首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Previous research has confirmed that cobalt ion and dimethylbenzimidazole (DMBI) are the precursors of vitamin B12 biosynthesis, and porphobilinogen synthase (PBG synthase) is a zinc-requiring enzyme. In this paper, the effects of Zn2+, Co2+ and DMBI on vitamin B12 production by Pseudomonas denitrificans in shake flasks were studied. Present experimental results demonstrated that the addition of the above mentioned three components to the fermentation medium could significantly stimulate the biosynthesis of vitamin B12. The concentrations of zinc sulphate, cobaltous chloride and DMBI in the fermentation medium were further optimized with rotatable orthogonal central composite design and statistical analysis by Data Processing System (DPS) software. As a result, vitamin B12 production was increased from 69.36 ± 0.66 to 78.23 ± 0.92 μg/ml.  相似文献   

2.
Summary To improve the microbial production of vitamin B12, we applied a hollow-fiber module to cultivation of the vitamin producers. By the removal of growth inhibitors, very high concentrations of cells and vitamin B12 were obtained comparing to the batch culture. We obtained 227 g dry cells/l and 52 mg vitamin B12/l with Propionibacterium shermanii and 33.4 g dry cell/l and 92.5 mg vitamin B12/l with Butyribacterium methylotrophicum by this cultivation.  相似文献   

3.
The edible purple laver, Porphyra yezoensis, contained 51.49±1.51 μg of vitamin B12 compounds per 100 g dry weight of the laver (mean±SEM, n=4). A vitamin B12 compound was purified from the lyophilized purple laver and partially characterized. The silica gel 60 TLC and reversed-phase HPLC patterns of the purified pink-colored compound were identical to those of authentic vitamin B12, but not to those of vitamin B12 analogues inactive for humans.  相似文献   

4.
As vitamin B12 is only synthesized by bacteria, ruminant products, especially dairy products, are excellent sources of this vitamin. This study aims to identify if diet and cow characteristics could affect vitamin B12 concentration in milk of dairy cows. Information on 1484 first, 1093 second and 1763 third and greater parity Holstein cows in 100 herds was collected during three consecutive milkings. During the first morning milking, all dietary ingredients given to cows were sampled and quantities offered were recorded throughout the day. Nutrient composition of ingredients was obtained by wet chemistry to reconstitute nutrient composition of the ration. Milk samples were taken with in-line milk meters during the evening milking of the 1st day and the morning milking of the 2nd day and were analyzed for vitamin B12 concentration. Milk yields were recorded and milk components were separately analyzed for each milking. Daily vitamin B12 concentration in milk was obtained using morning and evening vitamin B12 concentrations weighted with respective milk yield, then divided by daily yield. To decrease the number of interdependent variables to include in the multivariable model, a principal component analysis was carried out. Daily milk concentration of vitamin B12 averaged 3809±80 pg/ml, 4178±79 pg/ml and 4399±77 pg/ml for first, second and third, and greater lactation cows. Out of 11 principal components, six were significantly related to daily milk concentration of vitamin B12 when entered in the multivariable model. Results suggested that vitamin B12 concentration in milk was positively related to percentage of fiber and negatively related to starch as well as energy of the diet. Negative relationships were noted between vitamin B12 concentration in milk and milk yield as well as milk lactose concentration and positive relationships were observed between vitamin B12 concentration in milk and milk fat as well as protein concentrations. The percentages of chopped mixed silage and commercial energy supplement in the diet as well as cow BW were positively related to vitamin B12 in milk and percentages of baled mixed silage, corn and commercial protein supplement in the ration were negatively related to vitamin B12 concentration in milk. The pseudo-R2 of the model was low (52%) suggesting that diet and cow characteristics have moderate impact on vitamin B12 concentration in milk. Moreover, when entering solely the principal component related to milk production in the model, the pseudo-R2 was 46%. In conclusion, it suggests that studied diet characteristics have a marginal impact on vitamin B12 concentration in milk variation.  相似文献   

5.
Vitamin-requiring marine algae, Cyclotella nana, Monochrysis lutheri, and Amphidinium carterae, were grown in batch culture with limiting concentrations of vitamin B12, thiamine, and biotin, respectively. Cell numbers, average cell volumes, biomasses, 11CO2 uptake rates, and chlorophyll a contents were determined daily. Maximum 14CO2 uptake rates in most vitamin concentrations were obtained at 2 days with C. nana and M. lutheri and at 4 days with A. carterae after starved cultures were exposed to the vitamin. Radiocarbon uptake rates approximately reflect biomass increases. Cell numbers were proportional to vitamin concentrations when cells were incubated for 2 to 3 more days. Cell sizes varied depending on time of incubation. Chlorophyll a content did not always reflect vitamin concentrations. Maximum carbon assimilation rates (Km) and saturation constants (Ks) determined from 14CO2, uptake rates in different vitamin concentrations during early incubation were higher than when determined from cell number in log phase growth. Dissolved vitamin B12, thiamine, and biotin in many samples of seawaters were in the ranges which influence the growth rate, cell size, and chlorophyll a content of C. nana, M. lutheri, and A. carterae, respectively, in laboratory studies. The effects of vitamins on these algae in situ may be similar.  相似文献   

6.
The carboxysome content of chemostat grown Synechococcus leopoliensis (Racib.) Komarek increases under inorganic carbon limitation. At growth rates of ca. 85%μmax the carboxysome content (±SE) was 0.57 ± 0.09 carboxysomes·cell section?1. Under severe carbon limitation (ca. 13%μmax) this increased to 3.4 · 0.3 carboxysomes·cell section?1. Corresponding to this change is a three order of magnitude decrease in the half-saturation constant of photosynthesis for dissolved inorganic carbon. Nitrogen and phosphorus limitation had no effect on carboxysome content or the kinetics of photosynthesis with respect to inorganic carbon. These results are discussed in light of the apparent lack of photorespiration in these organisms.  相似文献   

7.
An extraction procedure was developed for determining vitamin B12, thiamine, and biotin contents of marine phytoplankton. Phytoplankters were collected either by centrifugation or by retention on a glass fiber filter, then heated at 100 C for I hr in 100 ml of vitamin-free seawater acidified to pH 3.5 with HCl. The extract, after debris removal, was filter-sterilized and analyzed, for vitamin B12, thiamine, and biotin with standard vitamin assay procedures. The vitamin contents of haeodactylum tricornutum, Skeletonema costatum, Stephanopyxis turris, and occolithus liuxleyi were determined during growth in batch cultures. P. tricornutum (non-vitamin requirer) growing in aerated cultures contained 0.29–0.96 ng B12, 5–15 ng thiamine, and 0.45–1.70 ng biotin/mg C. Under similar conditions S. costatum (B12-requirer) contained about 0.06 ng B12, 5–36 ng thiamine, and 0.16–2.10 ng biotin/mg C. The concentrations of vitamin were generally similar during some portion of the growth curve, eg, logarithmic growth. The vitamin B12, content of S. costatum growing under nonaerated conditions decreased when medium B12, was reduced. The biotin content did not change when medium B12 was decreased. The thiamine content per unit weight of C. huxleyi (thiamine-requirer) growing with either 10 or 120 ng/liter thiamine decreased under both medium concentrations, indicating no net synthesis of the vitamin.  相似文献   

8.
SYNOPSIS. Vitamin B12, biotin and thiamine requirements of 10 strains of Volvulina steinii and 1 strain of V. pringsheimii were studied. Vitamin B12 is required for growth of both species, thiamine stimulates growth slightly, and biotin has no discernible effect on growth. The minimum concentration of vitamin B12 giving a growth response in V. steinii, strain SC-2, was 10?8 g/ml, and maximum growth response was obtained with 1.1 × 10?7 g/ml. An organic carbon source is required for growth of V. steinii but not of V. pringsheimii. Growth of V. steinii, strain SC-2, occurred in 20 of 21 carbon sources tested. Optimal growth with each carbon source was largely dependent upon pH. Except for pyruvate, acetate, and ethanol, carbon source utilization was light-dependent, and growth in ethanol was reduced in the dark. Isocitric lyase activity was detected in V. steinii grown on acetate medium.  相似文献   

9.
The edible blue-green alga (cyanobacterium), Suizenji-nori, contained 143.8±22.4 μg of vitamin B12 per 100 g dry weight of the alga (mean±SE, n=4). A corrinoid compound was purified from the dried Suizenji-nori, and partially characterized. The silica gel 60 TLC and reversed-phase HPLC patterns of the purified corrinoid compound were not identical to those of true vitamin B12, but to those of pseudovitamin B12 which is inactive for humans.  相似文献   

10.
Porphyra yezoensis (Susabinori, an edible purple laver), which was cultured aseptically for 12 weeks and then lyophilized, contained 50±2 μg/g of vitamin B12 per 100 g dry weight. Coenzyme forms of vitamin B12 (about 60% of the total vitamin B12) were found in the cultured purple laver aseptically, which may have the ability to biosynthesize the coenzymes.  相似文献   

11.
Diatoms are responsible for a large proportion of global carbon fixation, with the possibility that they may fix more carbon under future levels of high CO2. To determine how increased CO2 concentrations impact the physiology of the diatom Thalassiosira pseudonana Hasle et Heimdal, nitrate‐limited chemostats were used to acclimate cells to a recent past (333 ± 6 μatm) and two projected future concentrations (476 ± 18 μatm, 816 ± 35 μatm) of CO2. Samples were harvested under steady‐state growth conditions after either an abrupt (15–16 generations) or a longer acclimation process (33–57 generations) to increased CO2 concentrations. The use of un‐bubbled chemostat cultures allowed us to calculate the uptake ratio of dissolved inorganic carbon relative to dissolved inorganic nitrogen (DIC:DIN), which was strongly correlated with fCO2 in the shorter acclimations but not in the longer acclimations. Both CO2 treatment and acclimation time significantly affected the DIC:DIN uptake ratio. Chlorophyll a per cell decreased under elevated CO2 and the rates of photosynthesis and respiration decreased significantly under higher levels of CO2. These results suggest that T. pseudonana shifts carbon and energy fluxes in response to high CO2 and that acclimation time has a strong effect on the physiological response.  相似文献   

12.
To study how much the side chains of the corrin ring of vitamin B12 are involved in the physiological roles of the vitamin, five vitamin B12 analogues (cyanocobalamin-b-monocarboxylate, cyanocobalamin-d-monocarboxylate, cyanocobalamin-e-monocarboxylate, cyano-13-epicobalamin, and cyanocobalamin(c-lactam)) with alternations in the side chains were synthesized chemically and then administered orally and intravenously to vitamin B12-deficient rats. Male rats fed a vitamin B12-deficient diet for 11 wk developed a severe vitamin B12 deficiency with a high urinary methylmalonate excretion (223.8 ± 136.2 μmol/d) and ~97% (1.2±0.7ng/g tissue) lower hepatic vitamin B12 content. Oral and intravenous administration of cyanocobalamin-b-,-d-, and -e-monocarboxylates and cyano-13-epicobalamin could not improve the severe vitamin B12-deficient status of the rats, indicating that the b-, d-, and e-propionamide side chains of the corrin ring of vitamin B12 are important in the absorption, transport, and function of the vitamin in rats. Urinary methylmalonate excretion of the rats that were intravenously administered cyanocobalamin(c-lactam) increased twice as much as those of the other analogue-supplemented rats, suggesting that cyanocobalamin(c-lactam) act as a powerful Cbl-antagonist. The results also indicate that mammalian cells do not contain a system for synthesizing complete vitamin B12 from these analogues.  相似文献   

13.
Strain improvement by genetic manipulation or optimization of fermentation conditions for overproduction of vitamin B12 has a drawback due to feed back inhibition. To resist the feed back inhibition by analogues of vitamin B12 in Propionibacterium freudenrechii subsps. shermanii (OLP-5), we have tested with microbially separated B12 analogues from three different strains. Microbial analogues were differentiated from commercially available vitamin B12 by high pressure liquid chromatography and spectrophotometric method. An analogue isolated from NRRL-B-4327 was shown to increase vitamin B12 concentration from 18.53 ± 0.15 to 31.67 ± 0.58 mg/l in OLP-5 strain. The presence of chemical analogue (ICH2 Co(DH)2 (H2Py)4) increased vitamin B12 production from 16.13 ± 0.15 to 18.53 ± 0.15 mg/l in OLP-5. These findings revealed that addition of B12 analogues in fermentation media have developed strain resistance to feed back inhibition by vitamin B12.  相似文献   

14.
The accumulation of biofilm by Acetobacterium sp. during continuous culture in an upflow anaerobic filter (UAF) growing on methanol-formate was the result of space velocity and inlet concentrations of substrate and Co+2. To achieve good development of biofilm, a space velocity of 0.38 h–1, inlet substrate concentrations of 125 mM of both methanol and formate, and Co+2 at 0.16 mM were required. Cell productivities in the effluent of the UAF-reactor were about 6-fold higher than in chemostat cultures (0.20 g l–1 h–1 for UAF and 0.035 g l–1 h–1 for chemostat) (previous studies), and the maximum vitamin B12 specific concentration was 5.1 mg g cell–1.  相似文献   

15.
The growth of Volvox globator L. and Volvox aureus Ehr. was measured at five temperatures and nine phosphorus concentrations. Growth rates were hyperbolically related to phosphorus concentrations for all temperatures using a Monod growth model. Optimal growth rates of 1.17 and 1.00 doublings d?1 were obtained at 20°C for V. globator and V. aureus, respectively. Neither species grew at 5°C. The half-saturation constants for growth, Ks, were lower for V. aureus. Phosphorus uptake by both species was also dependent upon external phosphorus concentrations and temperature. At all temperatures, maximum phosphorus uptake (μmol P colony?1 min?1) was similar for both species; however, the half-saturation constants for uptake showed significant differences between the species. Comparisons of the kinetic constants for growth and phosphorus uptake suggest that V. aureus will outcompete V. globator under phosphorus limited, conditions.  相似文献   

16.
《Mycoscience》2014,55(6):462-468
This study determined the vitamin B12 content in commercially available dried fruiting bodies of shiitake mushroom, Lentinula edodes. The vitamin B12 contents in dried donko-type fruiting bodies with closed caps (5.61 ± 3.90 μg/100 g dry weight), did not significantly differ from those of dried koushin-type fruiting bodies with open caps (4.23 ± 2.42 μg/100 g dry weight). The bed logs after fruiting of the mushroom also contained the vitamin B12 levels similar to that in the dried shiitake fruiting bodies. To determine whether the dried shiitake fruiting bodies and their bed logs contained vitamin B12 or other corrinoid compounds that are inactive in humans, we purified corrinoid compounds using an immunoaffinity column and identified vitamin B12 using vitamin B12-dependent Escherichia coli 215 bioautograms and liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) chromatograms. Dried shiitake fruiting bodies rarely contained an unnatural corrinoid vitamin B12[c-lactone] that is inactive in humans. Given that shiitake mushroom lacks the ability to synthesize vitamin B12 de novo, the vitamin B12 found in dried shiitake fruiting bodies must have been derived from the bed logs.  相似文献   

17.
Heterotrophic growth of the facultatively chemolithoautotrophic acidophile Thiobacillus acidophilus was studied in batch cultures and in carbon-limited chemostat cultures. The spectrum of carbon sources supporting heterotrophic growth in batch cultures was limited to a number of sugars and some other simple organic compounds. In addition to ammonium salts and urea, a number of amino acids could be used as nitrogen sources. Pyruvate served as a sole source of carbon and energy in chemostat cultures, but not in batch cultures. Apparently the low residual concentrations in the steady-state chemostat cultures prevented substrate inhibition that already was observed at 150 M pyruvate. Molar growth yields of T. acidophilus in heterotrophic chemostat cultures were low. The Y max and maintenance coefficient of T. acidophilus grown under glucose limitation were 69 g biomass · mol–1 and 0.10 mmol · g–1 · h–1, respectively. Neither the Y max nor the maintenance coefficient of glucose-limited chemostat cultures changed when the culture pH was increased from 3.0 to 4.3. This indicates that in T. acidophilus the maintenance of a large pH gradient is not a major energy-requiring process. Significant activities of ribulose-1,5-bisphosphate carboxylase were retained during heterotrophic growth on a variety of carbon sources, even under conditions of substrate excess. Also thiosulphate- and tetrathionate-oxidising activities were expressed under heterotrophic growth conditions.  相似文献   

18.
Vitamin B6 is synthesized by green Cytisus scoparius callus and green Phellodendron amurense callus cultured on Linsmaier and Skoog Agar-medium with 10?5m of ±-naphthaleneacetic acid (NAA) and 10?6 m of 6-benzyladenine (BA). Even when thiamine and inositol were omitted from this medium, the growth and vitamin B6 content of Cytisus scoparius callus did not change. Vitamin B6 contents of clones of the calluses varied and were unstable during long-term subculture. Clonal selection was repeated to obtain stable strains with high vitamin B6 content, and the vitamin B6 content of one strain of green Cytisus scoparius callus became 4-times higher than that of the green leaves.  相似文献   

19.
Euglena gracilis is shown to be able to grow on potato liquor as the main medium component leading to an interesting biotechnological product represented by paramylon – a β‐1,3‐glucan – and, at the same time, revaluating an otherwise annoying waste stream of the potato‐starch industry. Paramylon mass fractions of about 75% are obtained for biomass concentrations of 15 g/L during simple batch cultivation under heterotrophic conditions. Supplementation of the growth medium with glucose and the vitamins B1 and B12 are shown to improve growth rate as well as paramylon content. E. gracilis grows best at about 27.5°C without requiring pH control.  相似文献   

20.
Vitamin B12 was produced by probiotic Lactobacillus plantarum in submerged fermentation (96 h) with successive anaerobic and aerobic phases of 48 h each to give 13 ng vitamin B12/g dry biomass. Sodium cyanide-mediated cell lysis, followed by benzyl alcohol/chloroform/water extraction, improved the release of intracellular vitamin B12 for analysis. The presence of the K+ adduct of cyanocobalamin (m/z of 1394) was established using electron spray ionization–mass spectra; growth of a mutant of Escherichia coli in the presence of cyanocobalamin ascertained its bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号