stalk elongation occurred. The location of tritiated material in the elongated stalks as detected by radioautographic techniques allowed identification of the site of stalk development. The labeling pattern obtained was consistent with the hypothesis that the materials of the stalk are synthesized at the juncture of the stalk with the cell. Complementary labeling experiments with Caulobacter and Asticcacaulis confirmed this result. In spheroplasts of C. crescentus prepared by treatment with lysozyme, the stalks lost their normal rigid outline after several minutes of exposure to the enzyme, indicating that the rigid layer of the cell wall attacked by lysozyme is present in the stalk. In spheroplasts of growing cells induced with penicillin, the stalks did not appear to be affected, indicating that the stalk wall is a relatively inert, nongrowing structure. The morphogenetic implications of these findings are discussed.  相似文献   

17.
Changes in the chemical composition of isolated cell walls and fractions were encountered during the differentiation of vegetative and aggregated mycelia of Agaricus bisporus.Differentiation was accompanied by quantitative variations of the wall polysaccharidic components. Neutral carbohydrates were composed of glucose, galactose, mannose and xylose and glucosamine as the only amino sugar. Differences in wall chemistry were correlated to the secondary and tertiary mycelial forms.  相似文献   

18.
Anti-galactose and anti-lactose antibodies have been isolated from the antisera of rabbits immunized with non-viable cells of Streptococcusfaecalis, strain N containing an antigenic diheteroglycan of glucose and galactose in the cell wall. The anti-galactose antibodies are specific for the galactosyl moiety while the anti-lactose antibodies are specific for the lactosyl moiety of the diheteroglycan. Hapten inhibitions with galactose and lactose, the sedimentation constant, the immunoglobulin type, the carbohydrate content, the electrophoretic mobility and the amino acid composition have been determined for the two new types of anti-glycosyl antibodies.  相似文献   

19.
The chemical constituents of the cell wall of Piricularia oryzae, the pathogenic fungus of rice blast disease, were studied with the aids of chemical analysis, X-ray diffraction, infra-red absorption and enzymatic degradation. The sugar constituents were identified by chromatography as glucose (62%), mannose (4%), galactose (0.5%), and hexosamine (13%). The acidic amino acid rich protein was comprised 4.6% in the cell wall. The cell wall consists of at least three different polysaccharide complexes: a) α-Heteropolysaccharide protein complex containing mannose, glucose and galactose, b) β-1,3-Glucan containing β-1, 6-linked branch, c) Chitin like substance.  相似文献   

20.
Jean-Pierre Métraux 《Planta》1982,155(6):459-466
Changes in the uronide, neutral-polysacharide, and cellulose composition of the cell wall ofNitella axillaris Braun were followed throughout development of the internodes and correlated with changes in growth rate. As the cells increased in length from 4 to 80 mm during development, the relative growth rate decreased. Cell wall thickness, as measured by wall density, increased in direct proportion to diameter, indicating that cell-wall stress did not change during elogation. Cell-wall analyses were adapted to allow determination of the composition of the wall of single cells. The total amounts of uronides, neutral sugars and cellulose all increased during development. However, as the growth rate decreased, the relative proportions of uronides and neutral sugars, expressed as percent of the dry weight of the wall, decreased, while the proportion of cellulose increased. The neutral sugars liberated upon hydrolysis ofNitella walls are qualitatively similar to those found in hydrolysates of higher plant cell walls: glucose, xylose, mannose, galactose, arabinose fucose and rhamnose. Only the percentage of galactose was found to increase in walls of mature cells, while the percentage of all other sugars decreased. The rate of apposition (g of wall material deposited per unit wall surface area per hour) of neutral polysaccharides decreased rapidly with decreasing growth rate during the early stages of development. The rate of apposition of uronides decreased more steadily throughout development, while that of cellulose, after an early decline, remained constant until dropping off at the end of the elongation period. These correlations between decreasing growth rate and decreasing rate of apposition of neutral sugars and uronides indicate that synthesis of these cell-wall components could be involved in the regulation of the rate of cell elongation inNitella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号