首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Our field experiments showed that the use of Czech biopreparations (Supresivit, Ibefungin and Polyversum) based on the following microorganisms: Trichoderma harzianum, Bacillus subtilts and Pythium oligandrum applied as the seed treatment, the spray on the plants and like the mixture with mineral fertilizers (NPK, ammonium sulphate) lead namely after the seed-treatment and after the application as the mixture with mineral fertilizers to the increasing of the yield about 3-5 % (spring barley, winter wheat). This increasing was given by depression of soil-borne phytopathogenic fungi of the genera: Fusarium, Drechslera (Helminthosporium), Pseudocercosporella (Tapesia), Gaeumannomyces, and partially Rhynchosporium. The number of the fungi on plant rests were also influenced. No effect was observed on smuts and rusts. The smuts needed the seed-treatment with Vitavax (carboxim, thiram, imazalil) which didn't influence the biological treatment with biopreparations. The doses of biopreparations were following: the mixture with mineral fertilizer - 0.1 g of biopreparation/ kg of mineral fertilizer, the seed treatment - 0.1 g of biopreparation/1 kg of the seed and in the spray 0.1 g of biopreparation/1 litre of distilled water. Biological biopreparations will be usefull probably also in the future because they don't create the harmfull residues. The impact of the biopreparations under different ways of soil tillage (conventional variant with ploughing, variants with different plant residues and variants without ploughing) was studied as well. The influence of different soil preparation on composition of the soil mycoflora and the influence on quantity of the pathogenic genera Fusarium, Drechslera and others was observed. Quantity of named genera was negatively influenced while yield and health status of the plants were influenced positively.  相似文献   

2.
Photosynthetic CO2 assimilation, photorespiration and levels of glycollate oxidase and ribulose bisphosphate (RuBP) carboxylase were measured in barley, wheat and maize plants grown on media containing nitrate or ammonium or in plants transferred from nitrate to ammonium. The CO2 compensation point and photorespiratory CO2 release were not altered by the nitrogen growth regime nor by transfer from nitrate to ammonium. In barley and wheat plants grown on ammonium the levels of glycollate oxidase and RuBP carboxylase per unit leaf area were higher than in nitrate grown material. These differences were not evident when the results were expressed on a protein or chlorophyll basis. The ratio of glycollate oxidase activity to RuBP carboxylase activity was not altered by the nitrogen regime.  相似文献   

3.
Hordeum chilense is a South American wild barley with high potential for cereal breeding given its high crossability with other members of the Triticeae. In the present paper we consider the resistance of H. chilense to several fungal diseases and the prospects for its transference to cultivated cereals. All H. chilense accessions studied are resistant to the barley, wheat and rye brown rusts, the powdery mildews of wheat, barley, rye and oat, to Septoria leaf blotch, common bunt and to loose smuts, which suggests that H. chilense is a non-host of these diseases. There are also lines resistant to wheat and barley yellow rust, stem rust and to Agropyron leaf rust, as well as lines giving moderate levels of resistance to Septoria glume blotch, tan spot and Fusarium head blight. Some H. chilense lines display pre-appressorial avoidance to brown rust. Lines differ in the degree of haustorium formation by rust and mildew fungi they permit, and in the degree to which a hypersensitive response occurs after haustoria are formed. Unfortunately, resistance of H. chilense to rust fungi is not expressed in tritordeum hybrids, nor in chromosome addition lines in wheat. In tritordeum, H. chilense contributes quantitative resistance to wheat powdery mildew, tan spot and loose smut. The resistance to mildew, expressed as a reduced disease severity, is not associated with macroscopically visible necrosis. Hexaploid tritordeums are immune to Septoria leaf blotch and to common bunt although resistance to both is slightly diluted in octoploid tritordeums. Studies with addition lines in wheat indicate that the resistance of H. chilense to powdery mildew, Septoria leaf blotch and common bunt is of broad genetic basis, conferred by genes present on various chromosomes.  相似文献   

4.
Three spring wheat genotypes, susceptible, moderately resistant or resistant to Pyrenophora tritici-repentis (tan spot fungus) were exposed to charcoal-filtered air and to approx. 80, 160, 240 (g m?3 ozone for five consecutive days (7 h per day). Visible leaf injury on seedling plants (three-leaf stage) was only observed after fumigation with 160 or 240 (g m?3 O3. Amount of injury was four-fold and 10-fold on the susceptible genotype when compared to resistant or moderately resistant genotype at the two highest concentration of ozone, respectively. Genotypic differences to O3 tolerance were detected at the seedling growth stage (three-leaf stage) and flowering stage but not at the stem elongation stage. A significant increase in tan spot lesion area was observed only on O3 predisposed second top most leaves of the susceptible genotype at all the three levels of ozone. Predisposition did not enhance tan spot development in resistant and moderately resistant genotypes. In a test with 12 wheat genotypes, a highly significant positive correlation (r = 0· 986, p < 0· 0001) was observed between ozone sensitivity (percent leaf area damaged due to 240 (g m?3 ozone exposure) and tan spot development (mm2 lesion area) following inoculation with P. tritici-repentis. It indicates that wheat genotypes resistant to the tan spot fungus might be tolerant to ozone damage.  相似文献   

5.
The effects of competition from volunteer barley (Hordeum vulgare) on the growth and yield of oilseed rape (Brassica napus) were investigated in four experiments over three seasons. The growth of rape in the autumn was reduced by 50 - 91 % by competition from 400 barley plants m-2. A lower barley density of 200 plants m-2 had less effect but still reduced growth of rape by 65 - 81% in two of the experiments and 25 - 40% in the other two. During winter and spring the barley decreased in vigour and in the spring the rape started to recover, especially on the early drilled (23 - 30 August) plots. The rape sown in mid-September recovered less quickly. In Experiment 3, herbicides applied in November to control barley did not result in increased growth of rape in winter but led to greater recovery in spring. The barley died during the winter in Experiments 2 and 4, even in the absence of herbicides. Despite the marked effects of barley on the growth of rape in the autumn, yields on plots that had previously contained 200 barley plants m-2 were reduced by a maximum of only 16% in three of the experiments. In Experiment 3, where the barley was most competitive, this density and 400 plants m-2 lowered yields by 39% and 78%, respectively. Where a herbicide was used in November to control the barley these yield losses were reduced to 5%. In many rape crops the cost of herbicide treatment would be greater than the financial returns from the expected increase in yield resulting from the control of weeds. Possible reasons for the small loss in yield of rape from barley densities that had substantial effects on the growth of rape in the autumn are discussed.  相似文献   

6.
Summary Field experiments were carried out using15N-labelled calcium nitrate, to investigate the relative uptake by barley of fertilizer-N and soil-N. On imperfectly drained till soils uptake of soil-N increased with increasing rate of fertilizer, but remained constant on a brown sand, possibly due to more efficient root exploration in the latter soil. In four out of five seasons, late uptake of soil-derived N was a major feature, and uptake from ploughed soil as compared with uptake from direct-drilled soil was correlated with seasonal rainfall patterns. Significantly higher quantities of both fertilizer- and soil-derived N were taken up by winter barley than by spring barley, reflecting the longer growth period and higher dry matter yield from the former crop.  相似文献   

7.
In phototrophically grown Chlamydomonas cells, ammonium strongly inhibited the utilization of nitrate or nitrite. Under darkness, or in the presence of an uncoupler or inhibitor of the non-cyclic photosynthetic electron flow, the utilization of nitrate, nitrite or ammonium was suppressed. l-Methionine-d,l-sulfoximine (MSX) or azaserine, which blocks the assimilation of ammonium, inhibited the consumption of nitrate, but not nitrite, by the cells. Ammonium produced an immediate inhibition of the permease for nitrate in Chlamydomonas growing with nitrate, while ammonium-grown cells lacked this permease. The synthesis of nitrate-reductase activity was dependent on an active permease. In N-starved Chlamydomonas cells, previously treated with MSX, the permease for nitrate was insensitive to inhibition by ammonium, and a significant amount of nitrate reductase was synthetized. These cells photoproduce ammonium by reducing nitrate. Nitrogen-repleted cells, treated with MSX, actively photoproduced ammonium by reducing nitrite, but not nitrate.Abbreviations DCMU N-(3,4-dichlorophenyl)N,N-di-methyl-urea - PCCP Carbonylcyanid-p-trifluoromethoxy-phenylhydrazone - Mops 2-(N-morpholino)propanesulfonic acid - MSX l-Methionine-d,l-sulfoximine  相似文献   

8.
Trichoderma harzianum is an effective biocontrol agent against several fungal soilborne plant pathogens. However, possible adverse effects of this fungus on arbuscular mycorrhizal fungi might be a drawback in its use in plant protection. The objective of the present work was to examine the interaction between Glomus intraradices and T. harzianum in soil. The use of a compartmented growth system with root-free soil compartments enabled us to study fungal interactions without the interfering effects of roots. Growth of the fungi was monitored by measuring hyphal length and population densities, while specific fatty acid signatures were used as indicators of living fungal biomass. Hyphal 33P transport and beta-glucuronidase (GUS) activity were used to monitor activity of G. intraradices and a GUS-transformed strain of T. harzianum, respectively. As growth and metabolism of T. harzianum are requirements for antagonism, the impact of wheat bran, added as an organic nutrient source for T. harzianum, was investigated. The presence of T. harzianum in root-free soil reduced root colonization by G. intraradices. The external hyphal length density of G. intraradices was reduced by the presence of T. harzianum in combination with wheat bran, but the living hyphal biomass, measured as the content of a membrane fatty acid, was not reduced. Hyphal 33P transport by G. intraradices also was not affected by T. harzianum. This suggests that T. harzianum exploited the dead mycelium but not the living biomass of G. intraradices. The presence of external mycelium of G. intraradices suppressed T. harzianum population development and GUS activity. Stimulation of the hyphal biomass of G. intraradices by organic amendment suggests that nutrient competition is a likely means of interaction. In conclusion, it seemed that growth of and phosphorus uptake by the external mycelium of G. intraradices were not affected by the antagonistic fungus T. harzianum; in contrast, T. harzianum was adversely affected by G. intraradices.  相似文献   

9.
Among the bacteria and fungi associated from the soil where cowpea was grown and tested for antagonism against Protomycopsis phaseoli , Bacillus sp. inhibited the radial growth, Fusarium oxysporum , yeast, Aspergillus fumigatus , Trichoderma harzianum , Trichoderma koningii and Trichoderma sp. reduced radial growth of P. phaseoli . In vitro studies showed that T. harzianum was an active hyperparasite and more effective in reducing the radial growth of P. phaseoli than T. koningii and Trichoderma sp. Spore suspensions of the three Trichoderma spp. prevented the germination of chlamydospores of P. phaseoli . In the field, when applied as spray, Trichoderma sp. was found to be more active in reducing the spread of leaf smut disease than T. harzianum and T. koningii.  相似文献   

10.
In 1986–88 the development of eyespot lesions in winter wheat or winter barley differed plots inoculated with W-type isolates of Pseudocercosporella herpotrichoides and plots inoculated with R-type isolates. In the spring of 1986, after a cold winter, the incidence (%shoots infected) and severity (number of leaf sheaths penetrated) of eyespot lesions in wheat before GS 30/31 were greater in plots inoculated with R-type isolates than in those inoculated with W-type isolates. In 1987, after amild winter, eyespot incidence and severity in both wheat and barley were initially greater in W-type plots than in R-type plots. However, by GS 30/31 or 1987. In 1988, when the crop was October-sown, eyespot incidence and severity were greater in W-type than in R-type plots at GS 30/31. Differences in eyespot incidence and severity between W-type and R-type plots were smaller in barley than in wheat. Both the incidence and severity of eyespot were greater in early-sown than in late-sown plots. Seed rate, had little effect on the rate of lesion development in 1987, but in 1988 the rate of penetration was less at the low seed rate for both wheat and barley.  相似文献   

11.
Summary Nitrogen fertilizer was applied to field plots at rates of 0, 50, 100, 150 and 200 N kg/ha yr, in order to determine the effects of differentiated N applications on drainage water and groundwater quality. Water samples, collected monthly or bimonthly from 1974 to 1983, were analysed for inorganic and total N content. In order to see the impact of residual N on leaching losses, soil samples were collected to a depth of 2 m in the N0, N100 and N200 plots, usually in September and April. Leaching of nitrate was moderate to the N100 level but increased substantially with increasing fertilization, up to 91 N kg/(ha-yr) for the highest application rate (N200), during the wet year of 1980/81. The losses were greatest during the fall, mainly due to high levels of N remaining in the soil after harvest combined with high precipitation. The N content of the groundwater did not show any significant correlation to the fertilization intensity. A buildup of inorganic N in the soil occurred only when excessive amounts of fertilizer were applied (N200), while the contents of the N0 and N100 treatments fluctuated around states of balance, approximately 45 and 70 N kg/ha respectively. Spring rape followed by winter wheat showed a great ability to reduce N contents in the tile effluent from highly fertilized plots (N150 and N200), even though the plots had received excessive amounts of fertilizer for several years. Results of this experiment in central Sweden demonstrate the importance of applying nitrogen fertilizer in balance with crop needs and of maintaining a growing crop cover as much of the time as possible in order to minimize water pollution.  相似文献   

12.
Abstract Two filamentous fungi, Trichoderma harzianum and Trichoderma viride , were compared for their ability to synthesize lipids on different carbon and nitrogen sources. Three culture media were selected for each strain after preliminary screening. All the test media were nitrogen-deficient (C/N = 60) so as to stimulate lipid accumulation. For both microorganisms the glucose-ammonium sulphate medium was the most conducive to lipid production: a lipid accumulation of 17% (w/w) of biomass dry weight was obtained for T. harzianum and of 32% (w/w) of biomass dry weight for T. viride . In sucrose-sodium nitrate medium T. harzianum was able to accumulate almost 25% (w/w) of its biomass in lipid form. However the small quantity of biomass produced (2 g dry weight/l) limited the quantity of lipid obtained. Neutral lipids, free fatty acids and phospholipids were monitored during 8 days of cultivation of the two fungi.  相似文献   

13.
Three field experiments made during 1975-77, in North and South Yorkshire, investigated the influence of 'large form' Longidorus leptocephalus upon the yield of spring barley, winter wheat and second early potatoes.
Longidorus populations ranged from undetectable levels to 2375/litre soil. At one site estimates of nematode numbers were made twice, and gave a close agreement between the ranking order of plots. Significant negative correlations between numbers of L. leptocephalus and yield suggested that this nematode impaired the yield of these crops. For each 200 LongidoruslX of soil the estimated reductions in yield were 0–25 t/ha of barley, 0–13 t/ha of wheat and 0–55 t/ha of potatoes.  相似文献   

14.
Summary The effects of winter waterlogging and a subsequent drought on the growth of winter barley and winter wheat have been examined. We used lysimeters containing soil monoliths with facilities to control the water table and a mobile shelter to control rainfall. Winter wheat was grown on a clay and on a sandy loam, but winter barley only on the clay soil. Lysimeters were either freely-drained during the winter or waterlogged with the water table 10 cm below the soil surface from 2 December until 31 March (that could occur by rainfall with a return period of 2 to 3 years). The lysimeters then were either irrigated so that the soil moisture deficit did not exceed 84 mm, or subjected to drought by limiting rainfall (equivalent to a 1 in 10 dry year in the driest area of England) so that the deficits reached maximum values of 150 mm in the clay and 159 mm in the sandy loam by harvest.Winter waterlogging restricted tillering and restricted the number of ears for all crops; grain yield of the winter barley was decreased by 219 g/m2 (30%), and that of winter wheat by 170 g/m2 (24%) and 153 g/m2 (21% on the clay and sandy loam respectively.The drought treatment reduced the straw weight of winter barley by 75 g/m2 (12%) but did not significantly depress the grain yield. For winter wheat on the clay, where the soil was freely-drained during the winter, drought depressed total shoot weight by 344 g/m2 (17%) and grain weight by 137 g/m2 (17%), but after winter waterlogging, drought did not further depress total or grain weight. In contrast, the winter wheat on the sandy loam was not significantly affected by drought.From these results, which are discussed in relation to other experiments in the United Kingdom, it seems that winter waterlogging is likely to cause more variation in the yield of winter barley and winter wheat than drought.  相似文献   

15.
Summary The effects of different nitrogen sources (NH4, NO3, and NH4 NO3) on the uptake of copper by wheat and barley growing in solution culture were compared in three experiments. Both the copper concentration and weight gain of shoots and roots were found to decrease in the order NO3>NH4 NO3>NH4 irrespective of the solution copper concentration. Ammonium nitrogen was also found to decrease the copper concentration of wheat grown on a copper deficient soil compared with a nitrate source of nitrogen. Increasing concentrations of ammonium ions in solution culture caused ammonium toxicity and reduced both plant copper concentrations and vegetative yield. Biochemical investigations using paper chromatography revealed that the amino acid asparagine was the major detoxification product of ammonia in wheat. Copper deficient plants were found to have elevated levels of amino acids compared with controls, irrespective of the nitrogen source.  相似文献   

16.
Summary Ammonium nitrate fertilizer, labelled with15N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha−1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freelydrained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheat at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1–2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer. Maximum annual loss occurred the following year but the proportion of tracer nitrogen in drainage was nevertheless smaller. Leaching losses over the 5 and 6 years from the clay and sandy loam soil were respectively 1.3 and 3.9% of the original application. On both soils the percentage of labelled nitrogen to the total crop nitrogen content was greater after a period of winter waterlogging than for freely-drained treatments. This was most marked on the clay soil; evidence points to winter waterlogging promoting denitrification and the consequent loss of soil nitrogen making the crop more dependent on spring fertilizer applications.  相似文献   

17.
Prevalence of tan spot of wheat caused by the fungus Pyrenophora tritici-repentis has become more prevalent in Oklahoma as no-till cultivation in wheat has increased. Hence, developing wheat varieties resistant to tan spot has been emphasized, and selecting pathogen isolates to screen for resistance to this disease is critical. Twelve isolates of P. tritici-repentis were used to inoculate 11 wheat cultivars in a greenhouse study in split-plot experiments. Virulence of isolates and cultivar resistance were measured in percent leaf area infection for all possible isolate x cultivar interactions. Isolates differed significantly (P < 0.01) in virulence on wheat cultivars, and cultivars differed significantly in disease reaction to isolates. Increased virulence of isolates detected increased variability in cultivar response (percent leaf area infection) (r = 0.56, P < 0.05) while increased susceptibility in cultivars detected increased variance in virulence of the isolates (r = 0.76, P < 0.01). A significant isolate × cultivar interaction indicated specificity between isolates and cultivars, however, cluster analysis indicated low to moderate physiological specialization. Similarity in wheat cultivars in response to pathogen isolates also was determined by cluster analysis. The use of diverse isolates of the fungus would facilitate evaluation of resistance in wheat cultivars to tan spot.  相似文献   

18.
An experiment in a field where sugar beet in 1965 had suffered from Docking disorder caused by Longidorus attenuatus tested the effect of fumigating the soil with 3741/ha D-D and two amounts of nitrogen fertilizer on different crop sequences between 1966 and 1969. Although severe Docking disorder did not recur in sugar beet, fumigation increased yield in each of the three following years. Yield of barley was increased for 4 yr and of wheat, potatoes and ryegrass for 1 or 2 yr after treatment. All plant parasitic nematodes were controlled by the first fumigation and the numbers of those in unfumigated plots 3 yr after treatment. Fumigation also largely prevented infection of sugar beet by the fungus Helicobasidium purpureum.  相似文献   

19.
Seasonal variation in uptake and regeneration of ammonium and nitrate in a coastal lagoon was studied using 15N incorporation in particulate matter and by measuring changes in particulate nitrogen. Uptake and regeneration rates were two orders of magnitude lower in winter than in summer. Summer uptake values were 2.8 and 2.2 mol N.l–1.d–1 for ammonium and nitrate, respectively. Regeneration rates were 2.9 and 2.1 mol N.l–1.d–1 for ammonium and nitrate respectively. Regeneration/uptake ratios were often below one, indicating that water column processes were not sufficient to satisfy the phytoplankton nitrogen demand. This implies a role of other sources of nitrogen, such as macrofauna (oysters and epibionts) and sediment. Phytoplankton was well adapted to the seasonal variations in resources, with mixotrophic dinoflagellates dominant in winter, and fast growing diatoms in summer. In winter and spring, ammonium was clearly preferred to nitrate as a nitrogen source, but nitrate was an important nitrogen source in summer because of high nitrification rates. Despite low nutrient levels, the high rates of nitrogen regeneration in summer as well as the simultaneous uptake of nitrate and ammonium allow high phytoplankton growth rates which in turn enable high oyster production.  相似文献   

20.
Two filamentous fungi, the white-rot fungus Trametes versicolor and the soil fungus and potential biocontrol organism Trichoderma harzianum, have been grown in pure and mixed cultures on low-N (0.4 mM) and high-N (4 mM) defined synthetic media to determine the activities of selected wood-degrading enzymes such as cellobiase, cellulase, laccase, and peroxidases. Growth characteristics and enzyme activities were examined for potential correlations. Such correlations would allow the use of simple enzyme assays for measuring biomass development and would facilitate predictions about competitiveness of species in mixed fungal cultures. Our results show that while laccase and Poly Red-478 peroxidase activities indicate survival of the decay fungus, none of the monitored extracellular enzymes can serve as a quantitative indicator for biomass accumulation. As expected, the level of available nitrogen affected the production of the enzymes monitored: in low-N media, specific cellobiase, specific cellulase, and peroxidase activities were enhanced, while laccase activities were reduced. Most importantly, laccase activities of Trametes versicolor, and to a smaller extent, cellobiase activities of both fungi, were significantly induced in mixed cultures of Trametes versicolor and Trichoderma harzianum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号