首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The contractile properties of the myonemes of Stentor are very similar to caltractin (centrin)-containing fibers of other organisms. We investigated whether the calcium-binding protein caltractin was present in Stentor by using three different antibodies to caltractin or caltractin-related proteins, in conjunction with immunofluorescence microscopy and protein blotting. Immunofluorescence demonstrated that a protein immunologically similar to caltractin is present in the myonemes and in the bases of the membranelles of Stentor. The localization to the myonemes is observed in intact cells, osmotically lysed cells, and isolated cortices. Double-label immunofluorescence with anti-alpha-tubulin and anti-caltractin antibodies showed that the fluorescence in the myonemes was not in the overlying Km fibers. The myonemes in the posterior one-third of the cell appear as thick fibers with no cross-bridging. They become thinner as they approach the anterior end of the cell and show extensive cross-bridging here. Staining in the bases of the membranelles shows a distinct comma-like immunofluorescence pattern similar to that seen with protargol-stained cells and SEM views of the membranellar band reported by others. Western blots demonstrated that the caltractin-like protein in Stentor has an apparent molecular weight of 23 kDa compared with the 20-kDa protein from Chlamydomonas and is a calcium-binding protein.  相似文献   

2.
SYNOPSIS. The trophozoite of Rhynchocystis pilosa obtained from the seminal vesicles of the earthworm Lumbricus terrestris was studied by light and electron microscopy. The trophozoite's cortical organization is particularly interesting because of its unusual evaginations and associated fibrillar structures. The pellicle is formed by 2 concentric membranes elevated into 60–70 alternating primary and secondary ridges extending posteriad. Numerous long ‘hairs’ or cytopilia originate along the primary ridges and each contains a system of fibrils originating from an underlying longitudinal myoneme. Longitudinal rows of pores lie between adjacent pollicular ridges. Three systems of fibrils lie in the cortex of the trophozoite. A longitudinal myoneme consisting of 12–18 fibrils lies below each primary pellicular ridge. Circular myonemes lie below the pellicle in a parallel array along the length of the organism. Each myoneme consists of 4–8 fibrils structurally similar to those of the longitudinal myonemes. Pairs of fine filaments also lie in the inner pellicular membrane along the apex of each ridge. The trophozoite's anterior end is modified as an attachment organelle consisting of 30–35 delicate pellicular folds which originate at the base of an anterior papilla. The folds extend approximately 15 μ posteriad where they become continuous with the primary pellicular ridges. The nucleus lies in the cytoplasm near the posterior level of the attachment organelle and is surrounded by a double membrane perforated by numerous pores. The cytoplasm contains numerous small vesicles which may be found in dense aggregations. These aggregations often occur in proximity to Golgi complexes and certain membrane-bound bodies. Mitochondria are abundant in the cytoplasm as are large, ovoid paraglycogen bodies. Occasionally layers of granular membranes are arranged parallel to the surface of the paraglycogen bodies but also occur thruout the cytoplasm.  相似文献   

3.
The root apical meristem of Equisetum diffusum Don has a prominent four-sided pyramidal apical cell with its base (distal face) in contact with the root cap. Derivatives (merophytes) that contribute to the main body of the root are produced from the three proximal faces of the apical cell. The first division of a proximal merophyte is periclinal to the root surface separating a small inner cell from a larger outer cell. The inner cell is the precursor of the vascular cylinder. The larger outer cell is the precursor of the epidermis, cortex, endodermis, and pericycle. Radial sectors, established early in the development of the cortex, alternate with sectors in the vascular cylinder. These developmental steps show quite clearly that early root development in Equisetum is markedly different from that of most ferns.  相似文献   

4.
The root apical meristem of Asplenium bulbiferum Forst. f. has a prominent four-sided pyramidal cell with its base in contact with the rootcap. Derivatives (merophytes) that contribute to the main body of the root are produced from the three proximal faces of the apical cell. The rootcap has its origin from the fourth (distal) face of the apical cell. The first division in a proximal merophyte is periclinal to the root surface, separating an outer cell and an inner cell. The outer cell is the origin of the outer part of the cortex and the epidermis; the larger inner cell is the origin of the inner cortex, endodermis, pericycle, and vascular tissue. After the establishment of the basic number of cells in a unilayered merophyte, the cells undergo transverse divisions forming longitudinal files of cells. The mitotic index of the apical cell indicates that it is not a quiescent cell. Also, the first plane of division in a newly formed merophyte dictates that the apical cell is the originator of merophytes.  相似文献   

5.
Summary The effect of exogenous phytohormones on proliferation of the root cortex, and their relation to the division factors from Rhizobium which participate in the initiation of root nodules, were studied using explants of root-cortex tissue from 7-day-old, sterile pea plants. The explants were cultured for 7 days on a synthetic nutrient medium supplemented with auxin, or auxin and cytokinin. With only auxin present in the medium, ca. 10% of the explants showed cell proliferation. With both auxin and cytokinin this percentage was much higher (ca. 80%). The active explants showed proliferation patterns which were similar to or could be derived from a pattern with three predominant meristematic areas in the inner cortex opposite the three xylem radii of the excised central cylinder. These proliferation patterns were similar to the initial proliferative stages in root-nodule formation in seedling intact roots. From this restricted division response of the explants to the hormones, a hypothesis of endogenous division factors is proposed. To test this hypothesis, extractions of root tissue were performed. The addition of a crude alcoholic extract from the central cylinder or the cortex to the medium resulted in cell divisions throughout the cortex. The results are interpreted as evidence for the presence of a transverse gradient system of (an) unknown cell-division factor(s) in the root cortex which may control the induction of cell divisions in nodule initiation brought about by the release of auxin and cytokinin from Rhizobium.  相似文献   

6.
The cortical development during cell division and the interphase ultrastructure of the marine interstitial hypotrich Certesia quadrinucleata is described using light microscopy and both scanning and transmission electron microscopy. Membranelles are paramembranelles; postciliary microtubules from rightmost membranellar kinetosomes line the buccal cavity and separate parallel arrays of pharyngeal discs that border the cytopharynx. A large paroral membrane is present; an endoral membrane is absent. Alveolar plates lie within alveolar membranes except in regions where organelles and organellar complexes (cirri, the condylopallium, dorsal bristles, membranelles, and the paroral membrane) emerge from the cortex. Muciferous-like bodies attach to the plasma membrane in these regions. Dorsal bristles possess transverse and postciliary microtubules as well as kinetodesmal fiber like those of other hypotrichs. Lasiosomes are present. A unique bulbous structure—the condylopallium—protrudes from the anterior right of the cell. The morphogenetic pattern is euplotine in that cortical development begins in one latitudinal zone, and the oral primordium of the opisthe develops within a subsurface pouch apart from the frontal primordia. Microtubular bundles appear beside (later attached to) developing frontal anlagen; they disappear after cirri are in final interphase locations. Although possessing unique characters, Certesia shares a close phylogenetic relationship with Euplotes.  相似文献   

7.
Tissue-specific accumulation of phenylpropanoids was studied in mycorrhizas of the conifers, silver fir (Abies alba Mill.), Norway spruce [Picea abies (L.) Karst.], white pine (Pinus strobus L.), Scots pine (Pinus silvestris L.), and Douglas fir [Pseudotsuga menziesii (Mirbel) Franco], using high-performance liquid chromatography and histochemical methods. The compounds identified were soluble flavanols (catechin and epicatechin), proanthocyanidins (mainly dimeric catechins and/or epicatechins), stilbene glucosides (astringin and isorhapontin), one dihydroflavonol glucoside (taxifolin 3′-O-glucopyranoside), and a hydroxycinnamate derivative (unknown ferulate conjugate). In addition, a cell wall-bound hydroxycinnamate (ferulate) and a hydroxybenzaldehyde (vanillin) were analysed. Colonisation of the root by the fungal symbiont correlated with the distribution pattern of the above phenylpropanoids in mycorrhizas suggesting that these compounds play an essential role in restricting fungal growth. The levels of flavanols and cell wall-bound ferulate within the cortex were high in the apical part and decreased to the proximal side of the mycorrhizas. In both Douglas fir and silver fir, which allowed separation of inner and outer parts of the cortical tissues, a characteristic transversal distribution of these compounds was found: high levels in the inner non-colonised part of the cortex and low levels in the outer part where the Hartig net is formed. Restriction of fungal growth to the outer cortex may also be achieved by characteristic cell wall thickening of the inner cortex which exhibited flavanolic wall infusions in Douglas fir mycorrhizas. Long and short roots of conifers from natural stands showed similar distribution patterns of phenylpropanoids and cell wall thickening compared to the respective mycorrhizas. These results are discussed with respect to co-evolutionary adaptation of both symbiotic partners regarding root structure (anatomy) and root chemistry. Received: 25 May 1998 / Accepted: 6 November 1998  相似文献   

8.
Baluska F  Hauskrecht M  Barlow PW  Sievers A 《Planta》1996,198(2):310-318
The spatio-temporal sequence of cellular growth within the post-mitotic inner and outer cortical tissue of the apex of the primary root of maize (Zea mays L.) was investigated during its orthogravitropic response. In the early phase (0–30 min) of the graviresponse there was a strong inhibition of cell lengthening in the outer cortex at the lower side of the root, whereas lengthening was only slightly impaired in the outer cortex at the upper side. Initially, inhibition of differential cell lengthening was less pronounced in the inner cortex indicating that tissue tensions which, in these circumstances, inevitably develop at the outer-inner cortex interface, might help to drive the onset of the root bending. At later stages of the graviresponse (60 min), when a root curvature had already developed, cells of the inner cortex then exhibited a prominent cell length differential between upper and lower sides, whereas the outer cortex cells had re-established similar lengths. Again, tissue tensions associated with the different patterns of cellular behaviour in the inner and outer cortex tissues, could be of relevance in terminating the root bending. The perception of gravity and the complex tissue-specific growth responses both proceeded normally in roots which were rendered devoid of microtubules by colchicine and oryzalin treatments. The lack of involvement of microtubules in the graviresponse was supported by several other lines of evidence. For instance, although taxol stabilized the cortical microtubules and prevented their re-orientation in post-mitotic cortical cells located at the lower side of gravistimulated roots, root bending developed normally. In contrast, when gravistimulated roots were physically prevented from bending, re-oriented arrays of cortical microtubules were seen in all post-mitotic cortical cells, irrespective of their position within the root.Abbreviations CMTs cortical microtubules - CW Cholodny-Went - FF form factor - MT microtubule The research was supported by a fellowship from the Alexander von Humboldt Stiftung (Bonn, Germany) to F.B. Financial support to AGRAVIS by Deutsche Agentur für Raumfahrtangelegenheiten (DARA, Bonn) and Ministerium für Wissenschaft und Forschung (Düsseldorf) is gratefully acknowledged. IACR receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom.  相似文献   

9.
S. IMHOF 《The New phytologist》1999,144(3):533-540
Afrothismia winkleri develops fleshy rhizomes, densely covered with small root tubercles, narrowing to filiform roots with age. The exclusively intracellular mycorrhizal fungus has distinct morphologies in different tissues of the plant. In the filiform root the hyphae grow straight and vesicles are borne on short hyphal stalks. The straight hyphae are present in the epidermis of the root tubercles, but change to loosely coiled and swollen hyphae in the rhizome tissue. No penetration from epidermis to root cortex was found. From the rhizome, a separating cell layer permits only one or rarely two hyphal penetrations into the cortex of each root tubercle. The hyphae proceed apically within the root hypodermis in a spiral row of distinctively coiled hyphae, branches of which colonize the inner root cortex. In the inner root cortex the hyphal coils degenerate to amorphous clumps. In older roots the cortex itself also deteriorates, but epidermis, hypodermis, endodermis and central cylinder persist. The mycorrhizal pattern in A. winkleri is interpreted as an elaborate exploitation system whereby the fungus provides carbon and nutrients to the plant and, simultaneously but spatially distinct, its hyphae are used to translocate and store the matter within the plant. Several features indicate that the endophyte is an arbuscular mycorrhizal fungus.  相似文献   

10.
Detailed morphometric analysis of cell shapes and an immunofluorescent study of microtubules were carried out on primary roots of Zea mays L. Two types of cells were found to be formed within the postmitotic isodiametric growth (PIG) region of the root cortex that were differentially responsive to low level of exogenous ethylene. The innermost and central cell rows of the cortex were sensitive to ethylene treatment and showed a disturbed distribution of cortical microtubules (CMTs) as well as changed polarity of cell growth, whereas the 2–3 outermost cell rows were less sensitive in this respect. This suggests that post-mitotic cells of the inner cortex are specific targets for ethylene action. These properties of the inner cortex are compatible with its cells being involved in the formation of aerenchyma; they may also favour root growth in compacted soil. By contrast, the specific properties of the outer cortex indicate that this tissue domain is necessary for the gaseous impermeability and the mechanical strengthening of subjacent aerenchymatous cortex, especially in the mature region of the root. Ethylene affected neither the pattern of cortical cell expansion in the meristem nor the position of the PIG region with respect to the root tip. This contrasts with gibberellin-deficiency which affected these parameters in both parts of the cortex. These observations indicate a fundamental difference between the role of these two phytohormones in the morphogenesis and development of maize roots.  相似文献   

11.
Abstract: Two types of negatively geotropic aerial roots may be observed on the root system of Laguncularia racemosa: pneumatophores with secondary growth, and short-lived pneumathodes which remain in the primary anatomical state. The pneumathodes distinguish themselves by the absence of an epidermis; instead, the outer cortex takes the place of the outermost tissue. This tissue forms a three-dimensional network of rod-like cells and gas spaces. The cell walls contain a lipophilic substance which ensures that the intercellular spaces remain gas-filled during submergence. An uniseriate cellular layer separates the outer and inner cortex. This uniseriate cellular layer, which we term a "pore layer", is characterized by cells with suberized and lignified cell walls and occasional pores among the cells. The pores permit the diffusion of oxygen-rich air from the surface of the pneumathode to the aerenchyma of the inner cortex and the escape of carbon dioxide from the interior of the root. The structure of the differentiated pneumathode originates from frequent cell divisions in the part of the apical meristem where the outer cortex emerges. Because of the pressure thereby exerted on the epidermis and hypodermis, these two cell layers tear and become separated from the outer cortex. Their remnants remain visible at the base of the pneumathode and as an appendage of the calyptra. The function and significance of the pneumathodes for L. racemosa are discussed. An extract of Xanthoria parietina was employed as a new fluorescent dye to stain suberine in cell walls. The staining technique is presented in this paper.  相似文献   

12.
Summary Root nodule initiation in Pisum sativum begins with cell divisions in the inner cortex at some distance from the advancing infection thread. After penetrating almost the entire cortex, the branches of the thread infiltrate the meristematic area previously initiated in the inner cortical cells. These cells are soon invaded by bacteria released from the infection thread and subsequently differentiate into non-dividing, bacteriod-containing cells. As the initial meristematic centre in the inner cortex is thus lost to bacteroid formation, new meristematic activity is initiated in neighbouring cortical cells. As development proceeds, more cortical layers contribute to the nodule, with the peripheral layer and apical meristem of the nodule not invaded by bacteria.Lateral root primordia are initiated in a region separate from that in which nodules are formed, with the lateral primordia being closer to the root apex. This is interpreted to indicate that the physiological basis for nodule initiation is distinct from that for initiation of lateral roots. The role of a single tetraploid cell in nodule initiation is refuted, as is the existence of incipient meristematic foci in the root. It is suggested that the tetraploid cells in nodule meristems arise from pre-existing endoreduplicated cells, or by the induction of endoreduplication in diploid cortical cells by Rhizobium.  相似文献   

13.
Assessments of the anatomy, porosity and profiles of radial O2 loss from adventitious roots of 10 species in the Poaceae (from four subfamilies) and two species in the Cyperaceae identified a combination of features characteristic of species that inhabit wetland environments. These include a strong barrier to radial O2 loss in the basal regions of the adventitious roots and extensive aerenchyma formation when grown not only in stagnant but also in aerated nutrient solution. Adventitious root porosity was greater for plants grown in stagnant compared with aerated solution, for all 10 species in the Poaceae. The ‘wetland root’ archetype was best developed in Oryza sativa and the two species of the Cyperaceae, in which the stele contributed less than 5% of the root cross‐sectional area, the cells of the inner cortex were packed in a cuboidal arrangement, and aerenchyma was up to 35–52%. Variations of this root structure, in which the proportional and absolute area of stele was greater, with hexagonal arrangements of cells in the inner cortex and varying in the extent of aerenchyma formation, were present in the other wetland species from the subfamilies Pooideae, Panicoideae and Arundinoideae. Of particular interest were Vetiveria zizanoides and V. filipes, wetland grass species from the tribe Andropogoneae (the same tribe as sorghum, maize and sugarcane), that had a variant of the root anatomy found in rice. The results are promising with regard to enhancing these traits in waterlogging intolerant crops.  相似文献   

14.
Development and function ofAzospirillum-inoculated roots   总被引:1,自引:1,他引:0  
Summary The surface distribution ofAzospirillum on inoculated roots of maize and wheat is generally similar to that of other members of the rhizoplane microflora. During the first three days, colonization takes place mainly on the root elongation zone, on the base of root hairs and, to a lesser extent, on the surface of young root hairs.Azospirillum has been found in cortical tissues, in regions of lateral root emergence, along the inner cortex, inside xylem vessels and between pith cells. Inoculation of several cultivars of wheat, corn, sorghum and setaria with several strains ofAzospirillum caused morphological changes in root starting immediately after germination. Root length and surface area were differentially affected according to bacterial age and inoculum level. During the first three weeks after germination, the number of root hairs, root hair branches and lateral roots was increased by inoculation, but there was no change in root weight. Root biomass increased at later stages. Cross-sections of inoculated corn and wheat root showed an irregular arrangement of cells in the outer layers of the cortex. These effects on plant morphology may be due to the production of plant growth-promoting substances by the colonizing bacteria or by the plant as a reaction to colonization. Pectic enzymes may also be involved. Morphological changes had a physiological effect on inoculated roots. Specific activities of oxidative enzymes, and lipid and suberin content, were lower in extracts of inoculated roots than in uninoculated controls. This suggests that inoculated roots have a larger proportion of younger roots. The rate of NO 3, K+ and H2PO 4 uptake was greater in inoculated seedlinds. In the field, dry matter, N, P and K accumulated at faster rates, and water content was higher inAzospirillum-inoculated corn, sorghum, wheat and setaria. The above improvements in root development and function lead in many cases to higher crop yield.  相似文献   

15.
SYNOPSIS. Elaboration of ciliated feeding organelles in the protozoon Stentor coeruleus was reinvestigated for the first time by scanning electron microscopy which gives the most realistic 3-dimensional images. Parallel transmission EM studies of synchronized regenerating stentors gave further ultrastructural details of stomatogenesis, while also confirming the expectation that in the structure of its kineties this now classical experimental object does not differ from other species of Stentor previously studied. Within 2 hr after the stimulus to regeneration, several generations of new kinetosomes for the oral primordium are produced, first in association with kinetosomes of kineties at the restricted primordium site. These kinetosomes rapidly sprout membranellar cilia as well as subpellicular microtubules but are still randomly oriented (anarchic field). The forming membranellar band increases from its center-line to both sides while it grows in length. Young cilia are blunt-ended. Recession of the early anlage occurs without rupture of the pellicle; soon apparent is the clear border stripe of unknown function along the right side of the membranellar band. Instantaneous fixation of beating cilia in early primordia revealed random beating, with coordination and presumably membranellar organization not yet attained. In late anlagen there are 2 types of metachronal rhythm: transversely from cilium to cilium across any given membranelle, as well as the easily observable serial beating of membranelles along the entire band. A single file of cilia leads the subsequent cytostomal invagination. The posterior end of the membranellar band then follows to line the cytopharynx.  相似文献   

16.
The fine structure of the epicyte of D. gigantea was investigated. The motility of the gregarine and the contractile elements are described. Four essential types of movements can be observed in this gregarine: (1) rolling up and pendular movements, (2) locomotion by gliding forward, (3) cytoplasmic streaming (Fig. 1), (4) peristaltic contractions (Fig. 2) which seem to be accompanied by the contraction of annular myonemes (Fig. 2). The epicyte is formed by the folding of the parasitic cell wall which is made from three membranes (Figs. 3 and 4). At the top of each fold one can see apical struts between the outer and middle membrane and apical filaments under the inner membrane (Fig. 3). In addition, the epicytic folds are covered by a cell coat which is made from tubular structures (Fig. 5). At the base of the epicytic folds can be observed the basal lamina (Fig. 3) composed of very fine fibrillar material with an average thickness of 2.5 nm (Fig. 6). These fibrils are oriented in the longitudinal axis of the gregarine. Beneath the epicytic fold in the ectoplasm are found the annular myonemes with a width of up to 0.5 micrometers (Fig. 7). They are composed of many fine fibrils with an average thickness of 5 nm. In young trophozoites, the myonemes also contain microtubuli (Fig. 8). Between the epicytic folds, the cell wall is interrupted by three different types of vesicles: the vesicles with an electrondense content (Fig. 9), the three-membranous vesicles (Fig. 10), and the hose-shaped vesicles (Fig. 11). Glycerol-extraction of the parasites was performed in order to define the contractile structures. After extraction the annular myonemes are difficult to recognize (Fig. 13). When ATP is added, the gregarine does not contract but the myonemes reappear after 3 to 4 min (Fig. 14). Differences can also be observed in the myoneme structure using electron microscopy: After extraction, the myonemes are composed of a very limp fibrillar network (Fig. 15) which becomes very dense after the action of ATP (Fig. 16). Glycerol extraction does not disturb either the apical struts and apical filaments or the fibrils of the basal lamina (Figs. 15--17). In addition, cytoplasmic fibrillar structures appear after glycerol extraction (Figs. 15 and 16). The experimental and electron microscope results indicate that the motility of the gregarine depends upon four different systems: (1) the ectoplasmic annular myonemes, (2) the apical structures in the undulating epicytic folds, (3) the cytoplasmic fibrils, and (4) the basal lamina.  相似文献   

17.
18.
Summary Mechanoreceptor channels were localized by using the ligands, tubocurarine (TC), decamethonium (Deca), and gallamine (Gall), which have been shown to bind specifically to these channels. The binding of radioactively labeled TC (TC*) was found to be directly proportional to the cell surface area suggesting that the channels are uniformly distributed over the cell surface. Intracellular TC and Gall injections did not depress mechanical stimulus sensitivity though these drugs did depress sensitivity when applied extracellularly at the same concentrations; therefore, the ligand binding sites are on or near the external surface of the cell. Autoradiographs revealed that radioactively labeled Deca (Deca*) bound to the pigmented stripes but not to the ciliary stripes or membranellar band. Further,Stentor induced to shed their membranellar band through exposure to 8% urea were more sensitive to mechanical stimuli than were controls; therefore, the membranellar cilia do not appear to contain mechanoreceptor channels. Collectively, these data indicate that the mechanoreceptor channels are located in the somatic surface covering the pigmented stripes. The density of mechanoreceptor channels in the plasma membrane covering the somatic surface is tentatively estimated to be between 5500 and 14500 m–2 based on the density of TC* binding, the apparent number of TC molecules binding per mechanoreceptor channel, and data suggesting that only one fifth to one fourth of the bound TC* is bound to structures in the plasma membrane.Abbreviations TC Tubocurarine - TC * 14 C-tubocurarine - Deca Decamethonium - Deca * 3H-decamethonium - Gall Gallamine - DAPA Bis(3-aminopyridinium)-1,10-decane diiodide - DAPA * 3H-bis(3-ammopyridinium)-1,10-decane diiodide  相似文献   

19.
朱栗琼  徐艳霞  招礼军  袁娟  杨丽梅 《广西植物》2016,36(10):1179-1185
以广西西北部雅长兰科植物保护区的莎叶兰( Cymbidium cyperifolium)为对象,采用石蜡切片法对莎叶兰叶片和根的解剖构造及其对喀斯特环境的适应性进行了研究。结果表明:(1)莎叶兰叶片的上表皮覆盖有较厚的角质层,气孔均分布于下表皮,且凸出表皮细胞之上;各表皮性状在叶片不同部位存在显著差异,叶片下部的气孔密度、气孔指数和气孔长度最大,表皮细胞密度以叶片上部的最大;叶片属于等面叶,叶肉无栅栏组织和海绵组织的分化;叶脉为明显的平行脉,且粗细交互分布;(2)莎叶兰根的横切面包括根被、皮层、中柱3部分,其中根被细胞排列紧密,为生活细胞;皮层由薄壁细胞组成;根部维管束属于辐射维管束,14原型。菌根粗壮,稀根毛,共生真菌主要分布于根被及皮层中,菌丝体通过根被薄壁细胞间隙及内、外皮层的通道细胞进行侵染。(3)莎叶兰叶片和根的结构不仅有湿生植物特征,如叶片相对较薄、气孔少且凸出表皮细胞、冠/根比值大等;还有旱生植物的特征,如叶片角质层较厚、机械组织发达、细胞结构紧密、具含晶细胞,肉质根具根被,内、外皮层细胞壁明显增厚等。这些结构是莎叶兰对当地缺水、干湿季明显、分布于林下多石砾土壤的生长环境的一种高度适应性表现。  相似文献   

20.
The effect of high pH on the morphology and anatomy of the rootsof lupin (Lupinus angustifolius L. cv. Yandee) and pea (Pisumsativum L. cv. Dundale) was examined in buffered solution. Themorphology and anatomy of lupin roots were markedly altered,and root growth was reduced by increasing solution pH from 5·2to 7·5, whereas pea roots were unaffected. In lupin roots,pH 7·5 caused disintegration of the root surface andimpaired root hair formation. Lupin roots grown at pH 7·5also had decreased cell lengths but increased cell diameterin both the epidermis and the cortex in comparison to rootsgrown at pH 5·2. High pH reduced cell volume greatlyin the epidermis, to a lesser extent in the outer cortex andnot at all in the inner cortex. It appears that in lupins, theprimary detrimental effects of growth at pH 7·5 is reducedlongitudinal growth of cells near the root surface with a consequentreduction in elongation of the cells in inner cortex.Copyright1993, 1999 Academic Press Lupinus angustifolius L., Pisum sativum L., high pH, root morphology, root anatomy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号