首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. The glucose transport system in Leishmania tropica promastigotes was characterized by the use of labeled 2-deoxy-D-glucose (2-DOG), a nonmetabolizable glucose analog. The uptake system has a Q10 of 2 and a heat of activation of 10.2 kcal/mole. The glucose transport system is subject to competitive inhibition by 2-DOG, glucosamine, N-acetyl glucosamine, mannose, galactose, and fructose which suggests that substitutions in the hexose chain at carbons 2 and 4 do not affect carrier specificity. In contrast, changes at carbon 1 (α-methyl-D-glucoside, 1,5-anhydroglucitol) and carbon 3 (3–0-methyl glucose) lead to loss of carrier affinity since these sugars do not compete for the glucose carrier. Sugars that compete with the glucose carrier have one common feature—they all exist in the pyranose form in solution. The carrier for D-glucose does not interact with L-glucose or any of the pentose sugars tested. Uptake of 2-DOG is inhibited by glycerol. This inhibition, however, is noncompetitive; it is evident, therefore, that glucose and glycerol do not compete for the same carrier. Glycerol does not repress the glucose carrier since cells grown in presence of glycerol transport the sugar normally.  相似文献   

2.
The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T. neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation.  相似文献   

3.
Leishmania tropica promastigotes do not utilize glucose provided in the medium until late log phase. Rapid depletion of glucose from the medium, however, occurs during late log and stationary phases. At about the same time, the cells show maximal rates of glucose uptake as well as peak levels of phosphofructokinase and pyruvate kinase activities. The glucose analog, 2-deoxy-D-glucose inhibits glucose transport. Incorporation of this analog in the growth medium results in inhibition of growth. The hexokinase of L. tropica phosphorylates 2-deoxy-D-glucose. Pyruvate kinase is activated by fructose-1, 6-diphosphate and adenosine monophosphate.  相似文献   

4.
When grown in fructose or glucose the cells of Zygosaccharomyces bailii were physiologically different. Only the glucose grown cells (glucose cells) possessed an additional transport system for glucose and malate. Experiments with transport mutants had lead to the assumption that malate and glucose were transported by one carrier, but further experiments proved the existence of two separate carrier systems. Glucose was taken up by carriers with high and low affinity. Malate was only transported by an uptake system and it was not liberated by starved malate-loaded cells, probably due to the low affinity of the intracellular anion to the carrier. The uptake of malate was inhibited by fructose, glucose, mannose, and 2-DOG but not by non metabolisable analogues of glucose. The interference of malate transport by glucose, mannose or 2-DOG was prevented by 2,4-dinitrophenol, probably by inhibiting the sugar phosphorylation by hexokinase. Preincubation of glucose-cells with metabolisable hexoses promoted the subsequent malate transport in a sugar free environment. Preincubation of glucose-cells with 2-DOG, but not with 2-DOG/2,4-DNP, decreased the subsequent malate transport. The existence of two separate transport systems for glucose and malate was demonstrated with specific inhibitors: malate transport was inhibited by sodium fluoride and glucose transport by uranylnitrate. A model has been discussed that might explain the interference of hexoses with malate uptake in Z. bailii.Abbreviations 2,4-DNP 2,4-dinitrophenol - 2-DOG 2-deoxyglucose - 6-DOG 6-deoxyglucose - pCMB para-hydroxymercuribenzoate  相似文献   

5.
Much of the literature on the uptake of glucose by untransformed and transformed animal cells is based on experiments carried out with 2-deoxy-D-glucose (2-DOG). Results obtained with this analog can be ambiguous, since 2-DOG can be phosphorylated by hexokinases of animal cells. An intracellular trapping mechanism is thus provided. Therefore, the total flux of 2-DOG into the cell is a resultant of both transport and hexokinase action, and the measurement of total 2-DOG incorporation is a valid measurement of transport only if 2-DOG is phosphorylated as rapidly as it enters the cell. Evidence is presented here that this is not necessarily the case, significant levels of free intracellular 2-DOG approaching external concentrations were found in untransformed and transformed mouse 3T3 cells even at early times during uptake. Differences in total intracellular 2-DOG between untransformed and transformed cells were accounted for entirely by 2-deoxyglucose phosphate. Thus, it appears the apparent increase of 2-DOG uptake accompanying transformation in these cell lines is not due to an effect on the transport process, but on enhanced phosphorylation, which is a reflection of an alteration in the regulation of glycolysis. The ambiguity introduced by phosphorylation can be oviated by the use of an analog that cannot be phosphorylated, such as 3-O-methyl-D-glucose. The rate of transport and efflux of this sugar was not found to be different in untransformed versus transformed 3T3 cells. Moreover, deficiencies of this analog as a substrate for the glucose transport system are pointed out.  相似文献   

6.
The objective of this investigation was to determine whether the rate of glucose uptake by mouse 3T3 cells was a primary determinant of growth rate. The experimental approach was to control the rate of glucose uptake into intracellular pools by supplying this sugar at varying concentration in minimal Eagle's medium with dialyzed serum in the absence and presence of 6-deoxy-D-glucose, a metabolically inert homomorphic analog of D-glucose that competitively inhibits the uptake of D-glucose. Total hexose (D-glucose and 6-deoxy-D-glucose) concentration was maintained at the physiological concentration of 5.5 mM, in order to maintain saturation and maximum activity of the D-glucose transport system; thus the flux of D-glucose into the cell was controlled by adjusting its concentration relative to its competing nonmetabolizable analog. It was found that even when the concentration of D-glucose was reduced to 0.7 mM, one eighth of the “normal” level of 5.5 mM. and 6-deoxy-D-glucose was present in sevenfold excess (4.8 mM), conditions under which glucose uptake was reduced to 20% of that shown by cells in the presence of 5.5 mM D-glucose, and intracellular pools of glucose and phosphorylated sugars derived from glucose were reduced to approximately 14% of normal, there was not a significant decrease in growth rate. These data support the view that the rate of glucose uptake is not a primary determinant of growth rate under the usual conditions of cell culture.  相似文献   

7.
Summary A number of 2-deoxy-d-glucose (2-DOG) resistant mutants exhibiting resistance to glucose repression were isolated from variousSaccharomyces yeast strains. Most of the mutants isolated were observed to have improved maltose uptake ability in the presence of glucose. Fermentation studies indicated that maltose was taken up at a faster rate and glucose taken up at a slower rate in the mutant strains compared to the parental strains, when these sugars were fermented together. When these sugars were fermented separately, only the 2-DOG resistant mutant obtained fromSaccharomyces cerevisiae strain 1190 exhibited alterations in glucose and maltose uptake compared to the parental strain. Kinetic analysis of sugar transport employing radiolabelled glucose and maltose indicated that both glucose and maltose were transported with higher rates in the mutant strain. These results suggested that the high affinity glucose transport system was regulated by glucose repression in the parental strain but was derepressed in the mutant.  相似文献   

8.
Transport regulation by different metabolizable and nonmetabolizable sugars was studied in human fibroblasts. Sugars were classed as glucose-like (D-mannose, 3-0-methyl-D-glucose, thio-D-glucose, and D-allose) and starvation-like (D-galactose, D-fructose, L-glucose, D-xylose, 6-deoxy-D-glucose and 2-deoxy-D-glucose) based on their competence in curbing glucose starvation enhanced transport. No significant correlation existed between the ability of a sugar to curb hexose transport and the KI of that sugar in inhibiting hexose transport. Independence of the transport curb from glucose metabolism was observed since nonmetabolizable analogs of D-glucose when substituted for D-glucose in the culture medium effected glucose [i.e. 3-0-methyl-D-glucose (3-OMG)] and starvation-like (i.e. 6- and 2-deoxy-D-glucose) effects. The KI of inhibition pf 2-deoxy-D-glucose transport for 3-OMG was 8.5 mM, similar to those obtained for 6-deoxyglucose and 2-deoxyglucose on 2-deoxyglycose transport (7.5 and 3.5 mM, respectively) and on 3-0-methylglucose transport (3.5 and 2.5 mM, respectively). An equimolar mixture of D-glucose and 3-OMG (5.55 mM each) was more effective than 11.1 mM D-glucose or 3-OMG alone in curbing hexose transport or reversing hexose starvation induced increases in transport. The effect of 3-OMG may be independent of glucose metabolism but it is possible that 3-OMG structurally mimics a metabolite of glucose that may interact with intracellular regulators of carrier degradation and or expression.  相似文献   

9.
Purified colony-stimulating factor (CSF-1) (or macrophage colony stimulating factor [M-CSF]) stimulated the glucose uptake of murine bone marrow-derived macrophages (BMM) and resident peritoneal macrophages (RPM) as measured by 3H-2-deoxyglucose (2-DOG) uptake. Similar concentrations of CSF-1 stimulated the 2-DOG uptake and DNA synthesis in BMM. Other purified hemopoietic growth factors, granulocyte-macrophage CSF (GM-CSF) and interleukin-3 (IL-3) (or multi-CSF), and the tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), even though differing in their mitogenic capabilities on BMM, were also stimulators of 2-DOG uptake in BMM and RPM. The nonmitogenic agents, lipopolysaccharide (LPS) and concanavalin A (Con A), were also active. The inhibition by cytochalasin B and by high concentrations of D-glucose suggest that the basal and stimulated 2-DOG uptake occurred via a carrier-facilitated D-glucose transport system. The responses of the two macrophage populations to the hemopoietic growth factors and to the other agents were quite similar, suggesting that events that are important for the induction of DNA synthesis are not tightly coupled to the earlier rise in glucose uptake. For the BMM, the ability of a particular agent to stimulate glucose uptake did not parallel its ability to promote cell survival. However, stimulation of glucose uptake could still be a necessary but insufficient early macrophage response for cell survival and subsequent DNA synthesis.  相似文献   

10.
6-Deoxy-D-glucose and D-xylose, structural homomorphs of D-glucose that lack a 6-hydroxyl group or a 6-hydroxymethyl group, respectively, are transported efficiently by mouse 3T3 cells, with good affinity and high specificity for the D-glucose transport system. Since these analogs lack the 6-hydroxyl group, which is the site of phosphorylation of glucose by hexokinase, they are taken up and are recoverable from cells in an unchanged state. Thus, 6-deoxy-D-glucose and D-xylose offer advantages as transport substrates over 2-deoxy-D-glucose, which is phosphorylated by intercellular hexokinases, and 3-O-methyl-D-glucose, which shows a lower specificity for the D-glucose transport system.  相似文献   

11.
Transport rates of the nonphosphorylated D-glucose analogs 6-deoxy-D-glucose and D-xylose were measured in quiescent and serum-stimulated cultures of mouse 3T3 cells, in SV40-transformed 3T3 cells (SV101), and in a density revertant cell line derived from SV101 (Fl-SV101). Initial rates of both entry and exit of 6-deoxy-D-glucose and D-xylose were more than threefold higher in serum-stimulated 3T3 and in SV101 cells than they were in quiescent 3T3 cells, but transport rates were not higher in the transformed cells (SV101) than they were in serum-stimulated 3T3. Confluent cultures of Fl-SV101 showed lower rates of transport than serum-stimulated Fl-SV101, but not as low as quiescent 3T3 cells. These data confirm previous findings of others with other analogs that glucose transport is one of the cell functions that is depressed when 3T3 cells enter the quiescent G0 state, but emphasize that SV40-transformed 3T3 cells do not show higher activity of the D-glucose carrier than do actively growing 3T3 cells. Thus, enhanced glucose transport appears not to be a specific consequence of transformation, but a reflection of the active growth state of the cell.  相似文献   

12.
The hexose transport system of undifferentiated L6 rat myoblasts was investigated. 2-Deoxy-D-glucose (2-DOG) and 2-deoxy-2-fluoro-D-glucose (2FG) were used as analogues to investigate the rate-limiting step of hexose uptake into the cell. Virtually all of the 2-DOG or 2FG taken up into the cell was found to be in the phosphorylated form. No significant pool of intracellular free sugar could be detected. This demonstrates that hexose transport, not phosphorylation, is the rate-limiting step. The inhibitory effect of various glucose analogues on 2-DOG and 3-O-methyl-D-glucose (3-OMG) uptake revealed that these two sugars may be taken up into the cell by different carriers. In addition, kinetics analysis of the transport of both sugars also indicates that two hexose transport systems may be present in L6 cells. 2-DOG is transported by high and low affinity transport systems (Km 0.6 mM and 2.9 mM, respectively), whereas 3-OMG is transported by a low affinity system (Km 3.5 mM). Treatment of cells with ionophores or energy uncouplers results in inactivation of the high affinity system, but not the low affinity system.  相似文献   

13.
The mechanisms of the requirement of glucose for steroidogenesis were investigated by monitoring the uptake of the glucose analogue 2-deoxy-D-glucose by rat testis and tumour Leydig cells. The characteristics of glucose transport in both of these cell types were found to resemble those of the facilitated-diffusion systems for glucose found in most other mammalian cells. The Leydig cells took up 2-deoxy-D-glucose but not L-glucose, and the uptake was inhibited by both cytochalasin B and forskolin. In the presence of luteinizing hormone, the rate of 2-deoxy-D-glucose uptake by both cell types was increased by approx. 50%. In addition to D-glucose, it was shown that the Leydig cells could also utilize 3-hydroxybutyrate or glutamine to maintain steroidogenesis.  相似文献   

14.
The effects of 2-deoxyglucose (2-DOG), -methylglucoside (-MG), and glucosamine (GA) on aflatoxin production by Aspergillus parasiticus were studied using conidia-initiated and replacement cultures. In conidia-initiated, 2-DOG, -MG, and GA supported varying amounts of growth when employed as sole carbon sources. In both conidia-initiated and replacement cultures, 2-DOG, but not -MG nor GA, as sole carbon sources support toxin formation. None of the compounds inhibited aflatoxin production when used in combination with glucose. It appears that neither 2-DOG, -MG, nor GA can be considered nonmetabolizable analogs of glucose in A. parasiticus.Abbreviations YES yeast extract sucrose - PMS peptone-mineral salts - 2-DOG L-deoxyglucose - -MG -methylglucoside - GA glucosamine  相似文献   

15.
Protoplasts isolated from beetroot tissue took up glucose preferentially whereas sucrose was transported more slowly. The 14C-label from [14C]glucose and [14C]sucrose taken up by the cells could be detected rapidly in phosphate esters and, after feeding of [14C]glucose was found also in sucrose. The temperature-dependent uptake process (activation energy EA about 50 kJ · mol–1) seems to be carrier mediated as indicated by its substrate saturation and, for glucose, by competition experiments which revealed positions C1, C5 and C6 of the D-glucose molecule as important for effective uptake. The apparent Km(20° C) for glucose (3-O-methylglucose) was about 1 mM whereas for sucrose a significantly lower apparent affinity was determined (Km about 10 mM). When higher concentrations of glucose (5 mM) or sucrose (20 mM) were administered, the uptake process followed first-order kinetics. Carrier-mediated transport was inhibited by N,N-dicyclohexylcarbodiimide, Na-orthovanadate, p–chloromercuribenzenesulfonic acid, and by uncouplers and ionophores. The uptake system exhibited a distinct pH optimum at pH 5.0. The results indicate that generation of a proton gradient is a prerequisite for sugar uptake across the plasma membrane. Protoplasts from the bundle regions in the hypocotyl take up glucose at higher rates than those derived from bundle-free regions. The results favour the idea that apoplastic transport of assimilates en route of unloading might be restricted to distinct areas within the storage organ (i.e. the bundle region) whereas distribution in the storage parenchyma is symplastic.Abbreviations CCCP Carbonylcyanide m–chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DOG deoxyglucose - Mes 2-(N-morpholino)ethanesulfonic acid - 3-OMG 3-O-methylglucose - PCMBS p–chloromercuribenzenesulfonic acid - SDS Sodium dodecyl sulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

16.
The yeast Rhodotorula glutinis (Rhodosporidium toruloides) is capable of accumulative transport of a wide variety of monosaccharides. Initial velocity studies of the uptake of 2-deoxy-D-glucose were consistent with the presence of at least two carriers for this sugar in the Rhodotorula plasma membrane. Non-linear regression analysis of the data returned maximum velocities of 0.8 +/- 0.2 and 2.0 +/- 0.2 nmol/min per mg (wet weight) and Km values of 18 +/- 4 and 120 +/- 20 microM, respectively, for the two carriers. Kinetic studies of D-glucose transport also revealed two carriers with maximum velocities of 1.1 +/- 0.4 and 2.4 +/- 0.4 nmol/min per mg (wet weight) and Km values of 12 +/- 3 and 55 +/- 12 microM. As expected, 2-deoxy-D-glucose was a competitive inhibitor of D-glucose transport. Ki values for the inhibition were 16 +/- 8 and 110 +/- 40 microM. These Ki values were in good agreement with the Km values for 2-deoxy-D-glucose transport. D-Xylose, the 5-deoxymethyl analog of D-glucose, appears to utilize the D-glucose/2-deoxy-D-glucose carriers. This pentose was observed to be a competitive inhibitor of D-glucose (Ki values = 0.14 +/- 0.06 and 5.6 +/- 1.6 mM) and 2-deoxy-D-glucose (Ki values = 0.15 +/- 0.07 and 4.6 +/- 1.2 mM) transport.  相似文献   

17.
Summary The non-metabolizable and toxic glucose analogue 2-deoxy-d-glucose (2-DOG) has been widely employed to screen for regulatory mutants which lack catabolite repression. A number of yeast mutants resistant to 2-DOG have recently been isolated in this laboratory. One such mutant, derived from aSaccharomyces cerevisiae haploid strain, was demonstrated to be derepressed for maltose, galactose and sucrose uptake. Furthermore, kinetic analysis of glucose transport suggested that the high affinity glucose transport system was also derepressed in the mutant strain. In addition, the mutant had an increased intracellular concentration of trehalose relative to the parental strain. These results indicate that the 2-DOG resistant mutant is defective in general glucose repression.  相似文献   

18.
The stimulatory effects of follicle-stimulating hormone (FSH), insulin, and insulin-like growth factor I (IGF-I) on lactate production and hexose uptake by Sertoli cells from immature rats were studied. The time-courses and the maximal stimulatory effects of FSH, insulin, and IGF-I on lactate production were virtually identical. When Sertoli cells were incubated in the presence of FSH in combination with insulin or IGF-I (submaximal doses), additive but no pronounced synergistic effects were observed. The stimulatory effects of FSH and insulin were not dependent on the presence of extracellular calcium. 2-Deoxy-D-glucose (2-DOG), an analogue of D-glucose, was used to investigate the hexose transport system of Sertoli cells. Uptake of 2-DOG was linear in time and virtually all of the intracellular 2-DOG was phosphorylated up to 30 min of incubation; 2-DOG uptake was inhibited by cytochalasin B, but not by cytochalasin E. D-glucose, but not D-galactose, appeared to be an effective competitor of 2-DOG uptake. The Km of 2-DOG uptake was not influenced by FSH, insulin, and IGF-I. FSH had no effect on the Vmax of 2-DOG uptake, whereas insulin and IGF-I caused a 30% stimulation of the Vmax. It is concluded that FSH, insulin, and IGF-I stimulate lactate production by cultured Sertoli cells, but that only insulin and IGF-I stimulate hexose transport. The insulin-like effect of FSH on Sertoli cells may principally involve stimulation of glycolytic enzyme activities.  相似文献   

19.
2-Deoxy-d -glucose (2 DG) entered synaptosomes (from rat brain) by a high-affinity, Na+-independent glucose transport system with a Km, of 0.24 mM. 3-O-methyl-glucose, D-glucose, and phloretin were competitive inhibitors of 2-DG transport with Ki's of 7 mM, 64 μM, and 0·75 μM, respectively. Insulin was without effect. 2-DG uptake was also saturable at high substrate concentrations with an apparent low affinity Km, of 75 mM, where the Kl, for glucose was 17.5 mM. We are not certain whether the rate-limiting step for the low-affinity uptake system is attributable to transport or phosphorylation. However, the high-affinity glucose transport system probably is a special property of neuronal cell membranes and could be useful in helping to distinguish separated neurons from glial cells.  相似文献   

20.
The fluorescent glucose analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), was used to measure rates of glucose uptake by single Escherichia coli cells. When cell populations were exposed to the glucose analog, 2-NBDG was actively transported and accumulated in single cells to a steady-state level that depended upon its extracellular concentration, the glucose transport capacity of the cells, and the intracellular degradation rate. The dependence upon substrate concentration could be described according to Michaelis-Menten kinetics with apparent saturation constant KM = 1.75 microM, and maximum 2-NBDG uptake rate= 197 molecules/cell-second. Specificity of glucose transporters to the analog was confirmed by inhibition of uptake of 2-NBDG by D-glucose, 3-o-methyl glucose, and D-glucosamine, and lack of inhibition by L-glucose. Inhibition of 2-NBDG uptake by D-glucose was competitive in nature. The assay for 2-NBDG uptake is extremely sensitive such that the presence of even trace amounts of D-glucose in the culture medium (approximately 0.2 microM) is detectable. The rates of single-cell analog uptake were found to increase proportionally with cell size as measured by microscopy or single-cell light scattering intensity. The assay was used to identify and isolate mutant cells with altered glucose uptake characteristics. A mathematical model was developed to provide a theoretical basis for estimating single-cell glucose uptake rates from single-cell 2-NBDG uptake rates. The assay provides a novel means of estimating the instantaneous rates of nutrient depletion in the growth environment during a batch cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号