首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Objective

Muscarinic acetylcholine receptors (mAChRs) are 7-transmembrane, G protein-coupled receptors that regulate a variety of physiological processes and represent potentially important targets for therapeutic intervention. mAChRs can be stimulated by full and partial orthosteric and allosteric agonists, however the relative abilities of such ligands to induce conformational changes in the receptor remain unclear. To gain further insight into the actions of mAChR agonists, we have developed a fluorescently tagged M1 mAChR that reports ligand-induced conformational changes in real-time by changes in Förster resonance energy transfer (FRET).

Methods

Variants of CFP and YFP were inserted into the third intracellular loop and at the end of the C-terminus of the mouse M1 mAChR, respectively. The optimized FRET receptor construct (M1-cam5) was expressed stably in HEK293 cells.

Results

The variant CFP/YFP-receptor chimera expressed predominantly at the plasma membrane of HEK293 cells and displayed ligand-binding affinities comparable with those of the wild-type receptor. It also retained an ability to interact with Gαq/11 proteins and to stimulate phosphoinositide turnover, ERK1/2 phosphorylation and undergo agonist-dependent internalization. Addition of the full agonist methacholine caused a reversible decrease in M1 FRET (FEYFP/FECFP) that was prevented by atropine pre-addition and showed concentration-dependent amplitude and kinetics. Partial orthosteric agonists, arecoline and pilocarpine, as well as allosteric agonists, AC-42 and 77-LH-28-1, also caused atropine-sensitive decreases in the FRET signal, which were smaller in amplitude and significantly slower in onset compared to those evoked by methacholine.

Conclusion

The M1 FRET-based receptor chimera reports that allosteric and orthosteric agonists induce similar conformational changes in the third intracellular loop and/or C-terminus, and should prove to be a valuable molecular reagent for pharmacological and structural investigations of M1 mAChR activation.  相似文献   

2.
The glucagon-like peptide-1 receptor (GLP-1R) is a target for type 2 diabetes treatment. Due to the inconvenience of peptide therapeutics, small-molecule GLP-1R agonists have been studied. Compound 2 (6,7-dichloro-2-methylsulfonyl-2-N-tert-butylaminoquinoxaline) and compound B (4-(3-(benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine) have been described as small molecule, ago-allosteric modulators of GLP-1R. However, their modes of action at the GLP-1R have not been elucidated. Thus, in this study, we compared the mechanisms of action between these two compounds. When compound 2 was treated with endogenous or exogenous peptide agonists (GLP-1 and exenatide) or fragments of peptide agonists (GLP-1(9-36), Ex3, Ex4, and Ex5), the response curve of these peptide agonists shifted left without a change in maximum efficacy. In contrast, compound B potentiated the response and increased maximum efficacy. However, N-terminal truncated orthosteric antagonists including Ex7, Ex9, and Ex10, augmented the response of compound 2 at the GLP-1R but did not alter compound B activity. Intriguingly, when we co-treated compound 2 with compound B in CHO cells expressing full-length hGLP-1R or N-terminal extracellular domain-truncated GLP-1R, the activation of both types of receptors increased additively, implying that the N-terminus of the receptor is not involved in the modulation by compound agonists. We confirmed that these two compounds increased calcium influx by different patterns in CHO cells expressing GLP-1R. Taken together, our findings suggest that compounds 2 and B have different modes of action to activate GLP-1R. Further study to identify the putative binding sites will help in the discovery of orally available GLP-1R agonists.  相似文献   

3.
Nineteen 5-phenyloxazoles (5POs) were examined for their ability to modulate adenylate cyclase by measuring cAMP produced in head membrane homogenates of fifth instar larvae of the silkworm Bombyx mori. Among the compounds tested, 5-(4-methoxyphenyl)oxazole (9) and the 2,6-dichlorophenyl congener showed the highest activation of adenylate cyclase; both compounds produced approximately half the level of cAMP produced by the action of octopamine (OCT). The OCT receptor antagonists chlorpromazine, mianserin, and metoclopramide attenuated 9-stimulated cAMP production. In contrast, 5-(4-hydroxyphenyl)oxazole (8) and the 4-cyanophenyl congener attenuated both OCT-stimulated and basal cAMP production. The tyramine (TYR) receptor antagonist yohimbine inhibited the negative effect of 8. These findings indicate that the 5PO class of compounds includes both positive and negative modulators of adenylate cyclase in the heads of B. mori larvae, and that 9 and 8 are OCT and TYR receptor agonists, respectively. These compounds might prove useful for a pharmacological dissection of biogenic amine receptors.  相似文献   

4.
The second extracellular (E2) loop of G protein-coupled receptors (GPCRs) plays an essential but poorly understood role in the binding of non-peptidic small molecules. We have utilized both orthosteric ligands and allosteric modulators of the M2 muscarinic acetylcholine receptor, a prototypical Family A GPCR, to probe possible E2 loop binding dynamics. We developed a homology model based on the crystal structure of bovine rhodopsin and predicted novel cysteine substitutions that should dramatically reduce E2 loop flexibility via disulfide bond formation and significantly inhibit the binding of both types of ligands. This prediction was validated experimentally using radioligand binding, dissociation kinetics, and cell-based functional assays. The results argue for a flexible "gatekeeper" role of the E2 loop in the binding of both allosteric and orthosteric GPCR ligands.  相似文献   

5.
Several lines of experiments demonstrated the interplay between the transforming growth factor-beta (TGF-beta) and vitamin D signaling pathways. Recently, we found that Smad3, a downstream component of the TGF-beta signaling pathway, potentiates ligand-induced transactivation of vitamin D receptor (VDR) as a coactivator of VDR (Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kawabata, M., Miyazono, K., and Kato, S. (1999) Science 283, 1317-1321). Here, we investigated the roles of inhibitory Smads, Smad6 and Smad7, which are negative regulators of the TGF-beta/bone morphogenetic protein signaling pathway, on the Smad3-mediated potentiation of VDR function. We found that Smad7, but not Smad6, abrogates the Smad3-mediated VDR potentiation. Interaction studies in vivo and in vitro showed that Smad7 inhibited the formation of the VDR-Smad3 complex, whereas Smad6 had no effect. Taken together, our results strongly suggest that the interplay between the TGF-beta and vitamin D signaling pathways is, at least in part, mediated by the two classes of Smad proteins, which modulate VDR transactivation function both positively and negatively.  相似文献   

6.
Dear Editor, Dopamine acts as an essential neurotransmitter whose signal-ing is conducted through five G protein-coupled receptors(GPCRs),dopamine D1 to D5 rece...  相似文献   

7.
《Cell reports》2023,42(2):112124
  1. Download : Download high-res image (254KB)
  2. Download : Download full-size image
  相似文献   

8.
Trace amine-associated receptors (TAAR) are rhodopsin-like G-protein-coupled receptors (GPCR). TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR), phenylethylamine (PEA), octopamine (OA), but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1) and 2 (ADRB2) have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR) octopamine (OAR), ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.  相似文献   

9.
The glucagon-like peptide-1 receptor (GLP-1R) is a prototypical family B G protein-coupled receptor that exhibits physiologically important pleiotropic coupling and ligand-dependent signal bias. In our accompanying article (Koole, C., Wootten, D., Simms, J., Miller, L. J., Christopoulos, A., and Sexton, P. M. (2012) J. Biol. Chem. 287, 3642-3658), we demonstrate, through alanine-scanning mutagenesis, a key role for extracellular loop (ECL) 2 of the receptor in propagating activation transition mediated by GLP-1 peptides that occurs in a peptide- and pathway-dependent manner for cAMP formation, intracellular (Ca(2+)(i)) mobilization, and phosphorylation of extracellular signal-regulated kinases 1 and 2 (pERK1/2). In this study, we examine the effect of ECL2 mutations on the binding and signaling of the peptide mimetics, exendin-4 and oxyntomodulin, as well as small molecule allosteric agonist 6,7-dichloro-2-methylsulfonyl-3-tert-butylaminoquinoxaline (compound 2). Lys-288, Cys-296, Trp-297, and Asn-300 were globally important for peptide signaling and also had critical roles in governing signal bias of the receptor. Peptide-specific effects on relative efficacy and signal bias were most commonly observed for residues 301-305, although R299A mutation also caused significantly different effects for individual peptides. Met-303 was more important for exendin-4 and oxyntomodulin action than those of GLP-1 peptides. Globally, ECL2 mutation was more detrimental to exendin-4-mediated Ca(2+)i release than GLP-1(7-36)-NH(2), providing additional evidence for subtle differences in receptor activation by these two peptides. Unlike peptide activation of the GLP-1R, ECL2 mutations had only limited impact on compound 2 mediated cAMP and pERK responses, consistent with this ligand having a distinct mechanism for receptor activation. These data suggest a critical role of ECL2 of the GLP-1R in the activation transition of the receptor by peptide agonists.  相似文献   

10.
11.
The discovery, synthesis and structure-activity relationship (SAR) of novel carboxylic acid agonists for GPR40 are described. Aryl propionic acid 1, identified from a high throughput screen, was selected for chemical exploration. Compound 2 was identified as our lead molecule through efficient solid phase combinatorial array chemistry and had an attractive in vitro and in vivo pharmacokinetic profile in rat. These ligands may prove useful in establishing a role for GPR40 in insulin regulation.  相似文献   

12.
Abstract

The glucagon-like peptide-1 receptor (GLP-1R) is a well-known target of therapeutics industries for the treatment of various metabolic diseases like type 2 diabetes and obesity. The structural–functional relationships of small molecule agonists and GLP-1R are yet to be understood. Therefore, an attempt was made on structurally known GLP-1R agonists (Compound 1, Compound 2, Compound A, Compound B, and (S)-8) to study their interaction with the extracellular domain of GLP-1R. In this study, we explored the dynamics, intrinsic stability, and binding mechanisms of these molecules through computational modeling, docking, molecular dynamics (MD) simulations and molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) binding free energy estimation. Molecular docking study depicted that hydrophobic interaction (pi–pi stacking) plays a crucial role in maintaining the stability of the complex, which was also supported by intermolecular analysis from MD simulation study. Principal component analysis suggested that the terminal ends along with the turns/loops connecting adjacent helix and strands exhibit a comparatively higher movement of main chain atoms in most of the complexes. MM/PBSA binding free energy study revealed that non-polar solvation (van der Waals and electrostatic) energy subsidizes significantly to the total binding energy, and the polar solvation energy opposes the binding agonists to GLP-1R. Overall, we provide structural features information about GLP-1R complexes that would be conducive for the discovery of new GLP-1R agonists in the future for the treatment of various metabolic diseases.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
The glucagon-like peptide 1 receptor (GLP-1R) belongs to a distinct subgroup of G protein-coupled peptide hormone receptors (class B) that has been difficult to target by small molecule drugs. Here, we report that a non-peptide compound, T-0632, binds with micromolar affinity to the human GLP-1R and blocks GLP-1-induced cAMP production. Furthermore, the observation that T-0632 has almost 100-fold selectivity for the human versus the highly homologous rat GLP-1R provided an opportunity to map determinants of non-peptide binding. Radioligand competition experiments utilizing a series of chimeric human/rat GLP-1R constructs revealed that partial substitution of the amino terminus of the rat GLP-1R with the corresponding sequence from the human homolog was sufficient to confer high T-0632 affinity. Follow-up analysis of receptors where individual candidate amino acids had been exchanged between the human and rat GLP-1Rs identified a single residue that explained species selectivity of non-peptide binding. Replacement of tryptophan 33 in the human GLP-1R by serine (the homologous amino acid in the rat GLP-1R) resulted in a 100-fold loss of T-0632 affinity, whereas the converse mutation in the rat GLP-1R led to a reciprocal gain-of-function phenotype. These observations suggest that in a class B receptor, important determinants of non-peptide affinity reside within the extracellular amino-terminal domain. Compound T-0632 may mimic, and thereby interfere with, the putative "pseudo-tethering" mechanism by which the amino terminus of class B receptors initiates the binding of cognate hormones.  相似文献   

14.
A three-dimensional model of the human extracellular Ca(2+)-sensing receptor (CaSR) has been used to identify specific residues implicated in the recognition of two negative allosteric CaSR modulators of different chemical structure, NPS 2143 and Calhex 231. To demonstrate the involvement of these residues, we have analyzed dose-inhibition response curves for the effect of these calcilytics on Ca(2+)-induced [(3)H]inositol phosphate accumulation for the selected CaSR mutants transiently expressed in HEK293 cells. These mutants were further used for investigating the binding pocket of two chemically unrelated positive allosteric CaSR modulators, NPS R-568 and (R)-2-[1-(1-naphthyl)ethylaminomethyl]-1H-indole (Calindol), a novel potent calcimimetic that stimulates (EC(50) = 0.31 microM) increases in [(3)H]inositol phosphate levels elicited by activating the wild-type CaSR by 2 mM Ca(2+). Our data validate the involvement of Trp-818(6.48), Phe-821(6.51), Glu-837(7.39), and Ile-841(7.43) located in transmembranes (TM) 6 and TM7, in the binding pocket for both calcimimetics and calcilytics, despite important differences observed between each family of compounds. The TMs involved in the recognition of both calcilytics include residues located in TM3 (Arg-680(3.28), Phe-684(3.32), and Phe-688(3.36)). However, our study indicates subtle differences between the binding of these two compounds. Importantly, the observation that some mutations that have no effect on calcimimetics recognition but which affect the binding of calcilytics in TM3 and TM5, suggests that the binding pocket of positive and negative allosteric modulators is partially overlapping but not identical. Our CaSR model should facilitate the development of novel drugs of this important therapeutic target and the identification of the molecular determinants involved in the binding of allosteric modulators of class 3 G-protein-coupled receptors.  相似文献   

15.
The objectives of this study were to determine whether activation of estrogen receptor 1 (ESR1; also known as ERalpha), or estrogen receptor 2 (ESR2; also known as ERbeta), or both are required to: 1) acutely inhibit secretion of LH, 2) induce the preovulatory-like surge of LH, and 3) inhibit secretion of FSH in ovariectomized (OVX) ewes. OVX ewes (n = 6) were administered intramuscularly 25 micrograms estradiol (E2), 12 mg propylpyrazoletriol (PPT; a subtype-selective ESR1 agonist), 21 mg diaprylpropionitrile (DPN; a subtype-selective ESR2 agonist), or PPT + DPN. Like E2, administration of PPT, DPN, or combination of the two rapidly decreased (P < 0.05) secretion of LH. Each agonist induced a gradual, prolonged rise in secretion of LH after the initial inhibition, but neither agonist alone nor the combined agonists was able to induce a "normal" preovulatory-like surge of LH similar to that induced by E2. Compared with E2-treated ewes, the beginning of the increase in secretion of LH occurred earlier (P < 0.01) in DPN-treated ewes, later (P < 0.05) in PPT-treated ewes, and at a similar interval in ewes receiving the combined agonist treatment. Like E2, PPT decreased (P < 0.05) secretion of FSH, but the duration of suppression was much longer in PPT-treated ewes. DPN did not alter secretion of FSH in this study. Modulation of the number of GnRH receptors by PPT and DPN was examined in primary cultures of ovine pituitary cells. In our hands, both PPT and DPN increased the number of GnRH receptors, but the dose of DPN required to stimulate synthesis of GnRH receptors was 10 times higher than that of PPT. We conclude that in OVX ewes: 1) ESR1 and ESR2 mediate the negative feedback of E2 on secretion of LH at the level of the pituitary gland, 2) ESR1 and ESR2 do not synergize or antagonize the effects of each other; however, they do interact to synchronize the beginning of the stimulatory effect of E2 on secretion of LH, 3) ESR1 and ESR2 may mediate at least partially the positive feedback of E2 on LH secretion by increasing the number of GnRH receptors, and 4) only ESR1 appears to be involved in the negative feedback of E2 on secretion of FSH.  相似文献   

16.
We have used the highly specific alpha4beta1 inhibitor 4-((N'-2-methylphenyl)ureido)-phenylacetyl-leucine-aspartic acid-valine-proline (BIO1211) as a model LDV-containing ligand to study alpha4beta1 integrin-ligand interactions on Jurkat cells under diverse conditions that affect the activation state of alpha4beta1. Observed KD values for BIO1211 binding ranged from a value of 20-40 nM in the non-activated state of the integrin that exists in 1 mM Mg2+, 1 mM Ca2+ to 100 pM in the activated state seen in 2 mM Mn2+ to 18 pM when binding was measured after co-activation by 2 mM Mn2+ plus 10 microgram/ml of the integrin-activating monoclonal antibody TS2/16. The large range in KD values was governed almost exclusively by differences in the dissociation rates of the integrin-BIO1211 complex, which ranged from 0.17 x 10(-4) s-1 to >140 x 10(-4) s-1. Association rate constants varied only slightly under the same conditions, all falling in the narrow range from 0.9 to 2.7 x 10(6) M-1 s-1. The further increase in affinity observed upon co-activation by divalent cations and TS2/16 compared with that observed at saturating concentrations of metal ions or TS2/16 alone indicates that the mechanism by which these factors bring about activation are distinct and identified a previously unrecognized high affinity state on alpha4beta1 that had not been detected by conventional assay methods. Similar changes in affinity were observed when the binding properties of vascular cell adhesion molecule-1 and CS1 to alpha4beta1 were studied, indicating that the different affinity states detected with BIO1211 are an inherent property of the integrin.  相似文献   

17.
The novel dendritic cell (DC)-specific human immunodeficiency virus type 1 (HIV-1) receptor DC-SIGN plays a key role in the dissemination of HIV-1 by DC. DC-SIGN is thought to capture HIV-1 at mucosal sites of entry, facilitating transport to lymphoid tissues, where DC-SIGN efficiently transmits HIV-1 to T cells. DC-SIGN is also important in the initiation of immune responses by regulating DC-T cell interactions through intercellular adhesion molecule 3 (ICAM-3). We have characterized the mechanism of ligand binding by DC-SIGN and identified the crucial amino acids involved in this process. Strikingly, the HIV-1 gp120 binding site in DC-SIGN is different from that of ICAM-3, consistent with the observation that glycosylation of gp120, in contrast to ICAM-3, is not crucial to the interaction with DC-SIGN. A specific mutation in DC-SIGN abrogated ICAM-3 binding, whereas the HIV-1 gp120 interaction was unaffected. This DC-SIGN mutant captured HIV-1 and infected T cells in trans as efficiently as wild-type DC-SIGN, demonstrating that ICAM-3 binding is not necessary for HIV-1 transmission. This study provides a basis for the design of drugs that inhibit or alter interactions of DC-SIGN with gp120 but not with ICAM-3 or vice versa and that have a therapeutic value in immunological diseases and/or HIV-1 infections.  相似文献   

18.
19.
Starting from a weak omeprazole screening hit, replacement of the pyridine with a 1,3-benzodioxole moiety, modification of the thioether linkage, and substitution of the benzimidazole pharmacophore led to the discovery of nanomolar BRS-3 agonists.  相似文献   

20.
Histamine is a biological amine that plays an important role in allergic responses. However, the involvement of histamine signaling in late allergic responses in the skin is poorly understood. Therefore, we attempted to investigate the involvement of histamine signaling in late allergic responses, especially in keratinocytes (KCs). HaCaT KCs and normal human KCs (NHKs) predominantly expressed histamine H1 receptor (H1R) and H2 receptor (H2R). Histamine suppressed tumor necrosis factor α (TNF-α)- and interferon-γ (IFN-γ)-induced production of CC chemokine ligand 17(CCL17), a type 2 T-helper (Th2) chemokine, by HaCaT KCs. It suppressed the phosphorylation of p38 mitogen-activated protein (MAP) kinase, but not that of extracellular signal-regulated kinases (ERKs), and TNF-α- and IFN-γ-induced nuclear factor κB (NFκB) activity. In contrast, histamine enhanced the production of CXC chemokine ligand 10 (CXCL10), a Th1 chemokine, by TNF-α- and IFN-γ-stimulated HaCaT KCs and NHKs. TNF-α- and IFN-γ-induced CXCL10 production was upregulated by suppression of p38 MAP kinase or NF-κB activity, which could explain histamine involvement. We concluded that histamine suppresses CCL17 production by KCs by suppressing p38 MAP kinase and NF-κB activity through H1R and may act as a negative-feedback signal for existing Th2-dominant inflammation by suppressing CCL17 and enhancing CXCL10 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号