首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The findings obtained in neurophysiological and psychophysical investigations using tactile stimuli that move at constant velocity across the skin are reviewed. For certain neurons in the postcentral gyrus of the cerebral cortex (S-I) of macaque monkeys, direction of stimulus motion is a "trigger feature" i.e., moving tactile stimuli evoke vigorous discharge activity in these neurons only if the stimuli are moved in a particular direction across the receptive field. This directional selectivity is maximal when stimulus velocity is between 5 and 50 cm/sec, and falls off rapidly at lower or higher velocities. The capacity for human subjects to correctly identify the direction of stimulus motion on the skin exhibits a similar dependence on stimulus velocity. The similar effects of velocity on neural and psychophysical measures of directional sensitivity support the idea that direction of stimulus motion on the skin can only be recognized if the moving stimulus optimally activates the group of S-I neurons for which that directions of simulus motion is the trigger feature.  相似文献   

3.
Visual event-related potentials to moving stimuli: normative data   总被引:3,自引:0,他引:3  
Visual cognitive responses (P300) to moving stimuli were tested in 36 subjects with the aim to find the normal range of P300 parameters. Concomitantly, the circadian intra-individual variability of the P300 was studied in a subgroup of 6 subjects. Visual stimuli consisted of either coherent (frequent stimulus) or non-coherent motion (random stimulus). The oddball paradigm was applied for recording cognitive responses. P300 to rare stimuli had an average latency of 447.3 +/- 46.6 ms and amplitude of 12.9 +/- 6.0 microV. The average reaction time was in the range from 322 to 611 ms and there was no correlation between the reaction time and P300 latency. We did not find any significant circadian changes of the P300 parameters in the 6 subjects tested four times during the same day. Cognitive (event-related) responses (P300) displayed distinctly greater inter-individual variability (S.D. of 50 ms) when compared with pattern-reversal and motion-onset VEPs (S.D. of 6.0 ms and 14 ms, respectively). For this reason, the clinical use of P300 elicited by this kind of visual stimuli seems to be rather restricted and the evaluation of its intra-individual changes is preferable.  相似文献   

4.
Responses of 114 pulvinar neurons to moving visual stimuli were studied. Most (79) neurons possessed spontaneous activity (10–25 spikes/sec). Of 59 neurons tested, 31 responded to stimulation of both retinas and 28 to stimulation only of the contralateral retina. Of 114 neurons, 41 responded only to movement of black objects, while the rest responded to movement of both black and light objects. According to the character of their responses to movement the neurons were divided into two main groups. The first group consisted of neurons sensitive to the direction of motion and responding with a spike discharge to movement in one direction and by inhibition to movement in the opposite direction. The second group included neurons insensitive to the direction of motion and responding by an equal number of discharges to movements in two opposite directions. Besides these two main groups, other neurons responding to movement in two opposite directions by discharges with different temporal distribution and also neurons which changed the character of their response from nondirectional to directional depending on the size of the moving stimulus, were found.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 348–354, July–August, 1978.  相似文献   

5.
Adaptation of listeners to approaching or receding sound stimuli continued for 5 s under free-field conditions. Motion of the adaptive and test sound stimuli was simulated by means of oppositely directed linear changes in the amplitude of the low- and high-frequency noises (0.05–1 and 3–20 kHz, respectively) from two stationary loudspeakers. In a group of eight subjects with normal hearing, the auditory motion after-effect of the approaching and receding sound stimuli was evaluated by integrated indices that characterized the shift of the psychometric curves in response to the test stimuli under various conditions of listening. The aftereffect occurs in the case when the spectral composition of the adaptive and test stimuli coincides. In response to the high-frequency stimuli, the effect of adaptation to both the approaching and receding sound stimuli was observed, while in response to the low-frequency stimuli, only the approach of stimuli caused an aftereffect. There was no radial motion aftereffect in the case of mismatching the spectral bands of the adaptive and test stimuli. Thus, the frequency selectivity was characteristic of the auditory aftereffect of adaptation to the approaching and receding sound stimuli.  相似文献   

6.
Human neutrophils treated with the secretion inhibitor 17-hydroxywortmannin were stimulated with fMLP, C5a, PAF or LTB4, and the ensuing shape change was studied. The cells rapidly extended lamellipodia and showed regular oscillatory behaviour. The oscillations were observed in both light transmission and 90 degrees light scattering, had the same frequency in each case, and disappeared within 30-50 seconds. Light scattering theory suggests that they reflect rhythmic changes in the shape and/or size of the chemotactically stimulated cells, possibly related to crawling or swimming movements associated with migration.  相似文献   

7.
8.
Borst A 《Current biology : CB》2011,21(24):R990-R992
The Reichardt detector model for fly motion vision has been around for more than 50 years, but a cellular implementation of the model has not yet been discovered. Detailed reconstruction of serial electron-microscopy sections has now revealed a circuit that might well provide the cellular basis for directional selectivity in motion vision.  相似文献   

9.
Effects of various types of motion stimuli were compared to investigate optimum method to elicit motion sickness and adaptation in Suncus murinus (suncus). Three different direction of shaking in the horizontal plane, back and forth, right and left and revolving, induced emetic response to the similar extent. However, vertical shaking was far less effective in inducing motion sickness. Mild and severe horizontal shaking (15 min per day) was continued for 14 days and emetic response to standard motion stimulus was compared before and after the training. The severe daily acceleration strongly depressed the susceptibility to motion stimulus. The mild acceleration which was not emetic stimulus in itself also remarkably attenuated the vomiting response to standard motion stimulus. These results indicate that 1) the emetic responsiveness of the suncus does not depend on the modes of shaking as long as the direction is in the horizontal plane, 2) the suncus is relatively refractory to the vertical linear acceleration and 3) the adaptation to motion stimulus does not develop on the latest peripheral steps of the vomiting reflex pathways.  相似文献   

10.
Image motion is a primary source of visual information about the world. However, before this information can be used the visual system must determine the spatio-temporal displacements of the features in the dynamic retinal image, which originate from objects moving in space. This is known as the motion correspondence problem. We investigated whether cross-cue matching constraints contribute to the solution of this problem, which would be consistent with physiological reports that many directionally selective cells in the visual cortex also respond to additional visual cues. We measured the maximum displacement limit (Dmax) for two-frame apparent motion sequences. Dmax increases as the number of elements in such sequences decreases. However, in our displays the total number of elements was kept constant while the number of a subset of elements, defined by a difference in contrast polarity, binocular disparity or colour, was varied. Dmax increased as the number of elements distinguished by a particular cue was decreased. Dmax was affected by contrast polarity for all observers, but only some observers were influenced by binocular disparity and others by colour information. These results demonstrate that the human visual system exploits local, cross-cue matching constraints in the solution of the motion correspondence problem.  相似文献   

11.
The concept of coded 'command releasing systems' proposes that visually specialized descending tectal (and pretectal) neurons converge on motor pattern generating medullary circuits and release--in goal-specific combination--specific action patterns. Extracellular recordings from medullary neurons of the medial reticular formation of the awake immobilized toad in response to moving visual stimuli revealed the following main results. (i) Properties of medullary neurons were distinguished by location, shape, and size of visual receptive fields (ranging from relatively small to wide), by trigger features of various moving configural stimulus objects (including prey- and predator-selective properties), by tactile sensitivity, and by firing pattern characteristics (sluggish, tonic, warming-up, and cyclic). (ii) Visual receptive fields of medullary neurons and their responses to moving configural objects suggest converging inputs of tectal (and pretectal) descending neurons. (iii) In contrast to tectal monocular 'small-field' neurons, the excitatory visual receptive fields of comparable medullary neurons were larger, ellipsoidally shaped, mostly oriented horizontally, and not topographically mapped in an obvious fashion. Furthermore, configural feature discrimination was sharper. (iv) The observation of multiple properties in most medullary neurons (partly showing combined visual and cutaneous sensitivities) suggests integration of various inputs by these cells, and this is in principle consistent with the concept of command releasing systems. (v) There is evidence for reciprocal tectal/medullary excitatory pathways suitable for premotor warming-up. (vi) Cyclic bursting of many neurons, spontaneously or as a post-stimulus sustaining event, points to a medullary premotor/motor property.  相似文献   

12.
Directional and orientational components usually coexist and are mixed in the cell's overall responses when moving optical stimuli are used to study the response characteristics of visual neurons. While these two properties were quantified with all the previous methods for data analysis, their effects could not be efficiently separated from each other, and thus the analyses were imperfect. In this paper, theoretical evidence and examples are provided to show the defects of the old methods. In order to separate the two components completely, we propose to apply optimal regression analysis with the sine-cosine function series as the fundamental variables. Based on this separation, we defined the orientational selectivity as variation of response strength with orientation and performed integration and averaging to quantify the two properties [cf. Eqs. (5) and (6)]. The present method has the advantages of completeness and accuracy, and can detect some details which would have been missed by other methods. An explanation of the intrinsic implications of the method and our comprehension of directional and orientational selectivities and preferred direction and orientation are also given. Received: 4 January 1993/Accepted in revised form: 1 July 1993  相似文献   

13.
Summary Intracellular recording and labeling of cells from the toad's (Bufo bufo spinosus) medulla oblongata in response to moving visual (and tactual) stimuli yield the following results. (i) Various response types characterized by extracellular recording in medullary neurons were also identified intracellularly and thus assigned to properties of medullary cell somata. (ii) Focussing on monocular small-field and cyclic bursting properties, somata of such neurons were recorded most frequently in the medial reticular formation and in the branchiomotor column but less often in the lateral reticular formation. (iii) Visual object disrimination established in pretectal/tectal networks is increased in its acuity in 4 types of medullary small-field neurons. The excitatory and inhibitory inputs to these neurons evoked by moving visual objects suggest special convergence likely to increase the filter properties. (iv) Releasing conditions, temporal pattern, and refractoriness of cyclic bursting neurons resemble membrane characteristics of vertebrate and invertebrate neurons known to play a role in premotor/motor activity. (v) Integrating functions of medullary cells have an anatomical correlate in the extensive arborizations of their dendritic trees; 5 morphological types of medullary neurons have been distinguished.Abbreviations A stripe moving in antiworm configuration - (W) moving in worm configuration - S square - BMC branchiomotor column - EPSP excitatory postsynaptic potential - IPSP inhibitory postsynaptic potential - RetF medullary reticular formation - RF receptive field - M neurons response properties of medullary neurons - T neurons classes of tectal neurons - TH neurons classes of thalamic/pretectal neurons - tr.tb.d. tractus tecto-bulbaris directus - tr.tbs.c. tractus tecto-bulbaris et spinalis cruciatus  相似文献   

14.
Unit responses of the rabbit visual cortex were investigated in relation to size of visual stimuli moving in their receptive field. With an increase in size of the stimulus in a direction perpendicular to the direction of movement ("width" of the stimulus) an initial increase in the intensity of the unit response through spatial summation of excitory effects is followed by a decrease through lateral inhibition. This inhibition is observed between zones of the receptive field which behave as activating when tested by a stimulus of small size. Each neuron has its own "preferred" size of stimuli evoking its maximal activation. No direct correlation is found between the "preferred" stimulus size and the size of the receptive field. With a change in stimulus size in the direction of movement ("length" of the stimulus) the responses to stimuli of optimal size may be potentiated through mutual facilitation of the effects evoked by the leading and trailing edges of the stimulus and weakened in response to stimuli of large size. The selective behavior of the neurons with respect to stimulus size is intensified in the case of coordinated changes in their length and width. It is postulated that the series of neurons responding to stimuli of different "preferred" dimensions may constitute a system classifying stimuli by their size.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 6, pp. 636–644, November–December, 1972.  相似文献   

15.
Ipsilateral retino-tecto-tectal (IRTT) units were recorded extracellularly in the rostral optic tectum of the frog (Rana esculenta). The activity of 79 superficial units (II type) was quantified in response to black disks of various sizes, moved vertically at various angular velocities and against a white background. The contrast ¦C¦ was constant during the experiments. Neuronal activity was analysed by two methods, yielding identical results:
(1)  I1 units responded transiently to moving and movement gated stationary stimuli; these units did not seem to be directionally sensitive nor responsive to changes in background illumination. Fifty-three % of units had a low spontaneous activity.
(2)  A power function relating mean firing frequency (¯R) and angular velocity (v) was established in the majority (78%) of units. The exponent and the constantk were 0.44–0.8 and 8.9–20, respectively.
(3)  The relationship between¯R and stimulus diameter (D) was best expressed by a logarithmic function. The maximum response occurred forD= 2–4. The optimal stimulus diameter was found to be independent of stimulus velocity.
(4)  When stimulated repetitively under steady conditions, I1 units showed about 10% fluctuations in mean response, which seemed to increase with stimulus diameter.
The results show that qualitatively and quantitatively, the properties of I1 units are very similar to R1–R2 (sustained) ganglion cells.  相似文献   

16.
17.
《Current biology : CB》2021,31(23):5249-5260.e5
  1. Download : Download high-res image (188KB)
  2. Download : Download full-size image
  相似文献   

18.
The influence of such factor as determinacy of trajectory of stroboscopically presented test spot on apparent movement illusion appearance, was studied. Six subjects took part in psycho-physiological experiments during which a test spot was presented successively along the straight line to observer on a display, randomly deviating from this line up or down by 0.39, 0.78, 1.17 or 1.56 angular minutes. It was computed that with the test spot deviating by 0.92 angular minutes from the straight trajectory prognosticated by the observer, the probability of disappearance of apparent straight uniform motion of the spot was equal to 0.75. The findings suggest than one of the conditions under which apparent movement illusion appears involves an agreement between the shape of trajectory of test object presentation as expected by the observer, and its real shape in the experiment.  相似文献   

19.
Capability for identification of direction of movement of sound images (“upward” or “downward”) was studied in listeners of two age groups: 19–27 year old (11 subjects) and 55–73 year old (9 subjects). Various sound models of movement in the median plane were used as stimuli. Initially, a model of movement was developed based on filtration of broadband noise pulses by sets of “non-individualized,” i. e., measured in other listeners, head-related transfer functions. These functions corresponded to consecutive positions of the sound sources with the 5.6° step between the space points with coordinates of elevation from ?45° to 45°. The signals generated on the basis of transfer function sets of 23 subjects were distinguished by regularity and the value of the spectral minimum shift as well as by dynamic changes of the spectral maximum. These dynamic changes were taken into account at creation of “synthetic” signals. In these signals, the vertical movement of sound images in the median plane was simulated either by a consecutive shift of the spectral minimum in broadband noise pulses or by a combination of the spectral minimum shift with a simultaneous change of the spectral maximum width and power. The obtained data have shown that young listeners with the high capability for vertical localization could identify direction of the sound image movement based on displacement of the spectral minimum in the broadband noise. For identification of direction of the sound image movement, the younger listeners with poor capabilities for vertical localization and the older listeners used dynamic changes of the signal power, which were connected mainly with the spectral maximum range.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号