首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SYNOPSIS. We demonstrated previously microbodies in Euglena gracilis grown in the dark on 2-carbon substrates. We have now established in Euglena the particulate nature of enzymes known in other organisms to be localized in microbodies (glyoxysomes and leaf peroxisomes). On a linear sucrose gradient the glyoxylate cycle enzymes band together at a nigner equilibrium density (1.20 g/cm3) than mitochondrial marker enzymes (1.17 g/cm3), establishing the existence in Euglena of glyoxysomes similar to those of higher plants. Glyoxylate (hydroxypyruvate) reductase and, under certain conditions, also glycolate dehydrogenase co-band with the glyoxylate cycle enzymes, suggesting that Euglena glyoxysomes, like those of higher plants, may contain peroxisomal-type enzymes. Catalase, an enzyme characteristic of microbodies from a variety of sources, was not detected in Euglena.  相似文献   

2.
Mitochondria and peroxisomes were prepared from homogenates of Tetrahymena pyriformis by sedimentation through sucrose gradients. Catalase and isocitrate lyase served as peroxisomal markers; lactic dehydrogenase and glutamic dehydrogenase as mitochondrial markers. Acetyl-CoA synthetase, octanoyl-CoA synthetase, palmitoyl-CoA synthetase, 3-β hydroxyacyl CoA dehydrogenase, and thiolase activities were found in both the peroxisomes and the mitochondria. It is suggested that β-oxidation of fatty acids accurs in both organelles in Tetrahymena.  相似文献   

3.
SYNOPSIS. Euglena gracilis strain Z, green, dark-grown, and “bleached”with N-methyl-N-nitro-N-nitrosoguanidine, was found to contain 2 soluble enzymes which reduce nitrofurans. A small amount of activity was demonstrated also in a particulate fraction of sonic extracts, but none in isolated chloroplasts. The reduction of 5 nitrofurans, having widely differing bleaching activities, by each of the 2 enzymes was examined.  相似文献   

4.
SYNOPSIS. Mitochondria were isolated from Euglena gracilis strain Z by pressure-breakage of the cells and sucrose-cushion centrifugation. Multiple peaks (2-4) were observed in the rate of phosphorylation with Mg-ADP-phosphate concentration curves. The phosphorylative and oxidative activities were highest with NADH as the substrate, moderate with succinate, and lowest with glutamate. Inhibition of phosphorylation with 2,4-dinitrophenol and carbonyl cyanide, m-chlorophenylhydrazone gave sigmoidal concentration curves, with the extent of inhibition by DNP depending on the substrate used. Inhibition of phosphorylation by valinomycin, atractyloside, or carboxyatractyloside was only ~ 60%. Oligomycin inhibited phosphorylation in 2 phases at low and high concentrations; it inhibited Mg-ATPase in a sigmoidal fashion. Both phosphorylation and oxidation had discontinuities in Arrhenius plots at 34 C and 18 C. The relative Mg2+-dependent nucleoside triphosphatase activity was: 1 for ATP and GTP, 0.6 for ITP, 0.15 for CTP and and UTP; with Ca2+ in place of Mg2+ this activity was 0.35. Both DNP and CCCP stimulated the Mg-ATPase 50-200%. The optimal pH for the stimulation was ~ 7 regardless of the uncoupler used, and ~ 8 without the uncouplers. The few differences observed between mitochondria from Euglena and those from other sources are probably due to the fragmentation of the reticular mitochondrial structure during isolation and not to unique characteristics of these mitochondria.  相似文献   

5.
SYNOPSIS. Glutamate decarboxylase, γ-aminobutyrate-α-ketoglutarate aminotransferase and NAD-linked and NADP-linked succinic semialdehyde dehydrogenase, all constituting the GABA (γ-aminobutyrate)-shunt pathway of glutamate metabolism are localized in the mitochondrial matrix in a streptomycin-bleached mutant of Euglena gracilis strain Z. Glutamate dehydrogenase, requiring NADP as the cofactor, was distributed in the cytoplasm. An improved version of the controlled digestion method for preparing Euglena mitochondria, which involves use of trypsin and a trypsin inhibitor and removal of broken cells before mechanical disruption of cells, is also described.  相似文献   

6.
SYNOPSIS Heterotrophic (dark) CO2 fixation by Euglena gracilis strain Z varies with phase of batch culture growth and mode of nutrition. Increases in the fixation during growth cycles correlate closely with the depletion of exogenous NH4* from the medium during growth. It is demonstrated that exogenous NH4+ regulates a component of heterotrophic CO2 fixation and that another component is independent of NH4+. This is true for cells grown heterotrophically (glucose, dark), autotrophically (CO2, light) and for a permanently bleached strain (E. gracilis SB3). Some kinetics of the NH4+ regulation are presented.  相似文献   

7.
SYNOPSIS Euglena gracilis strain Z, at a concentration of 106 cells/ml and in containers of ∽ 0.1-mm thickness, spontaneously forms dynamic ring patterns in the dark. These patterns are modified differentially by illumination with red and with blue light. The red light effect is abolished by treatment with an inhibitor of photosynthesis. Pattern formation is apparently the result of chemophobic responses to oxygen dissolved in the medium. Euglena can respond to both negative and positive concentration gradients, depending upon the absolute magnitude of oxygen concentration. The photo- and chemosensory transduction systems of Euglena interact at a stage which precedes the overt expression of motor responses.  相似文献   

8.
SYNOPSIS. The biochemical effects of some detergents on the ATPase activity of isolated flagella from Euglena gracilis are related to morphologic obliterations induced by those detergents. Enzymic activity can be localized by electron microscopy along the microtubules and also on the paraflagellar rod. The nonionic detergent digitonin solubilizes the enzyme linked to dyneinic arms, whereas the activity linked to residual structures appears enhanced. These results support the hypothesis that the paraflagellar rod may be a structure actively related to the motility of this type of flagellum.  相似文献   

9.
SYNOPSIS. In populations of Euglena gracilis strain Z synchronized by cultivation on a repetitive light-dark cycle, chloroplasts undergo cyclic changes in structure. During most of the light period chloroplasts are relatively compact with closely appressed lamellae; during the dark (division) period the chloroplasts become quite distended. This change persists for at least one cycle even when the cells are left in continuous light, suggesting that the periodicity may be related more to the age of the cell than to a direct effect of light. In addition, the pyrenoid in synchronized cells has a transient existence, being present only in the first half of the light period.  相似文献   

10.
Euglena gracilis is shown to be able to grow on potato liquor as the main medium component leading to an interesting biotechnological product represented by paramylon – a β‐1,3‐glucan – and, at the same time, revaluating an otherwise annoying waste stream of the potato‐starch industry. Paramylon mass fractions of about 75% are obtained for biomass concentrations of 15 g/L during simple batch cultivation under heterotrophic conditions. Supplementation of the growth medium with glucose and the vitamins B1 and B12 are shown to improve growth rate as well as paramylon content. E. gracilis grows best at about 27.5°C without requiring pH control.  相似文献   

11.
SYNOPSIS. Acetate added to autotrophic Euglena cultures changed the period length of the circadian rhythm of phototaxis. Phase shifts were induced by acetate pulses. Since transition from one metabolic state to another (autotrophic/mixotrophic) caused a phase shift or a period change, such effects possibly result from switching metabolic pathways. As suggested (Brinkmann, K., 1966. Planta 70 , 344–89), differences in the temperature responses of the rhythm in mixotrophic and autotrophic cells might also be caused by participation of different metabolic pathways with different Q10 values, e.g. dark reactions vs photochemical reactions. However the Q10 of a given dark reaction, e.g. protein synthesis, can differ in the 2 states. Therefore temperature experiments alone do not suffice for deciding whether the pathways include photochemical reactions, dark reactions, or both.  相似文献   

12.
Euglena gracilis Z and a “sugar loving” variant strain E. gracilis var. saccharophila were investigated as producers of paramylon, a β‐1,3‐glucan polysaccharide with potential medicinal and industrial applications. The strains were grown under diurnal or dark growth conditions on a glucose–yeast extract medium supporting high‐level paramylon production. Both strains produced the highest paramylon yields (7.4–8 g · L?1, respectively) while grown in the dark, but the maximum yield was achieved faster by E. gracilis var. saccharophila (48 h vs. 72 h). The glucose‐to‐paramylon yield coefficient Ypar/glu = 0.46 ± 0.03 in the E. gracilis var. saccharophila cultivation, obtained in this study, is the highest reported to date. Proteomic analysis of the metabolic pathways provided molecular clues for the strain behavior observed during cultivation. For example, overexpression of enzymes in the gluconeogenesis/glycolysis pathways including fructokinase‐1 and chloroplastic fructose‐1,6‐bisphosphatase (FBP ) may have contributed to the faster rate of paramylon accumulation in E. gracilis var. saccharophila . Differentially expressed proteins in the early steps of chloroplastogenesis pathway including plastid uroporphyrinogen decarboxylases, photoreceptors, and a highly abundant (68‐fold increase) plastid transketolase may have provided the E. gracilis var. saccharophila strain an advantage in paramylon production during diurnal cultivations. In conclusion, the variant strain E. gracilis var. saccharophila seems to be well suited for producing large amounts of paramylon. This work has also resulted in the identification of molecular targets for future improvement of paramylon production in E. gracilis , including the FBP and phosophofructokinase 1, the latter being a key regulator of glycolysis.  相似文献   

13.
SYNOPSIS. Euglena gracilis strain Z has a motor response which results in orientation with respect to the polarization of a light stimulus. Cells swim preferentially in a direction perpendicular to the plane of polarization of the stimulus. If 2 polarized stimuli are given from opposite directions, the preferred direction is, under certain circumstances, at right angles to the directions of both stimuli. Euglena also preferentially assumes an orientation that is at right angles to the force of gravity. The relationships between these responses and phototactic movements oriented with respect to the direction of the stimulus are discussed.  相似文献   

14.
Recently, it had been shown that Euglena gracilis was able to grow heterotrophically not only on synthetic media, but also on media based on potato liquor. Supplementation with glucose in both cases led to the accumulation of paramylon, a β‐1,3‐glucan. Thus, such a process may yield a valuable product accompanied by the revaluation of an otherwise annoying waste stream of the potato‐starch industry. Actually, process strategies have been evaluated in order to optimise the concentration of paramylon obtained at the end of the cultivation process. Therefore, cultivation processes based on fed‐batch and in particular repeated‐batch strategies have been studied. It is shown that repeated‐batch operation maybe particularly suited for such a process since E. gracilis seems to adapt gradually to the cultivation medium so that the concentration of media components may be increased step by step. Repeated‐batch cultivation of E. gracilis leads to biomass concentrations in access of 20 g/L with a consistent paramylon mass fraction of about 75%. Cultivations have been carried out at an operating temperature of 27.5°C. As had been found earlier already, pH control is not required during cultivation. On the basis of these results it is clear that repeated‐batch cultivation represent a simple and economic way for the production of paramylon by heterotrophic cultivation of E. gracilis.  相似文献   

15.
Based on amino acid sequence similarities between the methylated elongation factor EF-Tu from Escherichia coli and the EF-Tu from Euglena gracilis chloroplast, we predicted that the latter could also be methylated in the presence of an appropriate methyltransferase. We found that, as reported for the eubacterial homologous protein, the organellar factor could be methylated in vivo and in vitro to yield monomethyllysine.  相似文献   

16.
SYNOPSIS. The ATPase activity of isolated flagella was studied in Euglena gracilis strain Z in the presence of Mg++ or Ca++. With Mg++, the optimum activity was at pH 7 and with Ca++, at pH 9. The K m values were respectively 6.6 × 10−4 and 3.6 × 10−4. Activity was influenced also by temperature and ionic strength. Results with inhibitors of membrane ATPase suggest the presence of a specific contractile system in the flagella. Our results are compatible with a multicomponent enzymic system containing 2 active ATPases.  相似文献   

17.
SYNOPSIS. Isozymes of malic enzyme in Euglena gracilis strain Z were analyzed by starch-gel electrophoresis. Wild-type and heat-bleached strains were cultured in the light and the dark in the presence of various carbon sources. An isozyme detectable in heterotrophic cultures was repressed by photosynthesis. A model is proposed to explain photorepression of this isozyme.  相似文献   

18.
Etiolated Euglena gracilis Pringsheim, strain Z, were cultured in a lactate medium either in the presence of 2 μ M antimycin A for cells adapted to this inhibitor, or in the absence of antimycin A for controls. The adenylates (ATP, ADP and AMP) and the energy charge (EC) were followed during the growth of both types of cells. The effects of KCN, salicylhydroxamic acid (SHAM) and rotenone on the respiration and the adenylate pool, were investigated during the exponental and stationary phases. EC values of controls and antimycin-adapted cells were not significantly different during culture. In the logarithmic phase, EC of controls was unaffected by 3 m M SHAM, an inhibitor of the alternative pathway, but markedly decreased by 0.3 m M KCN, which inhibits the cytochrome pathway. In contrast, in antimycin-adapted Euglena , in which the cytochrome pathway was blocked, ATP content and EC were markedly lowered in the presence of SHAM but slightly increased by 0.3 m M KCN. The combination of the preceeding treatments, as well as 15 m M KCN alone, were deleterious for both types of cells, in the logarithmic and the late stationary phases. The data indicate that the energy level in Euglena was dependent on the alternative pathway when the cytochrome pathway was blocked. Such dependence could be explained by the engagement of the first rotenone-sensitive site of phosphorylation. Indeed, 50 μ M rotenone caused a similar relative decrease of oxygen consumption and ATP content in controls and in antimycin-adapted Euglena . In the absence of cytochrome respiration, the alternative pathway allowed electrons to flow through this first segment of the respiratory chain, and ATP production by the first site of phosphorylation.  相似文献   

19.
SYNOPSIS The pattern of chloroplast development was followed in Euglena gracilis strain Z greening in media with a variety of fixed carbon and nitrogen sources. The greening pattern of cells grown in inorganic medium with added ethanol or glucose involves an inhibition of chloroplast development when compared to that of cells grown in inorganic medium alone. Several nitrogen sources were tested to ascertain their effectiveness in relieving the inhibition of chloroplast development by glucose. Of those, only 0.05% (w/v) (NH4)2 SO4 accelerated the recovery from the inhibition after most of the glucose had been removed from the medium by the cells. The other nitrogen sources tested were not effective. An inhibition of chloroplast development, similar to that observed in cells greening in the presence of glucose, was seen in cells greening in an ethanol-containing medium. These cells, however, had a different response upon the addition of 0.05% (NH4)2 SO4. They appeared to recover from the inhibition of chloroplast development, even before the ethanol was removed from the medium by the cells. A slight enhancement of chloroplast development was noted in cells greening in an inorganic medium with glycine or serine. Other amino acids tested had little or no effect.  相似文献   

20.
Male C57BL/6 mice were exposed to 1% (w/w) (+)- or (?)-2-ethylhexanoic acid or an equimolar mixture of these enantiomers in their diet for 4 or 10 days. A significant increase in liver weight and a 2- to 3-fold increase in the protein content of the mitochondrial fraction were seen in all cases. Peroxisomal palmitoyl-CoA oxidation was increased 2- to 3.5-fold after 4 days of treatment and 4- to 5-fold after 10 days, while the corresponding increases in peroxisomal lauroyl-CoA oxidase activity were 2- to 3-fold and 9- to 12-fold, respectively. Peroxisomal catalase activity was unchanged, whereas the microsomal and cytosolic activities were increased 2- to 3-fold and 6- to 16-fold, respectively. These treatments also induced microsomal ω-hydroxylation of lauric acid 7-fold and soluble epoxide hydrolase activity in the mitochondrial and cytosolic fractions, as well as microsomal epoxide hydrolase activity about 50–100%. The only significant differences observed between the effects of (+)-2-ethylhexanoic acid and its (?)-enantiomer were on peroxisomal palmitoyl-CoA oxidation and lauroyl-CoA oxidase activity after 4 days of treatment. In both these cases the (+)-enantiomer resulted in increases which were 50–75% greater than those seen with the (?)-form. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号