首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Entomopathogenic nematodes (EPNs) from the families Steinernematidae and Hererorhabditidae are considered excellent biological control agents against many insects that damage the roots of crops. In a regional survey, native EPNs were isolated, and laboratory and greenhouse experiments were conducted to determine the infectivity of EPNs against the cucurbit fly, Dacus ciliatus Loew (Diptera: Tephritidae). Preliminary experiments showed high virulence by a native strain of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae) and a commercial strain of Steinernema carpocapsae Weiser (Rhabditida: Steinernematidae). These two strains were employed for further analysis while another native species, Steinernema feltiae, was excluded due to low virulence. In laboratory experiments, larvae and adult flies were susceptible to nematode infection, but both nematode species induced low mortality on pupae. S. carpocapsae had a significantly lower LC50 value against larvae than H. bacteriophora in filter paper assays. Both species of EPNs were effective against adult flies but S. carpocapsae caused higher adult mortality. When EPN species were applied to naturally infested fruit (150 and 300 IJs/cm2), the mortality rates of D. ciliatus larvae were 28% for S. carpocapsae and 12% for H. bacteriophora. Both EPN strains successfully reproduced and emerged from larvae of D. ciliates. In a greenhouse experiment, H. bacteriophora and S. carpocapsae had similar effects on fly larvae. Higher rates of larval mortality were observed in sandy loam and sand soils than in clay loam. The efficacy of S. carpocapsae and H. bacteriophora was higher at 25 and 30°C than at 19°C. The results indicated that S. carpocapsae had the best potential as a biocontrol agent of D. ciliatus, based on its higher virulence and better ability to locate the fly larvae within infected fruits.  相似文献   

2.
Steinernema carpocapsae (Weiser) strain A11, S. feltiae (Filipjev) strain SN, and Heterorhabditis bacteriophora Poinar strains HP88 and Georgia were tested for their efficacy as biological control agents of the pecan weevil, Curculio caryae (Horn), in pecan orchard soil-profile containers under greenhouse conditions. Percentage C. caryae parasitism by S. carpocapsae and H. bacteriophora strain HP88 and Georgia was consistently poor when applied either prior to or following C. caryae entry into the soil, suggesting that these nematode species and (or) their enterobacteria are poor biological control agents of weevil larvae. Soil taken 21 days following application of S. carpocapsae or H. bacteriophora strain HP88 induced a low rate of infection of Galleria mellonella larvae, whereas soil that had been similarily treated with H. bacteriophora strain Georgia induced a moderate rate of infection. Percentage C. caryae parasitism by S. feltiae was consistently low when applied following C. caryae entry into the soil and was inconsistent when applied as a barrier prior to entry of weevil larvae into the soil. Soil taken 21 days following application of S. feltiae induced a high rate of infection of G. mellonella larvae.  相似文献   

3.
Injection, contact, and soil assays were used to compare infectivity of Heterorhabditis bacteriophora strain HP88 and Steinernema carpocapsae strain All to final instar Galleria mellonella larvae. Under comparable assay conditions, H. bacteriophora produced less Galleria mortality and showed greater within-assay variability in infectivity than S. carpocapsae. Injection of individual S. carpocapsae or H. bacteriophora infective juveniles into Galleria indicated that a comparatively greater percentage of S. carpocapsae was capable of initiating infection. In addition to nematode species, other major components of variability in assay estimations of nematode infectivity were number of nematodes used in the assay, assay type, date of the assay, and possibly, Galleria age.  相似文献   

4.
The susceptibility of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) to native and commercial strains of entomopathogenic nematodes (EPNs) was studied under laboratory conditions. Native strains of EPNs were collected from northeastern Iran and characterised as Steinernema feltiae and Heterorhabditis bacteriophora (FUM 7) using classic methods as well as analysis of internal transcribed spacer (ITS) and D2/D3 sequences of 28S genes. Plate assays were performed to evaluate the efficiency of five EPN strains belonging to four species including Steinernema carpocapsae (commercial strain), S. feltiae, Steinernem glaseri and H. bacteriophora (FUM 7 and commercial strains). This initial assessment with 0, 75, 150, 250, 375 and 500 IJs/ml concentrations showed that S. carpocapsae and H. bacteriophora caused the highest mortality in both larval and prepupal stages of P. operculella, PTM. Thereafter, these three strains (i.e. S. carpocapsae, H. bacteriophora FUM 7 and the commercial strains) were selected for complementary assays to determine the effects of soil type (loamy, loamy–sandy and sandy) on the virulence of EPNs against the second (L2) and fourth instar (L4) larvae as well as prepupa. A soil column assay was conducted using 500 and 2000 IJs in 2-ml distilled water. Mortality in the L2 larvae was not affected by the EPN strain or soil type, while there was a significant interactive effect of nematode strains and soil type on larval mortality. The results also showed that EPN strains have higher efficiency in lighter soils and caused higher mortality on early larvae than that in loamy soil. In L4 larvae, mortality of PTM was significantly influenced by nematode strain and applied concentrations of infective juveniles. The larval mortality induced by S. carpocapsae was higher than those caused either by a commercial or the FUM 7 strain of H. bacteriophora. Prepupa were the most susceptible stage.  相似文献   

5.
In laboratory studies, we demonstrated that five native entomopathogenic nematode species/isolates caused 100% mortality of Spodoptera cilium larvae, a soil surface-feeding pest of turfgrass. At 25 infective juveniles/cm2 applied to sod, two selected Turkish species, Steinernema carpocapsae and Heterorhabditis bacteriophora (Sarigerme isolate), averaged 77% and 29% larval mortality, respectively.  相似文献   

6.
The susceptibility of codling moth diapausing larvae to three entomopathogenic nematode species was assessed in the laboratory using a bioassay system that employed cocooned larvae within cardboard strips. The LC50values forSteinernema carpocapsae, S. riobrave,andHeterorhabditis bacteriophorawere 4.7, 4.8, and 6.0 infective juveniles/cm2, respectively. When a discriminating concentration of 10 infective juveniles/cm2of each of the three nematode species was evaluated at 15, 20, 25, and 30°C,S. carpocapsaewas the most effective nematode with mortalities ranging from 66 to 90%. Mortalities produced byS. riobraveandH. bacteriophoraat the four temperatures were 2–94 and 25–69%, respectively. Studies were also conducted to test infectivity at 10, 35, and 40°C. No mortality was produced by any of the nematode species at 10°C.S. riobravewas the most infective nematode at 35°C producing 68% mortality which was more than twice that observed forS. carpocapsaeorH. bacteriophora.Codling moth larvae treated with 10 infective juveniles/cm2ofS. carpocapsaeand kept in 95+% RH at 25°C for 0–24 h followed by incubation at 25–35% RH indicated that more than 3 h in high humidity was needed to attain 50% mortality. Trials ofS. carpocapsae, S. riobrave,andH. bacteriophoraat 50 infective juveniles/cm2against cocooned larvae on pear and apple logs resulted in reductions of codling moth adult emergence of 83, 31, and 43%, respectively, relative to control emergence. Trials of the three entomopathogenic nematodes at 50 infective juveniles/cm2against cocooned larvae in leaf litter resulted in 99 (S. carpocapsae), 80 (S. riobrave), and 83% (H. bacteriophora) mortality, respectively. Our results indicate good potential of entomopathogenic nematodes, especiallyS. carpocapsae,for codling moth control under a variety of environmental conditions.  相似文献   

7.
The efficacy of soil treatments of three native entomopathogenic nematodes (Steinernema carpocapsae, S. feltiae and Heterorhabditis bacteriophora) against Tuta absoluta larvae, pupae and adults was determined under laboratory conditions. The effect of three insecticides commonly used against T. absoluta, in the survival, infectivity and reproduction of these nematode strains was also evaluated. When dropped into soil to pupate, soil application of nematodes resulted in a high mortality of larvae: 100, 52.3 and 96.7 % efficacy for S. carpocapsae, S. feltiae and H. bacteriophora respectively. No mortality of pupae was observed and mortality of adults emerging from soil was 79.1 % for S. carpocapsae and 0.5 % for S. feltiae. The insecticides tested had a negligible effect on nematode survival, infectivity and reproduction. No sublethal effects were observed. Infective juveniles that survived to insecticide exposition were able to infect Galleria larvae with no significant differences from the control. The Galleria larvae affected by the three insecticides tested served as suitable hosts for the infection and reproduction of the nematodes. These results suggest that larvae of T. absoluta, falling from leaves following insecticide application, could be suitable hosts for nematodes, thereby increasing their concentration and persistence in the soil.  相似文献   

8.
Plum sawflies are among the most damaging pests of European plum. Current control strategy implies insecticide application. Three species of entomopathogenic nematodes (EPN), Steinernema feltiae Filipjev, S. carpocapsae Weiser and Heterorhabditis bacteriophora Poinar were tested under laboratory and field conditions to assess effectiveness against larval and adult stages. Laboratory tests resulted in up to 100% mortality of last instar larvae before construction of a cocoon. However, the nematodes were not able to penetrate the cocoon. Foliar application did not result in plum sawflies larvae infestation by EPNs. Under field conditions, the nematodes reduced the number of emerging adults by application against sawfly larvae in the previous year before migration into the soil for overwintering by 62%–92%. Application of the nematodes against adults just before their anticipated emergence resulted in reduction of fruit infestation up to 100%. Mean results of 5 trials using caged trees were 47.8% with S. feltiae, 56.3% with S. carpocapsae and 62.9% with H. bacteriophora. In open field trails, control of adults obtained with S. feltiae at 0.5 million nematodes/m2 was 98.2 and 67.8% and at 0.25 million m−2 41.7 and 41.2%. Forecasting adult emergence and optimal soil moisture conditions are essential for success of the nematode application.  相似文献   

9.
Pathogenicity of a native isolate of Steinernema feltiae (H1) and two exotic strains, Heterorhabditis bacteriophora and Steinernema carpocapsae was assessed under laboratory conditions using different concentrations i.e. 4000, 6000, 8000 and 10,000 infective juveniles/ml against second instar larvae, prepupa and pupa of Thrips tabaci Lindeman. The mortality data were recorded 24 and 48?h post-inoculation. The highest mortality rate was recorded for prepupa (62%) than second instar (12.5%) by H. bacteriophora and S. carpocapsae, respectively, 24?h after treatment. No significant differences were found in mortality between prepupa and pupa with increasing the nematodes concentrations (from 4000 to 10,000 nematode/ml) but increasing nematode concentrations increased the mortality of second instar. At the end of the experiment (48?h.), S. feltiae H1 caused the highest mortality on second instar larvae (74%), whereas all other species caused 80–83% mortalities on pupa. This study suggests that native isolate of S. feltiae (H1) had high potential to infect soil-dwelling stages of T. tabaci.  相似文献   

10.
Rose sawfly, Arge ochropus (Gmelin), is one of the most important pests of ornamental plants such as roses and wild rose bushes in Northern Iran. We investigated the interactions between the insecticides imidacloprid and the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae as control agents of fifth-instar larvae in the laboratory. The larvae were very susceptible to S. carpocapsae (LC50: 21 infective juvenile per larva) and H. bacteriophora (LC50: 32). Combinations of two imidacloprid rates (LC30 and LC50) and four rates of each nematode species (LC25–LC75) were tested. Combinations with the lower imidacloprid rate except for that with the highest H. bacteriophora rate caused higher mortality than both respective single-agent treatments. In combination with the higher imidacloprid rate, only one combination with H. bacteriophora and two combinations with S. carpocapsae caused higher mortality than both respective single-agent treatments. Interactions were generally stronger at the lower imidacloprid rate and were stronger for S. carpocapsae (synergistic in seven combinations, additive in one) than for H. bacteriophora (synergistic in two, additive in six). Synergistic imidacloprid-S. carpocapsae combinations could be a useful tool for the control of A. ochropus larvae that would simultaneously control other common pests susceptible to imidacloprid.  相似文献   

11.
Large quantities of insecticides are used on warm season turfgrasses to combat pest infestations. To investigate the potential for microbial control, we screened commercially available entomopathogenic nematode products against Herpetogramma phaeopteralis Guenée, an economically injurious pest in the south‐eastern United States and Caribbean islands. All tested products, based on Steinernema carpocapsae, S. feltiae, Heterorhabditis bacteriophora, H. megidis and H. indica, were pathogenic to H. phaeopteralis larvae in the laboratory, but S. carpocapsae caused the highest mortality. Amongst nematode species, median lethal concentration (LC50) was not different for three different larval sizes (based on 95% CL) with the exception of H. indica, which had higher LC50 for small larvae. The number of infective juvenile stages (IJs) produced per White trap was significantly greater from larvae infected by Hbacteriophora and least for those infected by H. indica. A proprietary formulation of S. carpocapsae ‘Millenium®’ was chosen for further greenhouse experiments. Overall, the neonicotinoid insecticide clothianidin provided the best control, but greenhouse experiments also revealed that the label rate of Millenium (106 IJ/l at 2500 l/ha) reduced webworm populations by 83–93% and was as effective as clothianidin against larger‐size larvae. Our data suggest that commercial formulations of S. carpocapsae can be a good option for H. phaeopteralis biocontrol, but further field studies are warranted to confirm effectiveness under different environmental scenarios.  相似文献   

12.
The biological traits of the entomopathogenic nematodes (EPNs), Steinernema carpocapsae and Heterorhabditis bacteriophora, against the larvae of the leopard moth, Zeuzera pyrina were evaluated in the laboratory. The traits included pathogenicity, penetration potential as well as foraging behaviour. Plate assays were performed using a range of EPN concentrations (5, 10, 20, 50 and 100 infective juveniles (IJs) per larva). The LC50 values for S. carpocapsae and H. bacteriophora were 6.4 and 8.4 IJs larva?1 after 72 h. Both EPN species caused high mortality in branch experiments. Significantly higher mortality rates occurred in the larger larvae after exposure to S. carpocapsae. Both EPN species successfully penetrated the Z. pyrina larvae as well as larvae of Galleria mellonella L. (Lepidoptera: Galleridae).The proportional response of H. bacteriophora to host-associated cues was strongly higher than S. carpocapsae in Petri dishes containing agar 1, 12 and 24 h after EPN application. These results highlight the efficiency of EPNs for the control of Z. pyrina larvae. However, due to the cryptic habitat of Z. pyrina larvae in their galleries in the trees, field trails need to be conducted to further evaluate this potential.  相似文献   

13.
In two studies to estimate sampling requirements for entomogenous nematodes in the field, highest persistence of Heterorhabditis bacteriophora after application occurred beneath the canopies of mature citrus trees. Nematode persistence declined with distance from the center-line of the tree row toward the row-middles. Immediately after nematode application to soil, 32 samples (15 cm deep, 2.5-cm diameter) beneath a single tree were required to derive 95% confidence intervals that were within 40% of mean nematode population density. The estimated probability of measuring the mean density within 40%, using 32 samples, declined to 88% at 2 days post-application and to 76% at 7 days. The persistence in soil of Steinernema carpocapsae, S. riobravis, and two formulations containing H. bacteriophora and their efficacy against the larvae of Diaprepes abbreviatus were compared in a grove of 4-year-old citrus trees. Within 6 days, the recovered population densities of all nematodes declined to <5% of levels on day 0. The recovery of H. bacteriophora during the first 2 weeks was lower than that of the other two species. Steinemema riobravis and both formulations of H. bacteriophora reduced recovery of D. abbreviatus by more than 90% and 50%, respectively. Steinernema carpocapsae did not affect population levels of the insect.  相似文献   

14.
The potential of entomopathogenic nematodes as biologicalcontrol agents for carrot weevil (Listronotus oregonensis) was evaluated throughboth laboratory and field experiments. In thelaboratory, Steinernema carpocapsae, S. riobrave, S. feltiae, Heterorhabditis megidis, H. bacteriophora, and a control (water only) werecompared in sand and muck soil against adults,and in sand against larvae. All nematodespecies produced high levels of larvalmortality. S. carpocapsae producedsignificantly greater adult mortality in sandthan other species or the untreated control. H. bacteriophora caused low adultmortality in sand, but the greatest adultmortality among treatments in a similar testthat used muck soil; S. carpocapsae wasranked second on muck soil. Other speciesconsistently produced intermediate (H.megidis and S. riobrave) or low (S.feltiae) levels of mortality on bothsubstrates. In the field, we compared theeffect of early season vs. late seasonapplications of H. bacteriophora or S. carpocapsae on carrot weevil mortality andparsley survival and yield. Significantdifferences among treatments in plant survivaland yield were not found; however treatmentsinvolving H. bacteriophora had higherplant survival than other treatments. Earlierapplication of this species was associated withhigher plant survival. S. carpocapsaetreatments had similar plant survival to thecontrol. Mortality of larvae and combinedstages of carrot weevil was significantlygreater at 1 week following H.bacteriophora application than for othertreatments. H. bacteriophora also showedgreater persistence than S. carpocapsaein treated plots. We conclude that H.bacteriophora is a good candidate for furtherevaluation as a biological control agentagainst carrot weevil on muck soils in theGreat Lakes region.  相似文献   

15.
Five field surveys for indigenous entomopathogenic nematodes (EPNs) were conducted in 22 semi-natural and 17 small-holder farming habitats across 16 districts of different altitudes in the northern, eastern, southern and Kigali city provinces of Rwanda. In 2014, 216 mixed soil samples were collected and subsamples thereof baited with Galleria mellonella or Tenebrio molitor larvae. Five samples from five locations and habitats were positive for nematodes (2.8%). Nine nematode species/strains were isolated and five successfully maintained. DNA sequence comparisons and morphological examinations revealed Steinernema carpocapsae, Heterorhabditis bacteriophora, as well as two steinernematids and one heterorhabditid with no species designation. The isolates (strains) were named Steinernema sp. RW14-M-C2a-3, Steinernema sp. RW14-M-C2b-1, Steinernema carpocapsae RW14-G-R3a-2, H. bacteriophora RW14-N-C4a and Heterorhabditis sp. RW14-K-Ca. These are the first records of naturally occurring EPNs in Rwanda. It is also the first record of S. carpocapsae from Africa. Finding H. bacteriophora from tropical rather than temperate Africa was surprising. The found nematodes will serve as the basis for efficacy screening, and for mass production in a biocontrol agent factory at Rubona Research Centre of the Rwanda Agriculture Board with the ultimate aim of delivering effective, safe and environmentally benign pest control for soil-inhabiting pests.  相似文献   

16.
The virulence of different entomopathogenic nematode strains of the families Steinernematidae and Heterorhabditidae, isolates from Catalonia (NE Iberian Peninsula), and their symbiotic bacteria was assessed with regard to the larvae and adults of the hazelnut weevil, Curculio nucum L. (Coleoptera: Curculionidae). The nematode strains screened included one Steinernema affine, five Steinernema feltiae, one Steinernema carpocapsae, one Steinernema sp. (a new species not yet described) and one Heterorhabditis bacteriophora. The pathogenicity of all the strains of nematodes was tested on larvae and only four of them on adults of the hazelnut weevil. Larval mortality ranged from 10% with S. affine to 79% with Steinernema sp. Adult mortality was higher in S. carpocapsae, achieving 100% adult weevil mortality. The pathogenicity of the symbiotic bacteria Xenorhabdus bovienii, X. kozodoii, X. nematophila and Photorhabdus luminescens was studied in larvae and adults of C. nucum. In the larvae, X. kozodoii showed a LT50 of 22.7 h, and in the adults, it was 20.5 h. All nematodes species except S. affine tested against larvae showed great potential to control the insect, whereas S. carpocapsae was the most effective for controlling adults.  相似文献   

17.
Entomopathogenic nematodes are used for biological control of insect pests. A method for improved cryopreservation of infective juvenile stage nematodes has been developed using Steinernema carpocapsae and Heterorhabditis bacteriophora. Optimum survival for both species was achieved with 12,000 infective juveniles/ml in glycerol and 7,500/ml in Ringer''s solution. For S. carpocapsae, maximum survival also was observed with 60,000 infective juveniles/ml in glycerol and 25,000/ml in Ringer''s solution. These concentrations resulted in 100% post-cryopreservation survival of S. carpocapsae and 100% retention of original virulence to Galleria mellonella larvae. This is the first report of achieving 100% survival of an entomopathogenic nematode after preservation in liquid nitrogen. Maximum survival of H. bacteriophora following cryopreservation was 87%.  相似文献   

18.
Three Turkish isolates of the entomopathogenic nematodes Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora were evaluated under laboratory conditions (in different temperatures and doses) for their biocontrol efficiency against last instar Leptinotarsa decemlineata. Herein, the effects of infective juveniles in aqueous suspension against L. decemlineata were evaluated. S. feltiae appeared to be the most pathogenic nematode among the tested species.  相似文献   

19.
The current work investigated the immune response of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) when challenged with two entomopathogenic nematodes (EPNs), Steinernema carpocapsae (Weiser) and Heterorhabditis bacteriophora (Poinar). The cellular and humoral defences were considered in this study. The haemocytes were observed around H. bacteriophora, but no haemocyte was found around S. carpocapsae. In larvae treated with H. bacteriophora and S. carpocapsae, total haemocyte counts (THCs) reached maximum levels at 4 and 12 hours post-injection (hpi), respectively, but decreased with the proliferation of symbiotic bacteria. In the humoral defence, there was no significant difference between EPNs on phenoloxidase (PO) activity. Phospholipase A2 (PLA2) and protease activity levels in the initial time post-injection were higher in the larvae treated with S. carpocapsae than in H. bacteriophora. In the following, the roles of symbiotic bacteria and axenic infective juveniles (IJs) in suppressing the immune system were studied separately. Maximum THC levels were observed in larvae treated with axenic nematodes and minimum THC levels were recorded in the live Xenorhabdus nematophila treatment. In the humoral defence, PLA2 activity with axenic S. carpocapsae was suppressed at 4 hpi, while in monoxenic S. carpocapsae the PLA2 level was increased to the maximum amount at 8 hpi. PO activity with monoxenic S. carpocapsae decreased gradually by 4 hpi; in live X. nematophila, it decreased from 0.5 to 16 hpi, while in axenic S. carpocapsae, it increased slowly from 0.5 to 16 hpi. The current work showed the synergistic effect of nematode and its bacterium in the suppression of the immune system and highlighted the role of the symbiont in inhibition of immune responses.  相似文献   

20.
The efficacy of five entomopathogenic nematode strains of the families Steinernematidae and Heterorhabditidae was tested against the neonate larvae of Capnodis tenebrionis. The nematode strains screened included two of Steinernema carpocapsae (Exhibit and M137), and one each of S. feltiae (S6), S. arenarium (S2), and Heterorhanditis bacteriophora (P4). Exposure of neonate larvae of Capnodis to 10 and 150 infective juveniles (IJs) per larva (equivalent to 3 and 48 IJs/cm2 respectively) in test tubes with sterile sand, resulted in mortality between 60–91% and 96–100%, respectively. At a concentration of 150 IJs/larva, all of the nematode strains were highly virulent. Both S. carpocapsae strains (Exhibit and M137) caused infection and mortality to larvae more quickly than the other strains. However, at a lower concentration assay (10 IJs/larva), S. arenarium was the most virulent strain. The penetration rate as an indicator of entomopathogenic nematode infection was also evaluated. The highest value was recorded for S. arenarium (36%), followed by H. bacteriophora (30.6%), S. feltiae (23.1%), and S. carpocapsae (20.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号