首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Abstract— Following intracerebral injection, [14C]palmitic acid was rapidly incorporated into a variety of brain lipids. After 12 hr, 78 per cent of the lipid radioactivity was in phospholipids, 15 per cent was in triacylglycerols, 1 per cent each was in free fatty acids and galactolipids, and the remainder was in other neutral glycerides. Over 65 per cent of the phospholipid radioactivity was found in the choline phosphoglycerides but this proportion decreased substantially with time. At later times, increasing portions of the radioactivity were present in the monounsaturated acyl groups and the alkenyl groups but no radioactivity was detected in cholesterol or polyunsaturated acyl groups. These results indicate that most of the extensive recycling of radioactivity took place without oxidative degradation of the palmitoyl groups. The relative rates of incorporation of radioactivity were compared at 12 hr after injection. The specific radioactivities of the serine, ethanolamine, and choline phosphoglycerides had ratios of 6:3:2 based on the palmitoyl group content and 1:2:4 based on their phosphorus content. The specific radioactivities of galactolipids with O -acyl groups were higher than the specific radioactivitiesof cerebrosides or cerebroside sulphates. A new solvent mixture for thin-layer chromatography of brain galactolipids was described (chloroform-acetone-methanol-water, 60:20:20:1, by vol.).  相似文献   

2.
Abstract— Mouse brain subcellular fractions were prepared at 1, 12, and 24 h and 3 and 8 days after intracerebral injections of [1-14C]arachidonate. Initially, radioactivity was mainly distributed in the microsomal and synaptosomal fractions, but the proportion of radioactivity in the myelin increased from 5 to 16% within 8 days. Radioactivity of the microsomal lipids started to decline at 1 h after injection, and the decay was represented by two pools with half-lives of 19 h and 10 days, respectively. Radioactivity in the synaptosomal and myelin fractions did not reach a maximum until 24 h after injections. The half-life for turnover of synaptosomal lipids was 9 days.
The decline of radioactivity measured in the microsomal fraction was due mainly to diacyl-GPC and diacyl-GPI, since radioactivity of other phosphoglycerides (diacyl-GPS, diacyl-GPE and alkenyl-acyl-GPE) continued to increase for 12-24 h. In this fraction, half-lives of 10-14 h were obtained for the fast turnover pools of diacyl-GPC and diacyl-GPI, and slow turnover pools with half-lives of 7 days for diacyl-GPI and 10-14 days for other phosphoglycerides were also present. Among the synaptosomal phosphoglycerides, radioactivity of diacyl-GPI declined in a biphasic mode, thus exhibiting half-lives of 5 h and 5 days. Incorporation of labelled arachidonate into diacyl-GPE and diacyl-GPS in the synaptosomal fractions was observed for a period of 24 h. The half-lives for these phosphoglycerides ranged from 8 to 12 days. Results of the study have demonstrated the presence of small pools of arachidonoyl-GPI in synaptosomal and microsomal fractions which were metabolically more active than other arachidonoyl containing phosphoglycerides.  相似文献   

3.
Abstract— The distribution of radioactivity among lipids of subcellular membrane fractions was examined after intracerebral injections of [1-14C]oleic and [1-14C]arachidonic acids. Labelled free fatty acids were distributed among the synaptosomal-rich, microsomal, myelin and cytosol fractions at 1 min after injection. However, incorporation of the fatty acids into phospholipids and trïacylglycerols after pulse labelling occurred mainly in the microsomal and synaptosomal-rich fractions. With both types of labelled precursors, there was a higher percentage of radioactivity of diacyl-glycerophosphoryl-inositols in the synaptosomal-rich fraction as compared to the microsomal fraction. Radioactivity of [1-14C]oleic acid was effectively incorporated into the triacylglycerols in the microsomal fraction whereas radioactivity of the [1-14C]arachidonic acid was preferentially incorporated into the diacyl-glycerophosphorylinositols in the synaptosomal-rich fraction. Result of the study indicates that synaptosomal-rich fraction in brain is able to metabolize long chain free fatty acids in vivo and to incorporate these precursors into the membrane phosphoglycerides.  相似文献   

4.
Abstract— The effects of carbamylcholine on incorporation of [1-14C]arachidonate into the glycerolipids in mouse brain synaptosome-rich and microsomal fractions were examined at 1, 3 and 10 min after intracerebral injection of the labeled precursor. When carbamylcholine was included with the labeled arachidonate, there was a decrease in the proportion of labeled fatty acid incorporated into the phospholipids. Among the phospholipids in the synaptosome-rich fraction, a decrease in incorporation of radioactivity into diacyl-glycerophosphoinositols and diacyl-glycerophosphocholines was observed at 1 and 3 min after injection. A decrease in labeling of diacyl-glycerophosphoethanolamines and diacyl-glycerophosphocholines in the microsomal fraction was observed at 3 and 10 min after injection. The decrease in phospholipid labeling was marked by an increase in labeling of diacylglycerols which was observed initially in the synaptosome-rich fraction, but also in the microsomal fraction at later time periods. Other lipid changes included an increase in triacylglycerol labeling which was found in the synaptosome-rich fraction and an increase in phosphatidic acid labeling which was found in the microsomal fraction. Results of the in vivo study have demonstrated changes in brain lipid metabolism during carbamylcholine stimulation. Furthermore, these changes appear to be initiated mainly in the synaptosome-rich fraction.  相似文献   

5.
Abstract— [G-3H]Lignoceric acid (tetracosanoic acid) was injected into the brains of 20-day-old rats, and the animals were killed after 8, 24, or 72 h. Various lipids were isolated from these brains, and the distribution of radioactivity was determined. The injected free acid rapidly disappeared, and the radioactivity was incorporated into varying chain-length nonhydroxy- and hydroxy saturated fatty acids of sphingolipids and phospholipids. Little radioactivity was found in unsaturated acids, sphingo-sine, and cholesterol. A time-dependent shift of the label among various fatty acids was relatively small 8 h after injection, probably because of the metabolic stability of the brain sphingolipids. In cerebrosides, the radioactivity was equally distributed between nonhydroxy and x-hydroxy fatty acids of all chain lengths. C23 and C22 fatty acids contained equal total radioactivities; C23 and C24 fatty acids contained similar specific activities. These results confirm the significant role of a-hydroxylation and 2-oxidation in the synthesis of very long-chain fatty acids in brain. In total lipid fatty acids, docosanoic acid (22:0) contained more radioactivity than its α-oxidation precursor, α-hydroxytricosanoic acid (23h:0) at all times. In sphingolipid fatty acids, the specific activity of 21:0 was always higher than that of its ct-oxidation precursor 22:0. These observations indicate that part of the 22:0 and 21:0 was derived by β-oxidation from the injected lignoceric acid or its α-oxidation product, respectively.  相似文献   

6.
7.
Abstract— dl -Allylglycine, a potent inhibitor of glutamate decarboxylase in vivo when given intraperitoneally, causes a marked decrease in brain GABA concentration and at the same time a dramatic increase in l -ornithine decarboxylase activity and a simultaneous decrease in S -adenosyl- l -methionine decarboxylase activity followed by putrescine accumulation. It does not, however, alter the degree of GABA formation from putrescine. The timing of the recovery of glutamate decarboxylase activity after the injection of dl -allylglycine is concomitant with that of the GABA concentration, indicating that it is probably glutamate decarboxylase that is solely responsible for making up the GABA deficit caused by dl -allylglycine, and that the changes in polyamine metabolism are associated in some indirect way with the recovery process.  相似文献   

8.
9.
Abstract— Following intracerebral inoculation of mouse adapted scrapie agent into mice, polyamine concentration in the brain decreases to about 75 per cent of the normal level during the first 2 months after intracerebral inoculation of the agent. Between 2 and 4 months after infection thelevel of spermidine and spermineincreased by 80 and 40 percent respectively to reach concentrations of 25 and 20 per cent higher than controls of the same age. During the same period the rate of incorporation of [14C]putrescine into spermidine is increased four-fold as compared with controls. The changes in polyamine levels correlate well with the pattern of astrocyte hypertrophy and are similar to those reported for human brain tumours. The concentration of polyamines in spleen increases soon after inoculation. Whilst changes in brain polyamines might be referred to the hypertrophic growth of astrocytes those in spleen are perhaps due to an increased metabolic activity of spleen cells associated with the replication of the agent. These results are derived from experimental mouse scrapie and not naturally occurring disease in sheep.  相似文献   

10.
A subconvulsant dose of sodium fluoroacetate inhibited the metabolic utilization of intracerebrally-administered N-acetyl-l -[U-14C]asparticacid and the labelling of glutamine from this precursor in mouse brain, but not the labelling of glutamate or aspartate. A convulsant dose also inhibited the utilization of l -[U-14C]aspartic acid. When intraperitoneal injection of a convulsant dose of sodium fluoroacetate was followed by intracerebral injection of N-acetyl-l -[U-14C]asparticacid, the levels of N-acetylaspartate, aspartate and glutamate in brain were lowered, while the glutamine content was increased. The specific radioactivity of glutamine relative to that of glutamate was much lower when these compounds were labelled from l -[U-14C]aspartic acid than when N-acetyl-l -[U-14C]aspartic acid was used as the precursor. Intracerebral injection of tracer amounts of l -[U-14C]aspartic acid reduced the content of N-acetylaspartate in brain and raised the glutamine content. Sodium fluoroacetate had no additional effect on the relative specific radioactivity of glutamine or the content of N-acetylaspartate, aspartate, glutamate or glutamine when l -[U-14C]aspartic acid was the precursor. We consider the results to be consistent with a selective inhibition both by sodium fluoroacetate and by exogenous aspartic acid of the tricarboxylic acid cycle in brain associated with the biosynthesis of glutamine. We suggest that the activity of this pathway may regulate the metabolism of N-acetylaspartate and aspartate.  相似文献   

11.
12.
Abstract– We have determined the incorporation of [3H]-, [1-14C]- and [2-14C]acetate into glutamate, glutamine and aspartate of the adult mouse brain. All these three acetates were incorporated more extensively into glutamine than into glutamate. This has been reported by several authors for each of these labelled acetates in separate experiments. It was shown that [3H, 2-14C]acetate can be used to obtain an acetate labelling ratio analogous to the previously used [2-14C]acetate/[1-14C]acetate labelling ratio. From these acetate labelling ratios of glutamine and glutamate conclusions can be deduced about the dynamic relationship of these amino acids with each other and with the tricarboxylic acid cycle.
A fairly large isotope effect between acetate and glutamate was observed. As this isotope effect is very likely caused by the citrate synthase reaction, it can be argued that citrate synthase involved in the conversion of labelled acetate into glutamate is far out of equilibrium in vivo. Comparing our data with literature data, the possibility can be suggested that citrate synthase in the acetate metabolizing compartment is in situ kinetically distinct from citrate synthase in other compartments of the brain.  相似文献   

13.
Abstract— Phospholipids and sphingolipids from brains of normal and Jimpy mice were isolated in a pure form by thin-layer chromatographic procedures. The fatty acid composition of the major phospholipids, i.e. ethanolamine glycerophospholipids, serine glycerophospholipids, choline glycerophospholipids and inositol glycerophospholipids, as well as sphingomyelin, cerebrosides and sulphatides was determined by gas-liquid chromatography. A specific fatty acid pattern for each of the four glycerophospholipids was found. The fatty acid composition of inositol glycerophospholipid, which has not previously been studied in mouse brain, was characterized by a high concentration of arachidonic acid. After 16 days of age, fatty acid analysis showed definite differences between the phospholipids from normal and mutant brains. A small increase of polyunsaturated fatty acids in glycerophospholipids of ethanolamine, serine and choline from the Jimpy central nervous system was found, which has been explained by the myelin deficiency. Sphingomyelin, cerebrosides and sulphatide analyses showed a wide distribution of saturated and mono-unsaturated fatty acids in both normal and mutant mice. A reduction in the amount of long-chain fatty acids was demonstrated in mutant brain sphingolipids; in sulphatides and cerebrosides, the amount of non-hydroxy fatty acids was reduced to a greater extent than in sphingomyelin. The distribution of fatty acids in sphingolipids from the myelin and microsomal fractions was also investigated in both types of mice. Cerebrosides were characterized by a high content of long-chain fatty acids in myelin as well as in microsomes. Sulphatides and sphingomyelin, on the other hand, showed a higher content of medium-chain fatty acids in microsomes than in myelin. In the mutant brain, the amount of long-chain fatty acids was reduced in both subcellular fractions. The deviation from normal in the pattern of fatty acid distribution in Jimpy brain is discussed in relation to the current concepts of glycolipid biosynthesis.  相似文献   

14.
  • 1 Slices of mouse brain were incubated with [U-14C]alanine, valine, leucine, phenylalanine, proline, histidine, lysine, arginine or aspartic acid, and the extent of metabolism was estimated by analyses utilizing paper chromatography of the tissue extracts and with an amino acid analyser.
  • 2 The metabolism of Ala and Asp was high; of Leu and Pro, moderate; and of Lys, Arg and Phe, low; the metabolism of Val and His was not significant. The time-course of metabolism in most cases showed varying rates, indicating heterogeneous metabolic compartments for the amino acids.
  • 3 Production of CO2 was high from Asp, moderate from Ala, and low from Leu; the other amino acids were not oxidized to CO2 to any significant extent. A large portion of the metabolized label was trapped in the form of Glu or Asp.
  • 4 Metabolism increased with increasing concentration of amino acid to some extent and was largely inhibited by omission of glucose, by anaerobic conditions, or by cyanide. Although these conditions also inhibit uptake, the time-course and extent of inhibition uptake and metabolism were different.
  • 5 With Asp, Ala and Phe, metabolism was lowest in slices from pons-medulla; the brain area exhibiting the highest metabolism differed for each amino acid. The metabolism of Asp was lower in brain samples from newborn than in those from adults; the metabolism of Leu was higher in slices from newborn brain.
  • 6 The results indicate that the majority of the amino acids can be metabolized in brain tissue and that the metabolic rates are influenced by a number of factors, among them the level of amino acids and the level of available energy.
  相似文献   

15.
Abstract— The turnover of 5-hydroxytryptamine in the forebrain and of dopamine in the striatum was studied in mice fasted for 20 h. Such mice showed an increased tissue concentration of 5-hydroxyindoleacetic acid in the forebrain and an increased accumulation of this acid after probenecid. Fasted mice also showed a higher concentration of homovanillic acid in the striatum than fed mice. However, the administration of probenecid produced a smaller increase in homovanillic acid concentration in fasted than in fed mice. The decay of dopamine following α-methyl- p -tyrosine was reduced in fasted mice at 2 h, but not at 1 h or 6 h after administration of the inhibitor. The possibility that fasting increases the activity of some dopaminergic neurones while decreasing the activity of others is considered. The existence of a pool of homovanillic acid at a site within the striatum where the probenecid-sensitive transport is not effective is postulated.  相似文献   

16.
The effects of Type A botulinum toxin on acetylcholine metabolism were studied using mouse brain slice and synaptosome preparations. Brain slices that had been incubated with the toxin for 2h exhibited a decreased release of acetylcholine into high K+ media. Botulinum toxin did not affect acetylcholine efflux from slices in normal K+ media. When labeled choline was present during the release incubation, a‘newly-synthesized’pool of acetylcholine was formed in the tissue. In toxin-treated slices exposed to high K+, both the production and the release of this‘newly-synthesized’acetylcholine were depressed. A possible explanation for these actions of botulinum toxin would be via an inhibition of the high affinity uptake of choline. This hypothesis was tested by measuring the high affinity uptake of [3H]choline into synaptosomes prepared from brain slices. Previous exposure of slices to botulinum toxin caused a significant reduction in the accumulation of label by the synaptosomes. These data are discussed in terms of our current understanding of the mechanism of action of botulinum toxin and the toxin's interaction with the mechanisms regulating acetylcholine turnover.  相似文献   

17.
The metabolism of N-acetyl-l -aspartic acid (NAA) was studied in rat brain. [Aspartyl-U-14C]NAA was metabolized predominantly by deacylation. Studies of NAA biosynthesis from l -[U-14C]aspartic acid have confirmed previous reports that NAA turns over slowly in rat brain. However, intracerebrally-injected N-acetyl-l -[U-14C]asparticacid was rapidly metabolized. Exogenous NAA appears to be taken up rapidly into a small, metabolically-active pool. This pool serves as substrate for a tricarboxylic acid cycle associated with the production of glutamate for the biosynthesis of glutamine. The bulk of the NAA content in brain appears to be relatively inactive metabolically.  相似文献   

18.
Incubation of brain cell suspensions with 14 mM-phenylalanine resulted in rapid alterations of amino acid metabolism and protein synthesis. Both thc rate of uptake and the final intracellular concentration of several radioactively-labelled amino acids were decreased by high concentrations oi phenylalanine. By prelabelling cells with radioactive amino acids, phenylalanine was also shown to effect a rapid loss of the labelled amino acids from brain cells. Amino acid analysis after the incubation of the cells with phenylalanine indicated that several amino acids were decreased in their intracellular concentrations with effects similar to those measured with radioisotopic experiments (large neutral > small and large basic > small neutral > acidic amino acids). Although amino acid uptake and efflux were altered by the presence of 14 mwphenylalanine, little or no alteration was detected in the resulting specific activity of the intracellular amino acids. High levels of phenylalanine did not significantly altcr cellular catabolism of either alanine, lysine, leucine or isoleucine. As determined by the isolation of labcllcd aminoacyl-tRNA from cells incubated with and without phenylalanine, there was little or no alteration in the level of this precursor for radioactive alanine and lysine. There was, however, a detectable decrease in thc labelling of aminoacyl-tRNA for leucine and isoleucine. Only aftcr correcting for the changes of the specific activity of the precursors and thcir availability to translational events, could the effects of phenylalanine on protein synthesis be established. An inhibition of the incorporation into protein for each amino acid was approximately 20%.  相似文献   

19.
—Folic acid coenzymes were found to be distributed equally between post-nuclear particulate and soluble fractions from whole Swiss mouse brain. Mitochondria isolated from the particulate fraction contained essentially only the N5-methyl derivative of folate, virtually all of which was in a polyglutamate form. Isolated synaptosomes contained significantly more folate than did mitochondria, with the greater proportion being non-N5-methyl derivatives. Osmotic lysis of synaptosomes released only a small portion of the folate; approximately 80 per cent remained with the particulate components of the synaptosome. The enzymes serine transhydroxymethylase and N5, N10-methylenetetrahydrofolate dehydrogenase were found in both the soluble and particulate fractions while formiminoglutamic acid:tetrahydrofolate formiminotransferase activity could not be detected. These findings may be of importance with respect to the synaptic functions of folate coenzymes, including the methylation of biogenic amines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号