首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrite reductase (cytochrome cd1) was purified to electrophoretic homogeneity from the soluble extract of the marine denitrifying bacterium Pseudomonas nautica strain 617. Cells were anaerobically grown with 10 mM nitrate as final electron acceptor. The soluble fraction was purified by four successive chromatographic steps and the purest cytochrome cd1 exhibited an A280 nm(oxidized)/A410nm(oxidized) coefficient of 0.90. In the course of purification, cytochrome cd1 specific activity presented a maximum value of 0.048 units/mg of protein. This periplasmic enzyme is a homodimer and each 60 kDa subunit contains one heme c and one heme d1 as prosthetic moieties, both in a low spin state. Redox potentials of hemes c and d1 were determined at three different pH values (6.6, 7.6 and 8.6) and did not show any pH dependence. The first 20 amino acids of the NH2-terminal region of the protein were identified and the sequence showed 45% identity with the corresponding region of Pseudomonas aeruginosa nitrite reductase but no homology to Pseudomonas stutzeri and Paracoccus denitrificans enzymes. Spectroscopic properties of Pseudomonas nautica 617 cytochrome cd1 in the ultraviolet-visible range and in electron paramagnetic resonance are described. The formation of a heme d1 -nitric-oxide complex as an intermediate of nitrite reduction was demonstrated by electron paramagnetic resonance experiments.  相似文献   

2.
The monohemic cytochrome c552from Pseudomonas nautica (c552-Pn) is thought to be the electron donor to cytochrome cd1, the so-called nitrite reductase (NiR). It shows as high levels of activity and affinity for the P. nautica NiR (NiR-Pn), as the Pseudomonas aeruginosa enzyme (NiR-Pa). Since cytochrome c552is by far the most abundant electron carrier in the periplasm, it is probably involved in numerous other reactions. Its sequence is related to that of the c type cytochromes, but resembles that of the dihemic c4cytochromes even more closely.The three-dimensional structure of P. nautica cytochrome c552has been solved to 2.2 A resolution using the multiple wavelength anomalous dispersion (MAD) technique, taking advantage of the presence of the eight Fe heme ions in the asymmetric unit. Density modification procedures involving 4-fold non-crystallographic averaging yielded a model with an R -factor value of 17.8 % (Rfree=20.8 %). Cytochrome c552forms a tight dimer in the crystal, and the dimer interface area amounts to 19% of the total cytochrome surface area. Four tighly packed dimers form the eight molecules of the asymmetric unit.The c552dimer is superimposable on each domain of the monomeric cytochrome c4from Pseudomomas stutzeri (c4-Ps), a dihemic cytochrome, and on the dihemic c domain of flavocytochrome c of Chromatium vinosum (Fcd-Cv). The interacting residues which form the dimer are both similar in character and position, which is also true for the propionates. The dimer observed in the crystal also exists in solution. It has been hypothesised that the dihemic c4-Ps may have evolved via monohemic cytochrome c gene duplication followed by evolutionary divergence and the adjunction of a connecting linker. In this process, our dimeric c552structure might be said to constitute a "living fossile" occurring in the course of evolution between the formation of the dimer and the gene duplication and fusion. The availability of the structure of the cytochrome c552-Pn and that of NiR from P. aeruginosa made it possible to identify putative surface patches at which the docking of c552to NiR-Pn may occur.  相似文献   

3.
The production of cytochrome c peroxidase (CCP) from Pseudomonas ( Ps.) stutzeri (ATCC 11607) was optimized by adjusting the composition of the growth medium and aeration of the culture. The protein was isolated and characterized biochemically and spectroscopically in the oxidized and mixed valence forms. The activity of Ps. stutzeri CCP was studied using two different ferrocytochromes as electron donors: Ps. stutzeri cytochrome c(551) (the physiological electron donor) and horse heart cytochrome c. These electron donors interact differently with Ps. stutzeri CCP, exhibiting different ionic strength dependence. The CCP from Paracoccus ( Pa.) denitrificans was proposed to have two different Ca(2+) binding sites: one usually occupied (site I) and the other either empty or partially occupied in the oxidized enzyme (site II). The Ps. stutzeri enzyme was purified in a form with tightly bound Ca(2+). The affinity for Ca(2+) in the mixed valence enzyme is so high that Ca(2+) returns to it from the EGTA which was added to empty the site in the oxidized enzyme. Molecular mass determination by ultracentrifugation and behavior on gel filtration chromatography have revealed that this CCP is isolated as an active dimer, in contrast to the Pa. denitrificans CCP which requires added Ca(2+) for formation of the dimer and also for activation of the enzyme. This is consistent with the proposal that Ca(2+) in the bacterial peroxidases influences the monomer/dimer equilibrium and the transition to the active form of the enzyme. Additional Ca(2+)does affect both the kinetics of oxidation of horse heart cytochrome c (but not cytochrome c(551)) and higher aggregation states of the enzyme. This suggests the presence of a superficial Ca(2+)binding site of low affinity.  相似文献   

4.
The production of the soluble cytochrome oxidase/nitrite reductase in the bacterium Pseudomonas aeruginosa is favoured by anaerobic conditions and the presence of KNO3(20g/l) in the culture medium. Of three methods commonly used for the disruption of bacterial suspensions (ultrasonication, liquid-shear homogenization and glass-bead grinding), sonication proved the most efficient in releasing the Pseudomonas cytochrome oxidase. A polarographic assay of Pseudomonas cytochrome oxidase activity with sodium ascorbate as substrate and NNN'N'-tetramethyl-p-phenylenediamine dihydrochloride as electron mediator is described. A purification procedure was developed which can be used on the small scale (40-litre cultures) or the large scale (400-litre cultures) and provides high yields of three respiratory-chain proteins, Pseudomonas cytochrome oxidase, cytochrome c551 and azurin, in a pure state. A typical preparation of 250g of Ps.aeruginosa cell paste yielded 180mg of Pseudomonas cytochrome oxidase, 81 mg of Pseudomonas cytochrome c551 and 275mg of Pseudomonas azurin.  相似文献   

5.
The multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.  相似文献   

6.
Respiratory nitric oxide reductase (NOR) was purified from membrane extract of Pseudomonas (Ps.) nautica cells to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a heterodimer with subunits of molecular masses of 54 and 18 kDa. The gene encoding both subunits was cloned and sequenced. The amino acid sequence shows strong homology with enzymes of the cNOR class. Iron/heme determinations show that one heme c is present in the small subunit (NORC) and that approximately two heme b and one non-heme iron are associated with the large subunit (NORB), in agreement with the available data for enzymes of the cNOR class. Mo?ssbauer characterization of the as-purified, ascorbate-reduced, and dithionite-reduced enzyme confirms the presence of three heme groups (the catalytic heme b(3) and the electron transfer heme b and heme c) and one redox-active non-heme Fe (Fe(B)). Consistent with results obtained for other cNORs, heme c and heme b in Ps. nautica cNOR were found to be low-spin while Fe(B) was found to be high-spin. Unexpectedly, as opposed to the presumed high-spin state for heme b(3), the Mo?ssbauer data demonstrate unambiguously that heme b(3) is, in fact, low-spin in both ferric and ferrous states, suggesting that heme b(3) is six-coordinated regardless of its oxidation state. EPR spectroscopic measurements of the as-purified enzyme show resonances at the g ~ 6 and g ~ 2-3 regions very similar to those reported previously for other cNORs. The signals at g = 3.60, 2.99, 2.26, and 1.43 are attributed to the two charge-transfer low-spin ferric heme c and heme b. Previously, resonances at the g ~ 6 region were assigned to a small quantity of uncoupled high-spin Fe(III) heme b(3). This assignment is now questionable because heme b(3) is low-spin. On the basis of our spectroscopic data, we argue that the g = 6.34 signal is likely arising from a spin-spin coupled binuclear center comprising the low-spin Fe(III) heme b(3) and the high-spin Fe(B)(III). Activity assays performed under various reducing conditions indicate that heme b(3) has to be reduced for the enzyme to be active. But, from an energetic point of view, the formation of a ferrous heme-NO as an initial reaction intermediate for NO reduction is disfavored because heme [FeNO](7) is a stable product. We suspect that the presence of a sixth ligand in the Fe(II)-heme b(3) may weaken its affinity for NO and thus promotes, in the first catalytic step, binding of NO at the Fe(B)(II) site. The function of heme b(3) would then be to orient the Fe(B)-bound NO molecules for the formation of the N-N bond and to provide reducing equivalents for NO reduction.  相似文献   

7.
Oxidized Pseudomonas cytochrome oxidase (ferrocytochrome c2: oxygen oxidoreductase; E.C.1.9.3.2) can be digested with subtilisin under controlled conditions that convert the original parent polypeptide chain (Mr on SDS gels approximately equal to 60,000) to a slightly smaller species (Mr on SDS gels approximately equal to 58,000). Under the conditions used (0.33% subtilisin, w/w, pH 7.4), the product formed from the oxidase was relatively stable to further digestion. Cytochrome oxidase activity was assayed at intervals during proteolysis by following the rate of oxidation of Pseudomonas ferrocytochrome c-551 by the enzyme in the presence of oxygen. The activity increased to a plateau that was more than two times the value for an untreated control. These observations suggest that clipping a small peptide from Pseudomonas cytochrome oxidase either facilitates the rate-limiting electron transfer between the intraprotein heme c and heme d1, enhances the interaction of the enzyme with ferrocytochrome c-551, or both.  相似文献   

8.
Abstract: Pseudomonas nautica grown anaerobically is capable of simultaneously utilizing oxygen and nitrate or its reduced products (nitrite and nitrous oxide). Evidence for this 'co-respiration' came from kinetic studies on oxygen consumption depending on oxygen concentration and from spectral studies which revealed changes in the cytochromes composition of the electron transport chain under aerobic or anaerobic conditions. A constitutive o -type cytochrome oxidase was detected either aerobically or anaerobically with an apparent K m for O2 evaluated at 315 μM. Two oxidases were induced only in anaerobic conditions. One of these two enzymes identified as a cd -type cytochrome oxidase shows a relatively high affinity for oxygen with an apparent K m value of 25 μM.  相似文献   

9.
The O2-independent hydroxylase 4-ethylphenol methylenehydroxylase (4EPMH) from Pseudomonas putida JD1 catalysed the complete conversion of 4-ethylphenol into 1-(4-hydroxyphenyl)ethanol together with a small amount of 4-hydroxyacetophenone, but with no formation of the side product 4-vinylphenol reported to be formed when the similar enzyme p-cresol methylhydroxylase (PCMH) catalyses this reaction. The enantiomer of 1-(4-hydroxyphenyl)ethanol produced by 4EPMH was R(+) when horse heart cytochrome c or azurin was used as electron acceptor for the enzyme. PCMHs from various bacterial strains produced the S(-)-alcohol. Both enantiomers of 1-(4-hydroxyphenyl)ethanol were substrates for conversion into 4-hydroxyacetophenone by 4EPMH, but the S(-)-isomer was preferred. The Km and kcat. were 1.2 mM and 41 s-1 respectively for the S(-)-alcohol and 4.7 mM and 22 s-1 for the R(+)-alcohol. In addition to the 1-(4-hydroxyphenyl)ethanol dehydrogenase activity of 4-EPMH, NAD(+)-linked dehydrogenase activity for both enantiomers of the alcohol was found in extracts of Ps. putida JD1.  相似文献   

10.
AIMS: To investigate the regulation of de novo pyrimidine biosynthesis in the polyhydroxyalkanoate-producing bacterium Pseudomonas oleovorans at the level of enzyme synthesis and at the level of aspartate transcarbamoylase activity. METHODS AND RESULTS: The effect of pyrimidine supplementation on the pyrimidine biosynthetic pathway enzyme activities was analysed relative to carbon source. Two uracil auxotrophs of P. oleovorans were isolated that were deficient for aspartate transcarbamoylase or dihydroorotase activity. Pyrimidine limitation of these auxotrophs increased the de novo pathway activities to varying degrees depending on the pathway mutation and the carbon source utilized. At the level of aspartate transcarbamoylase activity, pyrophosphate and uridine ribonucleotides were found to be strongly inhibitory of the Ps. oleovorans enzyme. CONCLUSIONS: Pyrimidine biosynthesis is regulated in Ps. oleovorans. Taxonomically, the regulation of the pyrimidine biosynthetic pathway appeared dissimilar from previously studied Pseudomonas species. SIGNIFICANCE AND IMPACT OF THE STUDY: New insights regarding the regulation of nucleic acid metabolism are provided that could prove significant during the genetic manipulation of Ps. oleovorans to increase the synthesis of polyhydroxyalkanoates.  相似文献   

11.
AIM: To screen for novel antagonistic Pseudomonas strains producing both phenazines and biosurfactants that are as effective as Pseudomonas aeruginosa PNA1 in the biocontrol of cocoyam root rot caused by Pythium myriotylum. MATERIAL AND RESULTS: Forty pseudomonads were isolated from the rhizosphere of healthy white and red cocoyam plants appearing in natural, heavily infested fields in Cameroon. In vitro tests demonstrated that Py. myriotylum antagonists could be retrieved from the red cocoyam rhizosphere. Except for one isolate, all antagonistic isolates produced phenazines. Results from whole-cell protein profiling showed that the antagonistic isolates are different from other isolated pseudomonads, while BOX-PCR revealed high genomic similarity among them. 16S rDNA sequencing of two representative strains within this group of antagonists confirmed their relatively low similarity with validly described Pseudomonas species. These antagonists are thus provisionally labelled as unidentified Pseudomonas strains. Among the antagonists, Pseudomonas CMR5c and CMR12a were selected because of their combined production of phenazines and biosurfactants. For strain CMR5c also, production of pyrrolnitrin and pyoluteorin was demonstrated. Both CMR5c and CMR12a showed excellent in vivo biocontrol activity against Py. myriotylum to a similar level as Ps. aeruginosa PNA1. CONCLUSION: Pseudomonas CMR5c and CMR12a were identified as novel and promising biocontrol agents of Py. myriotylum on cocoyam, producing an arsenal of antagonistic metabolites. SIGNIFICANCE AND IMPACT OF THE STUDY: Present study reports the identification of two newly isolated fluorescent Pseudomonas strains that can replace the opportunistic human pathogen Ps. aeruginosa PNA1 in the biocontrol of cocoyam root rot and could be taken into account for the suppression of many plant pathogens.  相似文献   

12.
Pyrimidine biosynthesis in the nutritionally versatile bacterium Pseudomonas veronii ATCC 700474 appeared to be controlled by pyrimidines. When wild type cells were grown on glucose in the presence of uracil, four enzyme activities were depressed while all five enzyme activities increased in succinate-grown cells supplemented with uracil. Independent of carbon source, orotic acid-grown cells elevated aspartate transcarbamoylase, dihydroorotase, orotate phosphoribosyltransferase or OMP decarboxylase activity. Pyrimidine limitation of glucose-grown pyrimidine auxotrophic cells lacking OMP decarboxylase activity resulted in at least a doubling of the enzyme activities relative to their activities in uracil-grown cells. Less derepression of the enzyme activities was observed after pyrimidine limitation of succinate-grown mutant cells possibly due to catabolite repression. Aspartate transcarbamoylase activity in Ps. veronii was regulated at the level of enzyme activity since the enzyme was strongly inhibited by pyrophosphate, UDP, UTP, ADP, ATP and GTP. Overall, the regulation of pyrimidine biosynthesis in Ps. veronii could be used to differentiate it from other taxonomically related species of Pseudomonas.  相似文献   

13.
Nitrous oxide (N20) is a greenhouse gas, the third most significant contributor to global warming. As a key process for N20 elimination from the biosphere, N20 reductases catalyze the two-electron reduction of N20 to N2. These 2 x 65 kDa copper enzymes are thought to contain a CuA electron entry site, similar to that of cytochrome c oxidase, and a CuZ catalytic center. The copper anomalous signal was used to solve the crystal structure of N20 reductase from Pseudomonas nautica by multiwavelength anomalous dispersion, to a resolution of 2.4 A. The structure reveals that the CuZ center belongs to a new type of metal cluster, in which four copper ions are liganded by seven histidine residues. N20 binds to this center via a single copper ion. The remaining copper ions might act as an electron reservoir, assuring a fast electron transfer and avoiding the formation of dead-end products.  相似文献   

14.
The cellular location of cytochrome c4 in Pseudomonas stutzeri and Azotobacter vinelandii was investigated by the production of spheroplasts. Soluble cytochrome c4 was found to be located in the periplasm in both organisms. The remaining cytochrome c4 was membrane-bound. The orientation of this membrane-bound cytochrome c4 fraction was investigated by proteolysis of the cytochrome on intact spheroplasts. In P. stutzeri, 78% of the membrane-bound cytochrome c4 could be proteolysed, whilst 82% of the spheroplasts remained intact, suggesting that the membrane-bound cytochrome c4 is on the periplasmic face of the membrane in this organism. Cytochrome c4 was not susceptible to proteolysis on A. vinelandii spheroplasts, in spite of being digestible in the purified state. Cytochrome c5 was shown to have a similar cellular distribution to cytochrome c4. Selective removal of cytochrome c4 from membranes of P. stutzeri was accomplished by the use of sodium iodide and propan-2-ol, with the retention of most of the ascorbate-TMPD (NNN'N'-tetramethylbenzene-1,4-diamine) oxidase activity associated with the membrane. Sodium iodide removed most of the cytochrome c4 from A. vinelandii membranes with retention of 62% of the ascorbate-TMPD oxidase activity. Cytochrome c4 could be returned to the washed membranes, but with no recovery of this enzyme activity. We conclude that cytochrome c4 is not involved in the ascorbate-TMPD oxidase activity associated with the membranes of these two organisms.  相似文献   

15.
A spectrophotometric assay for dissimilatory nitrite reductases   总被引:1,自引:0,他引:1  
A spectrophotometric assay for dissimilatory nitrite reductases has been developed utilizing mammalian cytochrome c (equine heart) as reductant and spectrophotometric agent. The copper-containing nitrite reductase from Achromobacter cycloclastes has been shown to have apparent Km's for reduced cytochrome c and nitrite of 86 +/- 5 and 5.63 +/- 0.03 microM, respectively. The heme cd-containing enzyme from Pseudomonas stutzeri was shown to have apparent Km's for reduced cytochrome c and nitrite of 260 +/- 60 and 1.8 +/- 0.8 microM, respectively. This assay represents a simple, general method for consistently evaluating the activity of the copper- and heme cd-containing nitrite reductases that are capable of utilizing readily available mammalian cytochrome c as electron donor and should be useful for mechanistic studies of these enzymes.  相似文献   

16.
17.
AIMS: To study the regulation of de novo pyrimidine biosynthesis in the pathogenic bacterium Pseudomonas reptilivora ATCC 14836. METHODS AND RESULTS: The pyrimidine biosynthetic pathway enzymes were assayed in extracts of Ps. reptilivora ATCC 14836 cells and of cells from an auxotroph lacking aspartate transcarbamoylase activity. Pyrimidine biosynthetic pathway enzyme activities in ATCC 14836 were influenced by the addition of pyrimidine bases to the culture medium with orotic acid addition inducing dihydroorotase activity. Pyrimidine starvation of the transcarbamoylase mutant strain increased its de novo enzyme activities suggesting that the de novo pathway was also subject to repression by a pyrimidine-related compound. Aspartate transcarbamoylase activity in ATCC 14836 was inhibited in vitro by pyrophosphate and ATP. CONCLUSIONS: Regulation of pyrimidine biosynthesis in Ps. reptilivora was observed at the level of enzyme synthesis and at the level of activity for aspartate transcarbamoylase. Its regulation of enzyme synthesis seemed to be more highly controlled than what was observed in the related species Ps. fluorescens. SIGNIFICANCE AND IMPACT OF THE STUDY: This investigation found that pyrimidine biosynthesis is controlled in Ps. reptilivora. This could prove helpful to future studies exploring its pathogenicity.  相似文献   

18.
The ratio between the nitrite reductase and cytochrome oxidase activities of Pseudomonas aeruginosa nitrite reductase [EC 1.9.3.2.] varies with kind of C-type cytochrome used as the electron donor. Withe cytochrome c-548, 554 (Micrococcus sp.), the nitrite reductase activity is greater than the cytochrome oxidase activity, while the former is smaller than the latter with cytochrome c-554 (Navicula pelliculosa). The aerobic oxidation catalyzed by this enzyme of denitrifying bacterial ferrocytochrome c is greatly accelerated on addition of nitrite, while that of the algal ferrocytochrome c is not affected or is even depressed by the salt. An accelerative effect of nitrite is generally observed with many kinds of C-type cytochromes which react with the enzyme very or fairly rapidly. The difference in the ratio of the two activities of the enzyme seems to arise according to whether or not nitrite affects the interaction of C-type cytochrome with the enzyme.  相似文献   

19.
1. A three-component enzyme system that catalyses the oxidation of methane to methanol has been highly purified from Methylosinus trichosporium. 2. The components are (i) a soluble CO-binding cytochrome c, (ii) a copper-containing protein and (iii) a small protein; the mol. wts. are 13 000, 47 000 and 9400 respectively. The cytochrome component cannot be replaced by similar cytochrome purified from Pseudomonas extorquens or by horse heart cytochrome c. 3. The stoicheiometry suggests a mono-oxygenase mechanism and the specific activity with methane as substrate is 6 micronmol/min per mg of protein. 4. Other substrates rapidly oxidized are ethane, n-propane, n-butane and CO. Dimethyl ether is not a substrate. 5. The purified enzyme system utilizes ascorbate or, in the presence of partially purified M. trichosporium methanol dehydrogenase, methanol as electron donor but not NADH or NADPH. 6. Activity is highly sensitive to low concentrations of a variety of chelating agents, cyanide, 2-mercaptoethanol and dithiothreitol. 7. Activity is highly pH-dependent (optimum 6.9-7.0) and no component of the enzyme is stable to freezing. 8. The soluble CO-binding cytochrome c shows oxidase acitivity and the relationship between this and the oxygenase activity is discussed.  相似文献   

20.
A membrane-bound D-gluconate dehydrogenase [EC 1.1.99.3] was solubilized from membranes of Pseudomonas aeruginosa and purified to a homogeneous state with the aid of detergents. The solubilized enzyme was a monomer in the presence of at least 0.1% Triton X-100, having a molecular weight of 138,000 on polyacrylamide gel electrophoresis or 124,000--131,000 on sucrose density gradient centrifugation. In the absence of Triton X-100, the enzyme became dimeric, having a molecular weight of 240,000--260,000 on sucrose density gradient centrifugation. Removal of Triton X-100 caused a decrease in enzyme activity. Enzyme activity was stimulated by addition of phospholipid, particularly cardiolipin, in the presence of Triton X-100. The enzyme had a cytochrome c1, c-554(551), which might be a diheme cytochrome, and it also contained a covalently bound flavin but not ubiquinone. In the presence of sodium dodecyl sulfate, the enzyme was dissociated into three components with molecular weights of 66,000, 50,000, and 22,000. The components of 66,000 and 50,000 daltons corresponded to a flavoprotein and cytochrome c1, respectively, but that of 22,000 dalton remained unclear as to its function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号