首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fas receptor is a member of the tumor necrosis factor-alpha family of death receptors that mediate physiologic apoptotic signaling. To investigate the molecular mechanisms regulating calcium mobilization during Fas-mediated apoptosis, we have analyzed the sequential steps leading to altered calcium homeostasis and cell death in response to activation of the Fas receptor. We show that Fas-mediated apoptosis requires endoplasmic reticulum-mediated calcium release in a mechanism dependent on phospholipase C-gamma1 (PLC-gamma1) activation and Ca2+ release from inositol 1,4,5-trisphosphate receptor (IP3R) channels. The kinetics of Ca2+ release were biphasic, demonstrating a rapid elevation caused by PLC-gamma1 activation and a delayed and sustained increase caused by cytochrome c binding to IP3R. Blocking either phase of Ca2+ mobilization was cytoprotective, highlighting PLC-gamma1 and IP3R as possible therapeutic targets for disorders associated with Fas signaling.  相似文献   

2.
In permeabilized hepatocytes, inositol 1,4,5-trisphosphate, inositol 2,4,5-trisphosphate and inositol 4,5-bisphosphate induced rapid release of Ca2+ from an ATP-dependent, non-mitochondrial vesicular pool, probably endoplasmic reticulum. The order of potency was inositol 1,4,5-trisphosphate greater than inositol 2,4,5-trisphosphate greater than inositol 4,5-bisphosphate. The Ca2+-releasing action of inositol 1,4,5-trisphosphate is not inhibited by high [Ca2+], nor is it dependent on [ATP] in the range of 50 microM-1.5 mM. These results suggest a role for inositol 1,4,5-trisphosphate as a second messenger in hormone-induced Ca2+ mobilisation, and that a specific receptor is involved in the Ca2+-release mechanism.  相似文献   

3.
The ability of cAMP-dependent hormones to modulate the actions of Ca2(+)-mobilizing hormones was studied in single fura-2-injected guinea pig hepatocytes. In 91% of cells the cAMP-linked hormone, isoproterenol, applied alone, did not alter cytosolic Ca2+ concentration. In 78% of cells which had been pre-exposed to a low concentration of angiotensin II, isoproterenol was able to increase cytosolic Ca2+. Isoproterenol did not, however, increase inositol 1,4,5-trisphosphate or inositol tetrakisphosphate on its own, or in the presence of angiotensin II. Isoproterenol was also able to raise cytosolic Ca2+ concentration in cells microinjected with inositol 2,4,5-trisphosphate or a photoactivatable derivative of inositol 1,4,5-trisphosphate. The elevation of cytosolic Ca2+ concentration induced by isoproterenol in angiotensin II-treated cells and cells injected with caged inositol 1,4,5-trisphosphate was blocked by heparin, implying that the effect was mediated by an inositol 1,4,5-trisphosphate receptor agonist. In permeabilized hepatocytes, inositol 1,4,5-trisphosphate-induced Ca2+ release was enhanced by 8-bromo-cAMP and the catalytic subunit of cAMP-dependent kinase. Cyclic AMP-dependent kinase shifted the dose-response curve for inositol 1,4,5-trisphosphate-mediated Ca2+ release to the left by a factor of 4 and increased the total amount of Ca2+ released by 25%. These results indicate that increased sensitivity of the intracellular Ca2+ releasing organelle to inositol 1,4,5-trisphosphate is responsible for synergism between phospholipase C- and adenylylcyclase-linked hormones in the liver.  相似文献   

4.
Semi-synthetic inositol 1,2-cyclic 4,5-trisphosphate is 1/16th as potent as inositol 1,4,5-trisphosphate in releasing Ca2+ from intracellular stores in permeabilized mouse pancreatic acinar cells. Competitive displacement studies in mouse pancreatic microsomes show that the affinity of inositol 1,2-cyclic 4,5-trisphosphate is 1/20th of that of inositol 1,4,5-trisphosphate at the latter's receptor, indicating that the lower potency of inositol 1,2-cyclic 4,5-trisphosphate in releasing Ca2+ can be accounted for by a weaker affinity at the receptor. These results suggest that inositol 1,2-cyclic 4,5-trisphosphate is unlikely to play any significant role in Ca2+ mobilization, at least in mouse pancreatic acinar cells.  相似文献   

5.
Kawasaki disease is a multi-systemic vasculitis that generally occurs in children and that can lead to coronary artery lesions. Recent studies showed that Kawasaki disease has an important genetic component. In this review, we discuss the single-nucleotide polymorphisms in the genes encoding proteins with a role in intracellular Ca2+ signaling: inositol 1,4,5-trisphosphate 3-kinase C, caspase-3, the store-operated Ca2+-entry channel ORAI1, the type-3 inositol 1,4,5-trisphosphate receptor, the Na+/Ca2+ exchanger 1, and phospholipase Cß4 and Cß1. An increase of the free cytosolic Ca2+ concentration is proposed to be a major factor in susceptibility to Kawasaki disease and disease outcome, but only for polymorphisms in the genes encoding the inositol 1,4,5-trisphosphate 3-kinase C and the Na+/Ca2+ exchanger 1, the free cytosolic Ca2+ concentration was actually measured and shown to be increased. Excessive cytosolic Ca2+ signaling can result in hyperactive calcineurin in T cells with an overstimulated nuclear factor of activated T cells pathway, in hypersecretion of interleukin-1ß and tumor necrosis factor-α by monocytes/macrophages, in increased urotensin-2 signaling, and in an overactivation of vascular endothelial cells.  相似文献   

6.
How do inositol phosphates regulate calcium signaling?   总被引:7,自引:0,他引:7  
Activation of a variety of cell surface receptors results in the phospholipase C-catalyzed hydrolysis of the minor plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate, with concomitant formation of inositol 1,4,5-trisphosphate and diacylglycerol. There is strong evidence that inositol 1,4,5-trisphosphate stimulates Ca2+ release from intracellular stores. The Ca2+-releasing actions of inositol 1,4,5-trisphosphate are terminated by its metabolism through two distinct pathways. Inositol 1,4,5-trisphosphate is dephosphorylated by a 5-phosphatase to inositol 1,4-bisphosphate; alternatively, inositol 1,4,5-trisphosphate can also be phosphorylated to inositol 1,3,4,5-tetrakisphosphate by a 3-kinase. Although the mechanism of Ca2+ mobilization is understood, the precise mechanisms involved in Ca2+ entry are not known; the proposal that inositol 1,4,5-trisphosphate secondarily elicits Ca2+ entry by emptying an intracellular Ca2+ pool is considered.  相似文献   

7.
The addition of bradykinin to NG115-401L cells grown on coverslips results in the generation of rapid transient increases in intracellular [Ca2+] and inositol phosphates. Changes in intracellular Ca2+, measured using the fluorescent indicator dye Fura-2, show two components; an initial rapid peak in [Ca2+]i which is essentially independent of extracellular Ca2+, and a sustained plateau dependent on the presence of extracellular Ca2+. Analysis of bradykinin stimulated production of [3H]inositol phosphates, by h.p.l.c., shows a rapid biphasic production of inositol 1,4,5-trisphosphate, inositol tetrakisphosphate and inositol bisphosphates, followed by a sustained rise in inositol 1,3,4-trisphosphate production. Quantitative measurements have indicated the presence of other, more polar, [3H]inositol-labelled metabolites which do not show major changes on bradykinin stimulation. The initial phase of inositol phosphate production parallels the rapid transient increase in intracellular [Ca2+], however, the second phase of inositol phosphate production occurs when intracellular [Ca2+] is declining and implies a complex series of regulatory events following receptor stimulation. Similar time courses of inositol 1,4,5-trisphosphate and Ca2+ signals provides supporting evidence that inositol 1,4,5-trisphosphate is the second messenger coupling bradykinin receptor stimulation to release of Ca2+ from intracellular stores.  相似文献   

8.
myo-Inositol 1,4,5-trisphosphate is an intracellular second messenger generated from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C. In the present study, we have used the abilities of inositol 1,4,5-trisphosphate to inhibit inositol 1,4,5-tris[32P]phosphate binding and to stimulate release of sequestered stores of 45Ca2+ to assay the mass of inositol 1,4,5-trisphosphate in extracts derived from [3H]inositol-prelabeled chemoattractant-stimulated neutrophils. These assays are specific for inositol 1,4,5-trisphosphate since the relative capacity of the extracts to compete with inositol 1,4,5-tris[32P]phosphate binding and to release 45Ca2+ correlated well with the [3H]inositol 1,4,5-trisphosphate content of the extract as determined by high pressure liquid chromatography. No correlation of these activities was observed with the content in the extract of either [3H]inositol 1,3,4-trisphosphate or [3H]inositol 1,3,4,5-tetrakisphosphate, whose formation exhibited kinetics distinct from [3H]inositol 1,4,5-trisphosphate. Thus, within 10 s of stimulation with 10 nM formyl-methionyl-leucyl-phenylalanine, the inositol 1,4,5-trisphosphate content of the extract increased from 0.05 to 0.55 pmol/10(6) cells, equivalent to a change in intracellular concentration from 100 nM to 1.1 microM. These studies demonstrate that neutrophils produce sufficient quantities of inositol 1,4,5-trisphosphate to mobilize Ca2+ from intracellular stores.  相似文献   

9.
We investigated the effects of new inositol 1,4,5-trisphosphate analogues on the release of Ca2+ from isolated vacuoles of Neurospora crassa. Tri-O-butyryl-inositol 1,4,5-trisphosphate and a set of cis,cis-cyclohexane 1,3,5-triol bis-(CHT-P2) and trisphosphates (CHT-P3) gave an increase in free Ca2+ as measured directly with fura-2, a Ca2(+)-chelator. However, inositol 1,4-bisphosphate, 6-O-palmitoyl-inositol 4,5-bisphosphate and trans-cyclohexane 1,2-diol bisphosphate (trans CHD-P2) did not induce Ca2(+)-release. These results suggest that the 1,5-bisphosphate position in inositol 1,4,5-trisphosphate (Ins 1,4,5-P3) is the only essential arrangement for receptor binding to vacuoles of Neurospora crassa. The structures of these analogues are discussed on the basis of a general concept for the design of new Ins 1,4,5-P3 analogues.  相似文献   

10.
Calcium concentrations are strictly regulated in all biological cells, and one of the key molecules responsible for this regulation is the inositol 1,4,5-trisphosphate receptor, which was known to form a homotetrameric Ca(2+) channel in the endoplasmic reticulum. The receptor is involved in neuronal transmission via Ca(2+) signaling and for many other functions that relate to morphological and physiological processes in living organisms. We analysed the three-dimensional structure of the ligand-free form of the receptor based on a single-particle technique using an originally developed electron microscope equipped with a helium-cooled specimen stage and an automatic particle picking system. We propose a model that explains the complex mechanism for the regulation of Ca(2+) release by co-agonists, Ca(2+), inositol 1,4,5-trisphosphate based on the structure of multiple internal cavities and a porous balloon-shaped cytoplasmic domain containing a prominent L-shaped density which was assigned by the X-ray structure of the inositol 1,4,5-trisphosphate binding domain.  相似文献   

11.
Transient transfection of Chinese hamster ovary or baby hamster kidney cells expressing the Group I metabotropic glutamate receptor mGlu1alpha with green fluorescent protein-tagged pleckstrin homology domain of phospholipase Cdelta1 allows real-time detection of inositol 1,4,5-trisphosphate. Loading with Fura-2 enables simultaneous measurement of intracellular Ca(2+) within the same cell. Using this technique we have studied the extracellular calcium sensing property of the mGlu1alpha receptor. Quisqualate, in extracellular medium containing 1.3 mm Ca(2+), increased inositol 1,4,5-trisphosphate in all cells. This followed a typical peak and plateau pattern and was paralleled by concurrent increases in intracellular Ca(2+) concentration. Under nominally Ca(2+)-free conditions similar initial peaks in inositol 1,4,5-trisphosphate and Ca(2+) concentration occurred with little change in either agonist potency or efficacy. However, sustained inositol 1,4,5-trisphosphate production was substantially reduced and the plateau in Ca(2+) concentration absent. Depletion of intracellular Ca(2+) stores using thapsigargin abolished quisqualate-induced increases in intracellular Ca(2+) and markedly reduced inositol 1,4,5-trisphosphate production. These data suggest that the mGlu1alpha receptor is not a calcium-sensing receptor because the initial response to agonist is not sensitive to extracellular Ca(2+) concentration. However, prolonged activation of phospholipase C requires extracellular Ca(2+), while the initial burst of activity is highly dependent on Ca(2+) mobilization from intracellular stores.  相似文献   

12.
ABSTRACT: Autophagy is an important cell-biological process responsible for the disposal of long-lived proteins, protein aggregates, defective organelles and intracellular pathogens. It is activated in response to cellular stress and plays a role in development, cell differentiation, and ageing. Moreover, it has been shown to be involved in different pathologies, including cancer and neurodegenerative diseases. It is a long standing issue whether and how the Ca2+ ion is involved in its regulation. The role of the inositol 1,4,5-trisphosphate receptor, the main intracellular Ca2+-release channel, in apoptosis is well recognized, but its role in autophagy only recently emerged and is therefore much less well understood. Positive as well as negative effects on autophagy have been reported for both the inositol 1,4,5-trisphosphate receptor and Ca2+. This review will critically present the evidence for a role of the inositol 1,4,5-trisphosphate receptor/Ca2+-release channel in autophagy and will demonstrate that depending on the cellular conditions it can either suppress or promote autophagy. Suppression occurs through Ca2+ signals directed to the mitochondria, fueling ATP production and decreasing AMP-activated kinase activity. In contrast, Ca2+-induced autophagy can be mediated by several pathways including calmodulin-dependent kinase kinase β, calmodulin-dependent kinase I, protein kinase C θ, and/or extracellular signal-regulated kinase.  相似文献   

13.
Stimulation of rat parotid acinar cells by the muscarinic cholinergic receptor agonist methacholine results in the formation of inositol 1,4,5-trisphosphate [1,4,5)IP3) and inositol cyclic 1:2,4,5-trisphosphate [c1:2,4,5)IP3) which, after 40 min, accumulate to a ratio of 1:0.57. The turnover rates of these inositol trisphosphates have been determined in cholinergically stimulated rat parotid cells by measuring the degradation of the 3H-labeled compounds following receptor blockade. (1,4,5)IP3 is rapidly metabolized, with a half-time of 7.6 s; (c1:2,4,5)IP3 declines much more slowly with a half-time of almost 10 min. Because the formation and metabolism of (c1:2,4,5)IP3 are so slow, (c1:2,4,5)IP3 gradually accumulates upon prolonged receptor activation. Inositol trisphosphate turnover was compared to the receptor-mediated changes in cytoplasmic Ca2+ concentration, as measured by the fluorescent Ca2+ indicator, fura-2. The Ca2+ signal decays upon termination of inositol phosphate formation and returns to base line within 30 s. Thus, while (c1:2,4,5)IP3 may have some yet unknown biological effects on Ca2+ homeostasis, its metabolism seems far too slow to be the primary regulator of cytosolic Ca2+ levels under long term stimulatory conditions. The rate at which the Ca2+ signal decays is, however, somewhat slowed after prolonged agonist stimulation. Furthermore, the capacity of the cells to mobilize intracellular Ca2+ in response to a second agonist stimulation is slightly delayed when the duration of the first stimulus is prolonged. The results suggest that the regulation of cytoplasmic Ca2+ levels may be more complicated than initially realized and could depend on the combined actions of more than one inositol polyphosphate.  相似文献   

14.
Inositol polyphosphates and intracellular calcium release   总被引:2,自引:0,他引:2  
The hydrolysis of inositol lipids triggered by the occupation of cell surface receptors generates several intracellular messengers. Many different inositol phosphate isomers accumulate in stimulated cells. Of these D-myo-inositol 1,4,5-trisphosphate (Ins 1,4,5-P3) is responsible for discharging Ca2+ from intracellular stores. Specific membrane binding sites for Ins 1,4,5-P3 have been detected. The properties of these sites and their possible relationship to the calcium release process is reviewed. Ins 1,4,5-P3 binding sites may be present in discrete subcellular structures ("calciosomes"). Kinetic and some electrophysiological evidence indicates that Ins 1,4,5-P3 acts to open a Ca2+ channel. Recent progress on the purification of the receptor from neuronal tissues is summarized. Phosphorylation of Ins 1,4,5-P3 by a specific kinase results in the production of D-myo-inositol 1,3,4,5-tetraphosphate (Ins 1,3,4,5-P4). This inositol phosphate has been reported to increase the entry of Ca2+ across the plasma membrane, activate nonspecific ion channels in the plasma membrane, alter the Ca2+ content of the Ins 1,4,5-P3-releasable store, and bind to and alter the activity of certain enzymes. These data and the possible biological significance of Ins 1,3,4,5-P4 are discussed.  相似文献   

15.
Many cells (including angiotensin II target cells) respond to external stimuli with accelerated hydrolysis of phosphatidylinositol 4,5-bisphosphate, generating 1,2-diacylglycerol and inositol 1,4,5-trisphosphate, a rapidly diffusible and potent Ca2+-mobilizing factor. Following its production at the plasma membrane level, inositol 1,4,5-trisphosphate is believed to interact with specific sites in the endoplasmic reticulum and triggers the release of stored Ca2+. Specific receptor sites for inositol 1,4,5-trisphosphate were recently identified in the bovine adrenal cortex (Baukal, A. J., Guillemette, G., Rubin, R., Sp?t, A., and Catt, K. J. (1985) Biochem. Biophys. Res. Commun. 133, 532-538) and have been further characterized in the adrenal cortex and other target tissues. The inositol 1,4,5-trisphosphate-binding sites are saturable and present in low concentration (104 +/- 48 fmol/mg protein) and exhibit high affinity for inositol 1,4,5-trisphosphate (Kd 1.7 +/- 0.6 nM). Their ligand specificity is illustrated by their low affinity for inositol 1,4-bisphosphate (Kd approximately 10(-7) M), inositol 1-phosphate and phytic acid (Kd approximately 10(-4) M), fructose 1,6-bisphosphate and 2,3-bisphosphoglycerate (Kd approximately 10(-3) M), with no detectable affinity for inositol 1-phosphate and myo-inositol. These binding sites are distinct from the degradative enzyme, inositol trisphosphate phosphatase, which has a much lower affinity for inositol trisphosphate (Km = 17 microM). Furthermore, submicromolar concentrations of inositol 1,4,5-trisphosphate evoked a rapid release of Ca2+ from nonmitochondrial ATP-dependent storage sites in the adrenal cortex. Specific and saturable binding sites for inositol 1,4,5-trisphosphate were also observed in the anterior pituitary (Kd = 0.87 +/- 0.31 nM, Bmax = 14.8 +/- 9.0 fmol/mg protein) and in the liver (Kd = 1.66 +/- 0.7 nM, Bmax = 147 +/- 24 fmol/mg protein). These data suggest that the binding sites described in this study are specific receptors through which inositol 1,4,5-trisphosphate mobilizes Ca2+ in target tissues for angiotensin II and other calcium-dependent hormones.  相似文献   

16.
The release of Ca2+ from the intracellular store site, as induced by inositol 1,4,5-trisphosphate, was studied in relation to free Ca2+ concentrations or amounts of stored Ca2+ in smooth muscle cells. The maximal Ca2+ release induced by inositol 1,4,5-trisphosphate was observed when the amount of Ca2+ in the store site was about 50% of the maximal capacity of the Ca2+ storage, and when the extravesicular free Ca2+ concentration was less than 1.5 X 10(-6) M. The Ca2+ release induced by inositol 1,4,5-trisphosphate was accelerated by ATP and 5'-adenylylimidodiphosphate (AMPPNP), but not by ADP and AMP. This inositol 1,4,5-trisphosphate-induced Ca2+ release appeared to be specific for intracellular Ca2+ store sites (mainly sarcoplasmic reticulum), and this Ca2+ release was not apparent in the sarcolemmal fraction.  相似文献   

17.
The effects of Alzheimer's disease-related amyloidogenic peptides on inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) mobilization were examined in Xenopus laevis oocytes. Intracellular Ca(2+) was monitored by electrophysiological measurement of the endogenous Ca(2+)-activated Cl(-) current. Application of a hyperpolarizing pulse released intracellular Ca(2+) in oocytes primed by pre-injection of a non-metabolizable inositol 1,4,5-trisphosphate analogue. The carboxyl terminus of the amyloid precursor protein inhibited inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca(2+) release in a dose-dependent manner. Equimolar beta-amyloid peptides Abeta(1-40) or Abeta(1-42) had no effect, and whereas a truncated carboxyl terminus lacking the Abeta domain was equipotent to the full-length one, a carboxyl terminus fragment lacking the NPTY sequence was less effective than the full-length fragment. The inhibition induced by the carboxyl terminus was not associated with the block of the Ca(2+)-dependent Cl(-) channel itself or compromised Ca(2+) influx. We conclude that the carboxyl terminus of the amyloid precursor protein inhibits inositol 1,4,5-trisphosphate-sensitive Ca(2+) release and could thus disrupt Ca(2+) homeostasis and that the carboxyl terminus is much more effective than the beta-amyloid fragments used. By perturbing the coupling of inositol 1,4,5-trisphosphate and Ca(2+) release, the carboxyl terminus of the amyloid precursor protein can potentially be involved in inducing the neural toxicity characteristic of Alzheimer's disease.  相似文献   

18.
Inositol 1,4,5-trisphosphate receptor-deficient (IP3RKO) B-lymphocytes were used to investigate the functional relevance of type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) and its cleavage by caspase-3 in apoptosis. We showed that inositol 1,4,5-trisphosphate receptor-deficient cells were largely resistant to apoptosis induced by both staurosporine (STS) and B-cell receptor (BCR) stimulation. Expression of either the wild-type IP3R1 or an N-terminal deletion mutant (Delta1-225) that lacks inositol 1,4,5-trisphosphate-induced Ca2+ release activity restored sensitivity to apoptosis and the consequent rise in free cytosolic Ca2+ concentration ([Ca2+]i). Expression of caspase-3-non-cleavable mutant receptor, however, dramatically slowed down the rate of apoptosis and prevented both Ca2+ overload and secondary necrosis. Conversely, expression of the "channel-only" domain of IP3R1, a fragment of the receptor generated by caspase-3 cleavage, strongly increased the propensity of the cells to undergo apoptosis. In agreement with these observations, caspase inhibitors impeded apoptosis and the associated rise in [Ca2+]i. Both the staurosporine- and B-cell receptor-induced apoptosis and increase in [Ca2+]i could be induced in nominally Ca2+-free and serum-free culture media, suggesting that the apoptosis-related rise in [Ca2+]i was primarily because of the release from internal stores rather than of influx through the plasma membrane. Altogether, our results suggest that IP3R1 plays a pivotal role in apoptosis and that the increase in [Ca2+]i during apoptosis is mainly the consequence of IP3R1 cleavage by caspase-3. These observations also indicate that expression of a functional IP3R1 per se is not enough to generate the significant levels of cytosolic Ca2+ needed for the rapid execution of apoptosis, but a prior activation of caspase-3 and the resulting truncation of the IP3R1 are required.  相似文献   

19.
The depletion of an inositol 1, 4,5-trisphosphate-sensitive intracellular Ca2+ pool has been proposed to be the signal for Ca2+ entry in agonist-activated cells. Consistent with this idea, thapsigargin, which releases intracellular Ca2+ without inositol phosphate formation, has been reported to activate Ca2+ entry in certain cells. We now report the effects of thapsigargin on Ca2+ entry in parotid acinar cells. In fura-2-loaded parotid acinar cells, thapsigargin caused a sustained elevation of [Ca2+], but did not increase inositol phosphate formation. In the absence of extracellular Ca2+, the increase in [Ca2+], was transient, suggesting that thapsigargin activates both the release of Ca2+ from intracellular stores and the entry of Ca2+ from the extracellular space. In the absence of extracellular Ca2+, pretreatment with methacholine, an agonist believed to mobilize Ca2+ through the production of inositol 1,4,5-trisphosphate, inhibited but did not completely block the response to thapsigargin; likewise, pretreatment with thapsigargin inhibited the response to methacholine. In permeabilized cells, thapsigargin gradually released Ca2+, whereas inositol 1,4,5-trisphosphate caused a rapid and transient discharge of Ca2+. The simultaneous addition of thapsigargin with inositol 1,4,5-trisphosphate evoked a maximum Ca2+ release similar to that for inositol 1,4,5-trisphosphate alone, but the reuptake seen with inositol 1,4,5-trisphosphate alone was abolished. In intact cells, methacholine and thapsigargin together produced a greater initial release of Ca2+ than either alone, but they were not additive in the sustained phase of Ca2+ mobilization. These results demonstrate that the mechanisms for activation of Ca2+ entry by thapsigargin and methacholine are the same and are consistent with the idea that entry is initiated by the depletion of the intracellular inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. The results also indicate that, in contrast to previously proposed models, Ca2+ entry into agonist-activated cells occurs directly across the plasma membrane to the cytoplasm rather than through a cycle of uptake and release by the intracellular Ca2+ pool.  相似文献   

20.
Lysed mouse thymocytes release [3H]inositol 1,4,5 trisphosphate from [3H]inositol-labelled phosphatidyl inositol 4,5-bisphosphate in response to GTP gamma S, and rapidly phosphorylate [3H]inositol 1,4,5-trisphosphate to [3H]inositol 1,3,4,5-tetrakisphosphate. The rate of phosphorylation is increased approximately 7-fold when the free [Ca2+] in the lysate is increased from 0.1 to 1 microM, the range in which the cytosolic free [Ca2+] increases in intact thymocytes in response to the mitogen concanavalin A. Stimulation of the intact cells with concanavalin A also results in a rapid and sustained increase in the amount of inositol 1,3,4,5-tetrakisphosphate, and a much smaller transient increase in 1,4,5-trisphosphate. Lowering [Ca2+] in the medium from 0.4 mM to 0.1 microM before addition of concanavalin A reduces accumulation of inositol 1,3,4,5-tetrakisphosphate by at least 3-fold whereas the increase in inositol 1,4,5-trisphosphate is sustained rather than transient. The data imply that in normal medium the activity of the inositol 1,4,5-trisphosphate kinase increases substantially in response to the rise in cytosolic free [Ca2+] generated by concanavalin A, accounting for both the transient accumulation of inositol 1,4,5-trisphosphate and the sustained high levels of inositol 1,3,4,5-tetrakisphosphate. Inositol 1,3,4,5-tetrakisphosphate is a strong candidate for the second messenger for Ca2+ entry across the plasma membrane. This would imply that the inositol polyphosphates regulate both Ca2+ entry and intracellular Ca2+ release, with feedback control of the inositol polyphosphate levels by Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号