首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactobacillus intermedius B-3693 was selected as a good producer of mannitol from fructose after screening 72 bacterial strains. The bacterium produced mannitol, lactic acid, and acetic acid from fructose in pH-controlled batch fermentation. Typical yields of mannitol, lactic acid, and acetic acid from 250 g/L fructose were 0.70, 0.16, and 0.12 g, respectively per g of fructose. The fermentation time was greatly dependent on fructose concentration but the product yields were not dependent on fructose level. Fed-batch fermentation decreased the time of maximum mannitol production from fructose (300 g/L) from 136 to 92 h. One-third of fructose could be replaced with glucose, maltose, galactose, mannose, raffinose, or starch with glucoamylase (simultaneous saccharification and fermentation), and two-thirds of fructose could be replaced with sucrose. L. intermedius B-3693 did not co-utilize lactose, cellobiose, glycerol, or xylose with fructose. It produced lactic acid and ethanol but no acetic acid from glucose. The bacterium produced 21.3 +/- 0.6 g lactic acid, 10.5 +/- 0.3 g acetic acid, and 4.7 +/- 0.0 g ethanol per L of fermentation broth from dilute acid (15% solids, 0.5% H(2)SO(4), 121 degrees C, 1 h) pretreated enzyme (cellulase, beta-glucosidase) saccharified corn fiber hydrolyzate.  相似文献   

2.
Aims:  An integrated dual reactor system for continuous production of lactic acid by Lactobacillus delbrueckii using biofilms developed on reticulated polyurethane foam (PUF) is demonstrated.
Methods and Results:  Lactobacillus delbrueckii was immobilized on PUF, packed in a bioreactor and used in lactic acid fermentation. The rate of lactic acid production was significantly high with a volumetric productivity of 5 g l−1 h−1 over extended period of time. When coupled to a bioreactor, the system could be operated as dual reactor for over 1000 h continuously without augmentation of inoculum and no compromise on productivity.
Conclusions:  Polyurethane foams offer an excellent support for biofilm formation.
Significance and Impact of the Study:  The system was very robust and could be operated for prolonged period at a volumetric productivity of 4–6 g l−1 h−1.  相似文献   

3.
Production of lactic acid from beet molasses by Lactobacillus delbrueckii NCIMB 8130 in static and shake flask fermentation was investigated. Shake flasks proved to be a better fermentation system for this purpose. Substitution of yeast extract with other low cost protein sources did not improve lactic acid production. The maximum lactic acid concentration was achieved without treatment of molasses. A Central Composite Design was employed to determine the maximum lactic acid concentration at optimum values for the process variables (sucrose, yeast extract, CaCO3). A satisfactory fit of the model was realized. Lactic acid production was significantly affected both by sucrose–yeast extract and sucrose–CaCO3 interactions, as well as by the negative quadratic effects of these variables. Sucrose and yeast extract had a linear effect on lactic acid production while the CaCO3 had no significant linear effect. The maximum lactic acid concentration (88.0 g/l) was obtained at concentrations for sucrose, yeast extract and CaCO3 of 89.93, 45.71 and 59.95 g/l, respectively.  相似文献   

4.
In this communication, we describe the isolation of a Lactobacillus delbrueckii subsp. bulgaricus 92063 mutant strain named pH-P11, which differed from the parent strain by low proteolytic activity and altered regulation of expression of lacZ in the presence of glucose or lactose. In the presence of lactose, beta-galactosidase activity was approximately twice as high in pH-P11 than in the wild type. pH-P11 exhibited protosymbiosis together with Streptococcus thermophilus. Yoghurt produced with pH-P11 was characterized by low acidity and little post-acidification during storage. The organoleptic properties (absence of bitterness and other off-flavors, weak sourness, and clear yoghurt taste) were those of a typical "yoghurt mild". This mild flavor was achieved at rather high cell counts of lactobacilli even at the end of shelf-life. High cell counts in conjunction with high beta-galactosidase activity make pH-P11 an interesting strain for application in yoghurt especially designed for consumers with lactose malabsorption. In contrast to "yoghurt mild", which is predominantly produced with Lactobacillus acidophilus together with Streptococcus thermophilus, the product obtained by fermentation with pH-P11 and Streptococcus thermophilus concurs with international standards for yoghurt. During frequent sub-culturing, strain pH-P11, which is supposed to differ from the wild type by one or a few so-far-not-characterized mutations, showed sufficient stability for application in industrial production.  相似文献   

5.
Lactic acid production using Kluyveromyces marxianus (IFO 288), Lactobacillus delbrueckii ssp. bulgaricus (ATCC 11842) and Lactobacillus helveticus (ATCC 15009) individually or as mixed culture on cheese whey in stirred or static fermentation conditions was evaluated. Lactic acid production, residual sugar and cell biomass were the main features examined. Increased lactic acid production was observed, when mixed cultures were used in comparison to individual ones. The highest lactic acid concentrations were achieved when K. marxianus yeast was combined with L. delbrueckii ssp. bulgaricus, and when all the strains were used revealing possible synergistic effects between the yeast and the two lactic acid bacteria. The same synergistic effects were further observed and verified when the mixed cultures were applied in sourdough fermentations, proving that the above microbiological system could be applied in the food fermentations where high lactic acid production is sought.  相似文献   

6.
Aims: The aim of this work was to study the adsorption step of two new temperate bacteriophages (Cb1/204 and Cb1/342) of Lactobacillus delbrueckii and to isolate phage‐resistant derivatives with interesting technological properties. Methods and Results: The effect of divalent cations, pH, temperature and cell viability on adsorption step was analysed. The Ca2+ presence was necessary for the phage Cb1/342 but not for the phage Cb1/204. Both phages showed to be stable at pH values between 3 and 8. Their adsorption rates decreased considerably at pH 8 but remained high at acid pH values. The optimum temperatures for the adsorption step were between 30 and 40°C. For the phage Cb1/342, nonviable cells adsorbed a lower quantity of phage particles in comparison with the viable ones, a fact that could be linked to disorganization of phage receptor sites and/or to the physiological cellular state. The isolation of phage‐resistant derivatives with good technological properties from the sensitive strains and their relationship with the cell heterogeneity of the strains were also made. Conclusions: Characterization of the adsorption step for the first temperate Lact. delbrueckii phages isolated in Argentina was made, and phage‐resistant derivatives of their host strains were obtained. Significance and Impact of the Study: Some phage‐resistant derivatives isolated exhibited good technological properties with the prospective to be used at industrial level.  相似文献   

7.
Lactobacillus delbrueckii mutant Uc-3 utilizes both cellobiose and cellotriose efficiently, converting it into L(+) lactic acid. The enzyme activities of cellobiose and cellotriose utilization were determined for cell extracts, whole cells, and disrupted cells. Aryl-beta-glucosidase activity was detected only for whole cells and disrupted cells, suggesting that these activities are cell bound. The mutant produced 90 g/liter of lactic acid from 100 g/liter of cellobiose with 2.25 g/liter/h productivity.  相似文献   

8.
The role of functionalized alginate gels as immobilized matrices in production of l (+) lactic acid by Lactobacillus delbrueckii was studied. L. delbrueckii cells immobilized in functionalized alginate beads showed enhanced bead stability and selectivity towards production of optically pure l (+) lactic acid in higher yields (1.74Yp/s) compared to natural alginate. Palmitoylated alginate beads revealed 99% enantiomeric selectivity (ee) in production of l (+) lactic acid. Metabolite analysis during fermentation indicated low by-product (acetic acid, propionic acid and ethanol) formation on repeated batch fermentation with functionalized immobilized microbial cells. The scanning electron microscopic studies showed dense entrapped microbial cell biomass in modified immobilized beads compared to native alginate. Thus the methodology has great importance in large-scale production of optically pure lactic acid.  相似文献   

9.
Insertional mutagenesis is impractical in the mechanisms for protection against low pH, high solute concentration etc. due to the involvement of large number of loci and multiple genes. An attempt was made to improve Lactobacillus delbrueckii NCIM 2025 strain by classical mutation using nitrous acid. In the present investigation, classical mutation was proved to be successful and the selected mutants had improved qualities like increased lactic acid productivity, acid tolerance and sugar tolerance. Mutants showed better growth rate and lesser generation time than the wild type.  相似文献   

10.
AIMS: Sequences related to Lactobacillus delbrueckii phage JCL1032 genome integration, the maintenance of lysogeny and putative immunity genes were characterized. Phenotypic changes of the JCL1032 lysogens were investigated. METHODS AND RESULTS: Integration of JCL1032 DNA into the host genome and the location of phage and bacterial attachment sites were studied by standard molecular methods. The frequency of lysogenization was 10(-7), and stable lysogeny was an even rarer phenomenon. JCL1032 integrates its genome into two distinct host genes of unknown functions. According to EOP (efficiency of plating) and adsorption tests JCL1032 lysogens showed resistance against several virulent and temperate Lactobacillus phages at different steps of phage infection. CONCLUSIONS: Temperate JCL1032 integrates its genome into bacterial DNA with exceptionally low frequency. JCL1032 lysogens express a complex phage resistance against several Lact. delbrueckii phages. An antagonistic arms race between the temperate phage and its host is proposed. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first time that the genome integration of a group c Lact. delbrueckii phage has been described. The characterized lysogens could facilitate studies on Lact. delbrueckii phage receptors and phage resistance mechanisms. The genetic information gained from this study benefits the development of integration vectors and phage resistant starters.  相似文献   

11.
AIMS: The aim of this work was to isolate lactic acid bacteria (LAB) strains from Mongolian tarag (a traditionally homemade yoghurt) displaying antimicrobial activities against food-borne pathogens, identify inhibitory substances and study the kinetics of their production. METHODS AND RESULTS: Inhibitory substance-producing bacterial strains were isolated from tarag. From 300 bacterial clones, 31 were able to inhibit the growth of the indicator strain Lactobacillus bulgaricus 340. One of the most active strains was identified as Lactobacillus delbrueckii subsp. lactis strain T31 by using cluster analysis of amplified fragment length polymorphism (AFLP) DNA fingerprints. The antimicrobial substance was inactivated by catalase, demonstrating the production of hydrogen peroxide (H(2)O(2)). Production of H(2)O(2) was studied under aerated and nonaerated culture conditions. The amount of H(2)O(2) in the culture supernatant increased during bacterial growth and reached a maximum (5.12 mmol l(-1)) at the early stationary phase under aerated conditions (agitated cultures). H(2)O(2) was not detected in the culture performed without agitation. In mixed cultures performed in milk with either Lact. delbrueckii subsp. lactis T31 in the presence of Escherichia coli, or Lact. delbrueckii subsp. lactis T31 in the presence of Listeria innocua under aerated and nonaerated conditions, a significant decrease in pathogen count was observed in aerated cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: The significant decrease in Listeria viability observed in aerated mixed cultures of Lact. delbrueckii subsp. lactis T31 is mainly because of H(2)O(2) production. Lactobacillus delbrueckii subsp. lactis T31 could be used as a protective culture in food industries or as a probiotic to prevent intestinal and urogenital infections.  相似文献   

12.
To facilitate metabolic analysis, batch fermentations of Lactobacillus rhamnosus were carried out in a new defined medium. Biomass at 10.5 g/l and lactic acid at 67 g/l with a YP/S of 0.84 were achieved. The maximum specific growth rate and the average productivity were 0.49/h and 2.48 g/l.h, respectively. These are comparable to those of this organism and related organisms in complex media. Preliminary amino acid studies were also conducted, highlighting the importance of serine, asparagine, glutamine and cysteine. Kinetic analysis revealed that lactic acid production was predominantly growth-associated with growth associated and non-growth associated lactic acid constants of 0.389 mol/g-cell and 0.0025 mol/g-cell.h, respectively. Finally a kinetic model has been included to describe the fermentation of L. rhamnosus.  相似文献   

13.
Lactic acid is a versatile chemical that can be produced via fermentation of lignocellulosic materials. The heterolactic strain Lactobacillus pentosus CECT 4023 T, that can consume glucose and xylose, was studied to produce lactic acid from steam exploded wheat straw prehydrolysate. The effect of temperature and pH on bacterial growth was analyzed. Besides, the effect of oxygen on lactic acid production was tested and fermentation yields were compared in different scenarios. This strain showed very high tolerance to the inhibitors contained in the wheat straw prehydrolysate. The highest lactic acid yields based on present sugar, around 0.80 g g−1, were obtained from glucose in presence of 25%, 50%, and 75% v v−1 of prehydrolysate in strict anaerobiosis. Lactic fermentation of wheat straw hydrolysate obtained after enzymatic hydrolysis of the prehydrolysate yielded 0.39 g of lactic acid per gram of released sugars, which demonstrated the high potential of L. pentosus to produce lactic acid from hemicellulosic hydrolysates. Results presented herein not only corroborated the ability of L. pentosus to grow using mixtures of sugars, but also demonstrated the suitability of this strain to be applied as an efficient lactic acid producer in a lignocellulosic biorefinery approach. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2739, 2019  相似文献   

14.
A non-particulate o-diphenol: O2 oxidoreductase (phenolase) has been isolated from leaves of sugar cane. Gel filtration produced two fractions MW 32000 and 130000. The preferred substrate was chlorogenic acid. Other o-diphenols (caffeic acid, catechol, pyrogallol, dihydroxyphenylalanine) all of which were slowly oxidized when tested alone, increased the rates of O2 consumption obtained with catalytic amounts of chlorogenic acid. Both enzyme fractions were inhibited by thiols; thioglycollate, which acted in a non-competitive manner, was most effective.  相似文献   

15.
One of the traditional ways of preparation of yogurt starter in Bulgaria is placing a branch of a particular plant species into boiled sheep's milk maintained at about 45°C, which is further incubated until a dense coagulum is obtained. To investigate the possible origin of the yogurt starter bacteria, Lactobacillus delbrueckii ssp. bulgaricus ( L. bulgaricus ) and Streptococcus thermophilus ( S. thermophilus ), the traditional way of yogurt-starter preparation was followed. Hundreds of plant samples were collected from four regions in Bulgaria and incubated in sterile skim milk. The two target bacteria at low frequencies from the plant samples collected were successfully isolated. Phenotypic and genotypic characteristics of these bacterial isolates revealed that they were identified as L. bulgaricus and S. thermophilus . Twenty isolates of L. bulgaricus and S. thermophilus , respectively, were selected from the isolated strains and further characterized with regard to their performance in yogurt production. Organoleptic and physical properties of yogurt prepared using the isolated strains from plants were not significantly different from those prepared using commercial yogurt-starter strains.
It was therefore suggested that L. bulgaricus and S. thermophilus strains widely used for commercial yogurt production could have originated from plants in Bulgaria. To our knowledge, this is the first report on the isolation and characterization of L. bulgaricus and S. thermophilus strains from plants.  相似文献   

16.
Ram horns are a waste material from the meat industry. The use of ram horn peptone (RHP) as a supplement for lactic acid production was investigated using Lactobacillus casei. For this purpose, first, RHP was produced. Ram horns were hydrolysed by treating with acids (3 M H2SO4 and 6 M HCl) and neutralizing the solutions to yield ram horn hydrolysate (RHH). The RHH was evaporated to yield RHP. The amounts of protein, nitrogen, ash, some minerals, total sugars, total lipids and amino acids of the RHP were determined and compared with a bacto-tryptone from casein. When the concentrations (1–6% w/v) of the RHP were used in bacterial growth medium as a supplement, 2% RHP (ram horn peptone medium) had a maximum influence on the production of lactic acid by L. casei. The content of lactic acid in the culture broth containing 2% RHP (43 g l–1) grown for 24 h was 30% higher than that of the control culture broth (33 g l–1) and 10% higher than that of 2% bacto-tryptone (39 g l–1). RHP was demonstrated to be a suitable supplement for production of lactic acid. This RHP may prove to be a valuable supplement in fermentation technology.  相似文献   

17.
AIMS: The aim of this research was to investigate the potential of Lactobacillus plantarum strain SK1 for use as a biological control agent against Listeria monocytogenes and determine its mechanism of anti-listerial activity. METHODS AND RESULTS: Co-growth of Lact. plantarum SK1 and L. monocytogenes UMCC98 in MRS broth showed that anti-listerial activity of Lact. plantarum SK1 occurred during late log/early stationary phase of growth. This coincided with a reduction in broth pH to 4.26. Evidence obtained from the analysis of cell-free culture filtrates of strain SK1 grown in MRS broth using thin-layer chromatography and growth of L. monocytogenes in pH-adjusted culture filtrates suggested that the anti-listerial activity was due to lactic acid production alone. Trials of Lact. plantarum SK1 on radishes stored at 5 degrees C showed that it had statistically significant (P < 0.05) anti-listerial activity. CONCLUSIONS: The anti-listerial activity of Lact. plantarum SK1 was due to lactic acid production alone. A small-scale trial on radishes stored at 5 degrees C showed it to have significant anti-listerial activity in planta. SIGNIFICANCE AND IMPACT OF THE STUDY: This organism has potential as a biological control agent for L. monocytogenes.  相似文献   

18.
Whole cells of Lactobacillus helveticus were immobilized in calcium-alginate beads to produce lactic acid from cheese whey ultrafiltrate. Ca-alginate-entrapped cells were characterized by higher fermentation rates and optimum pH than free cells. No difference could be observed in the profile of cell activity against temperature for either type of cells. After a heat treatment, cell activity was higher for free cells than for immobilized cells. Continuous lactic acid fermentation using a packed bed reactor was investigated.  相似文献   

19.
AIMS: To identify the predominant lactic acid producing bacteria in the small intestine, caecum and the rectum of the healthy pig. METHODS AND RESULTS: Samples obtained from the large intestine of healthy pigs post-mortem were cultured using a modified agar-MRS medium in roll tubes. Thirteen isolates were selected on the basis of their morphological characteristics and Gram stain reaction for gene sequencing. These isolates were characterized by DNA sequence analysis of 16S rDNA. Eight isolates were identified as Lactobacillus ruminis, two as Enterococcus faecium, one as Mitsuokella multiacidus and two as Escherichia coli. CONCLUSION: This is the first report of Lact. ruminis as the dominant lactic acid bacteria in the large intestine of the pig. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that Lact. ruminis is a dominant bacterium in the large intestine of the healthy pig. Future work should focus on the role of this bacterium in relation to the physiological function of the intestine and the health of the animal.  相似文献   

20.
Lactobacillus amylophilus GV6 fermented a variety of pure and natural starches directly to L(+) lactic acid. Starch to lactic acid conversion efficiency was more than 90% by strain GV6 at low substrate concentrations with all starches. The strain GV6 produced high yields of lactic acid per g of substrate utilized with pure starches such as soluble starch, corn starch, and potato starch, yielding 92–96% at low substrate concentrations in 2 days and 78–89% at high substrate (10%) concentrations in 4–6 days. Strain GV6 also produced high yields of lactic acid per g of substrate utilized with crude starchy substrates such as wheat flour, sorghum flour, cassava flour, rice flour and barley flour yielding 90–93% at low substrate concentrations in 2 days and 80% or more at high substrate concentrations in 6–7 days. Lactic acid yields by L. amylophilus GV6 with pure starches were comparable when low cost crude starchy substrates were used. Lactic acid productivity by strain GV6 is higher than for any other previously reported strains of L. amylophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号