首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural vegetation is often replaced by invasive alien plants on isolated oceanic islands. To determine how invasive alien plants affect insect diversity, we compared flying insects captured using Malaise traps among different vegetation types on a small island (Nishijima; 0.49 km2) in the oceanic Ogasawara (Bonin) Islands in the north‐western Pacific. The numbers of individuals and species, and the species composition of pollinators (bees), predators (wasps) and wood borers (cerambycid, mordellid and elaterid beetles) were compared among three vegetation types: Casuarina equisetifolia (an invasive alien tree) forest, natural forest and natural grassland (forest edge), during two seasons (June and October–November 2005). In traps, 80.0, 66.7, 87.5, 85.7 and 100.0% of bee, wasp, cerambycid, mordellid and elaterid beetle species, respectively, were endemic to the Ogasawara Islands. Grassland had the highest wasp and bee species richness, whereas natural forest had the highest species richness of wood‐boring beetles. The C. equisetifolia forest had the poorest species richness for most insect groups (except mordellid beetles). More individuals of most insect groups (except bees) were captured in June than in October–November. More individual bees and wasps were captured in grassland than in forests, whereas more individual mordellid and elaterid beetles were captured in forests than in grassland. The number of cerambycid individuals did not differ among vegetation types. Redundancy analysis suggested that most insect species preferred natural forest or grassland to alien forest. Therefore, further invasion of natural grassland and forest by the alien tree C. equisetifolia may negatively affect the endemic insect fauna of Nishijima.  相似文献   

2.
Seed-eating ants could have a significant effect on plant communities in deserts and semiarid zones. This effect is mediated through spatial and temporal foraging patterns, and seed selection within patches. Foraging patterns of harvester ants in South American deserts are almost unknown. The purpose of this work is to determine the temporal variations in the activity levels of Pogonomyrmex pronotalis and P. rastratus in the central Monte desert, and how these patterns may be related to abiotic factors, particularly to soil temperature. Activity levels and soil surface temperature were recorded at hourly intervals in five colonies for each species during the activity season (October, December, February, and April) in both 1999–2000 and 2000–2001 periods (except for October 1999). Surface ant activity starts in October, increases between December and February, and then ceases by April. Surface ant activity is diurnal throughout the season and usually has a unique peak during midday in October and April, and two peaks in the morning and the afternoon from December to February. The proportion of the activity budget devoted to nest's maintenance activity was similar for both species. Activity levels of foraging workers tended to be higher in P. pronotalis than in P. rastratus. P. pronotalis is active between 20 and 59°C, with higher levels of activity between 35 and 45°C, whereas P. rastratus shows activity between 18 and 58°C, with higher levels of activity between 30 and 40°C. Our results suggest that temporal changes in surface activity respond mainly to soil temperature fluctuations. However, at intermediate temperatures (those probably encompassing the thermal tolerance range of these ant species), temperature appears not to be a good predictor of daily and seasonal activity fluctuations.  相似文献   

3.
A 2‐year capture–mark–recapture study was conducted to estimate home ranges and weekly travel distance of Mastomys natalensis (Smith 1834) in an irrigated rice ecosystem and fallow fields. We found that adults have larger home ranges than subadults in fallow fields but not in rice fields, indicating that fallow fields are more suitable for breeding. Travel distances were larger in rice fields, especially in the transplanting stage, during which rice fields are flooded and provide less food, causing movements into neighbouring fallow fields that then temporarily experience higher population density. A decrease in travel distance was observed in rice fields during the maturity stage, which can be explained by higher food availability and a more suitable, nonflooded situation. Movement of M. natalensis in rice‐fallow mosaic landscapes thus seems to be driven by food availability and flooding status of the rice fields, which can be attributed to land use practices.  相似文献   

4.
1. 5054 adult beetles of 144 species were collected in a total of 696 1‐m2 collecting trays by knockdown insecticide fogging of 36 different oak trees in closed canopy woodland at Richmond Park, U.K., with three of the trees sampled on each of 12 dates, at 2‐ to 3‐week intervals, between April and October 1984. 2. In late spring (April/May), more individuals and species of beetles were collected in trays close to the trunks of trees than in trays more distant from the trunk. The reverse was the case in late September/October. Neither pattern prevailed in the intervening months. 3. Individual species exhibited a variety of patterns, with some species more abundant near the trunk, e.g. Leiopus nebulosus (L.), Strophosoma melanogrammum (Forster), Cylindronotus laevioctostriatus (Goeze), and Dromius agilis (Fabricius), and some less abundant near the trunk, e.g. Curculio pyrrhoceras (Marsham) and Rhynchaenus signifer (Creutzer). For Adalia decempunctata (L.), this preference changed with season. The observed species preferences for parts of a tree crown near or distant from the main trunk are discussed with reference to their known biologies. 4. No pronounced pattern of preference for north‐ or south‐facing aspects of trees in closed canopy woodland was observed, however populations of some species exhibited patterns of within‐tree distribution that correlate with compass angle; for one species, the ladybird Adalia decempunctata, this distribution changed with season and between colour morphs.  相似文献   

5.
Sarmiento  L.  Llambí  L.D.  Escalona  A.  Marquez  N. 《Plant Ecology》2003,166(1):145-156
Vegetation restoration during old-field succession was studied in an alpine Andean ecosystem (paramo). 123 plots with different fallow times (1 to 12 years) and 8 plots under natural vegetation were sampled. The results indicate that secondary succession in the paramo, like in other extreme environments, can be interpreted as an autosuccession: there are mainly changes in species relative abundance and little floristic relay (i.e. species turnover). Only a few herbaceous species, mostly introduced (e.g. Rumex acetosella), act as strict pioneers and strongly dominate the early stages. Then, they undergo a progressive decline, while native forbs (e.g. Lupinus meridanus) and grasses (e.g. Vulpia myuros) have their peak abundance in intermediate stages. The characteristic paramo life forms, sclerophilous shrubs (e.g. Baccharis prunifolia, Hypericum laricifolium) and giant rosettes (e.g. Espeletia schultzii), appear very early and gradually increase in abundance during succession, becoming dominant in the late stages and showing a dual behaviour, both as ruderal and stress tolerant species. The 1st axis of a Detrended Correspondence Analysis arranges the sites according to their fallow time. The 2nd and 3rd axes, associated with diverging pathways of regeneration, are correlated with topographic factors and physio-chemical soil characteristics. Hence, structural divergence between plots increases along succession as community composition starts to reflect the conditions of each site. We found evidence of a constant rate of succession during the first 12 years, contradicting the generally accepted hypothesis in the succession literature of a continous slow down up to the climax. Regeneration of vegetation physiognomy is relatively fast, questioning the prevailing idea of slow restoration in alpine ecosystems. However, 12 years of fallow are insufficient to attain the species richness of the natural paramo. Under the current trend of fallow length reduction observed in traditional potato cultivation in the Andes, our results raise doubts about the conservationist value of this management strategy.  相似文献   

6.
7.
The population fluctuation pattern of light-attracted beetles was studied from August 1992 to September 1998 (for 73 months) using ultraviolet light-traps set at three vertical levels in a tropical lowland dipterocarp forest in Sarawak, Malaysia. During our study, a general flowering occurred from April to July in 1996, and flowering on a small scale in 1997 and 1998. We analyzed the data for eight scarabaeid and six meloid species, some of which were anthophilous species. Various fluctuation patterns were observed among the beetle species in aspects of both seasonality and correlation with the supraannual phenological pattern. Three large chafer species (Scarabaeidae, Melolonthini) showed a clear seasonal fluctuation pattern with a peak once from March to May every year, the peak monthly catch greatly fluctuating annually. Other scarabaeid beetles did not show such a clear seasonal population pattern and hardly fluctuated annually. Populations of an anthophilous scarabaeid species, Parastasia bimaculata, a specific pollinator of Homalomena propinqua (Araceae), hardly fluctuated, probably because of its response to the constant flowering of its floral hosts. Monthly catches of an anthophilous scarabaeid, Anomala sp., and meloid beetles showed clear supraannual patterns in response to the general flowering and were significantly correlated with the flowering intensity with or without a lag of a month. The fluctuation pattern of meloids suggests a supraannual population fluctuation pattern of their hosts, i.e., megachilid/anthophorid bees. Received: November 9, 1999 / Accepted: February 8, 2000  相似文献   

8.
1 The defoliator beetle, Mesoplatys ochroptera Stål, is a serious pest of the legume tree sesbania (Sesbania sesban (L.) Merrill) in agroforestry systems in southern Africa. The survival of the overwintering stage of M. ochroptera and post‐ emergence longevity and fecundity of adults in sesbania fallows in eastern Zambia were quantified. 2 Only adult M. ochroptera survived during the winter (May–August) and the dry season (September–October) hidden under weeds, plant litter, in soil cracks and under rocks. During these periods, some beetles were occasionally found feeding on S. sesban, particularly in natural stands in humid areas. The adults were parasitized by the braconid Perilitus larvicida van Achterberg at a rate of 8.5–16.4%. The beetles stayed in the winter refuges for up to 210 days and emerged with the first heavy rains in October–November. The effective survival of beetles overwintering in an insectary was 18.1% in 1998 and 37.7% in 1999, and that of beetles overwintering in the field was estimated at 0.4 and 2.8% in 1998 and 1999, respectively. 3 The post‐emergence longevity and oviposition period of females in the insectary was 14–31 days and 5–29 days, respectively. The post‐emergence fecundity varied from 87 to 783. 4 It is concluded that the serious M. ochroptera infestation observed every year following the rains is due to synchronous emergence of overwintered resident adult populations and their high capacity for reproduction on many species of Sesbania. Recommendations for pest management in sesbania planted‐fallows are given.  相似文献   

9.
Pheromone trapping was used to monitor populations of the moth Helicoverpa armigera at five cotton‐based agro‐ecological sites – river, vegetable, orchard, forest and clean cultivation (areas under only cotton cultivation) – in the Bahawalpur district, Pakistan. Three locations at each site were chosen and three pheromone traps at each location were installed in cotton fields. Moth catches were recorded at 15–20 day intervals from 24 October 2004 to 19 December 2006. In 2004, the river sites showed the maximum trapped population of H. armigera (0.22/trap) followed by 0.165 per trap at the vegetable sites. Orchard, clean cultivation and forest sites had zero moth catches. In 2005, the river sites again showed the highest trapped population (0.57/trap), followed by clean cultivation (0.45/trap), vegetable (0.44/trap), orchard (0.40/trap) and forest (0.29/trap). The moths appeared during July to December and March to May. In 2006, sites showed non‐significant difference, with a population range of 0.47 to 0.97 moths per trap. On average, river sites peaked at 0.49 per trap, followed by vegetable (0.38), clean cultivation (0.47), orchard (0.35) and forest (0.25) sites. The peak was observed on 3 April 2006, and moths appeared during February to July and October to December. The minimum temperature in river, forest and clean cultivation sites; the maximum temperature in orchard sites; and the average temperature in river, orchard, forest and clean cultivation sites showed significant positive correlations with trapped moth populations. Relative humidity showed significant negative correlation with population at the orchard sites in 2005. All weather factors during 2004 and 2006 showed non‐significant correlations with the moth populations. No model was found to be best fit by multiple linear regression analysis; however, relative humidity, minimum temperature, maximum temperature, minimum temperature and maximum temperature contributed 8.40, 10.23, 2.43, 4.53 and 2.53% to the population fluctuation of the moth at river, vegetable, orchard, forest and clean cultivation sites, respectively.  相似文献   

10.
11.
The beneficial role of dung beetles (Coleoptera: Scarabaeidae) is well known. Potential risks to these beetles from the widespread use of insecticides against the desert locust, a significant plant pest in Africa, the Near East and South West Asia, have not been studied previously. Short‐term responses of dung beetles to carbamate carbosulfan (Marshal®, ultra low‐volume formulation, 100 g active ingredient ha?1) were assessed during desert locust control operations at five sites within two major biotopes: Acacia tortilis shrubland and cultivated wetland; on the Red Sea Coast of Sudan. The study took place during January–February 2004. At each site, fresh dung from Zebu cows was placed in areas targeted for desert locust control. Dung pats were placed in plots in two areas and left for 24 h, before and after insecticide application. Beetles were extracted by floatation. There was a significant decrease in abundance between the pre‐ and post‐spray period in treated areas for the Scarabaeinae species Onthophagus margaritifer (a dark colour morph). In contrast, it was found that Aphodius lucidus and beetles at the subfamily level of Aphodiinae increased in numbers after insecticide treatment. Mortality and sublethal impacts as well as a repellent effect of the insecticide may explain the decrease in Onthophagus margaritifer, while the increase in Aphodiinae beetles could be an indirect response to lower numbers of Scarabaeinae beetles in competing for the same resource. These organisms and the applied methodology may be useful for environmental monitoring of desert locust control, thus further studies are suggested. The assessment also revealed a marked difference between the two biotopes with high abundance and species richness of dung beetles in A. tortilis shrubland, while these measures were low in the cultivated wetland. Five new species of dung beetles for Sudan were found in this study.  相似文献   

12.
Abstract 1 Significant differences in the overwintering densities of predatory carabid and staphylinid beetles and spiders occurred on an ‘island’ grassy bank habitat composed of blocks of Agrostis stolonifera, Dactylis glomerata, Holcus lanatus and Lolium perenne, within and between winters during a 7‐year study. 2 Densities of the predators over the last three winters of the study were greater in the bank than in the boundary of the field in which the bank was situated. 3 Succession occurred in plots of L. perenne, with D. glomerata fully replacing this species. Plots of D. glomerata and H. lanatus remained virtually mono‐specific. 4 Over the period of study, the beetle bank maintained its role in providing overwintering habitat for polyphagous predators and carabid diversity has increased since the bank was first established. Beetle banks were therefore shown to contribute to conservation biodiversity in an agroecosystem.  相似文献   

13.
In assessing the effectiveness of ecological restoration actions, outcomes evaluation using a multi‐taxa approach can greatly contribute to a clearer understanding of their success/failure. Since comprehensive biodiversity assessments are rarely possible, choosing taxa groups that are indicative of the ecosystem's structural and functional recovery is of major importance. Our goal was to evaluate the success of revegetation actions performed in a Mediterranean limestone quarry, using plants and epigean beetles as indicators. We compared their abundance, diversity, and community composition between revegetated sites aged 5, 13, and 19 years and a natural reference. Total plant cover significantly increased with restoration age and quickly reached reference values. However, native woody species cover dropped in the oldest site, while non‐native species became dominant. The abundance of beetles was always lower in restoration sites when compared to the reference, increasing with age, although not significantly. The richness of both plant species and beetle families was lower in restoration sites and did not show any trend towards the reference values. Finally, using nonmetric multidimensional scaling, the composition of plant and beetle communities from restoration sites showed a clear separation from the reference. Restoration efforts have successfully modified post‐quarry sites, but considerable differences remain, probably largely related to the use of the non‐native species Pinus halepensis in restoration plans. P. halepensis high cover in restoration sites greatly affects the structure of the ecosystem, and most likely its functioning too, as well as related ecosystem services, causing divergence from the reference values and compromising restoration success.  相似文献   

14.
Mosquito collections with CDC light traps using dry ice and pigeon‐baited traps were carried out in south Moravia (Czech Republic) from April to October in 2007 and 2008 at two study sites. In 2007, 11 two‐day captures were carried out in two‐week intervals, and 1,490 female mosquitoes of nine species were caught. In 2008, 15 two‐day trappings of mosquitoes were carried out: 6,778 females of 22 species of mosquitoes were trapped. The results showed marked differences in abundance and species composition of mosquitoes between both study sites and between the trapping methods. In the floodplain forest ecosystem of the Soutok study area, Aedes vexans predominated. The species composition in the Nesyt study site was more varied and the most common species was Culex pipiens. At the latter study site, Anopheles hyrcanus (var. pseudopictus) and Uranotaenia unguiculata, mosquito species with largely southern Eurasian distribution, were repeatedly demonstrated. The largest capture of mosquitoes was in traps with CO2 placed at a height 1 m above the ground. The capture of mosquitoes in the pigeon‐baited traps as well as in the traps with CO2 placed in the canopy of trees was markedly lower in both study sites, with the predominant species being Culex pipiens.  相似文献   

15.
Maturation and timing of spawning in relation to temperature were studied in a local Atlantic herring Clupea harengus population inhabiting a small semi‐enclosed ecosystem (7 km2) separated from the larger outer fjord system by narrow sills on the west coast of Norway. Ambient temperatures varied annually up to 4° C during both the pre‐spawning and spawning periods from February to April, but without affecting the spawning time. Instead, the timing of spawning was found to be related to thermal stratification in response to spring warming, which occurred about the same time every year regardless of initial temperatures.  相似文献   

16.
Acanthamoeba rhysodes has been found to be a predominant intertidal benthic gymnamoeba in the mangrove ecosystem of Sundarbans of lower deltaic Bengal, facing the Bay. The sampling zones under study were the highest high tide regions, with characteristic mangrove litter-soil, inundated twice per month during the highest ebb of spring tide. Population abundance of this species, both in its trophic and cystic forms in the three distinct seasonal periods of pre-monsoon (March to June), monsoon (July to October), and post-monsoon (November to February) has been surveyed for over two years. These seasonal periods affect the physico-chemical parameters of the habitat substrata, including temperature, pH, and salinity. It has been found that the overall number of organisms per gram of soil attains peak value during the monsoon period. This value comes down in post-monsoon samples and is the least in pre-monsoon ones.  相似文献   

17.
The small hive beetle (Aethina tumida Murray) is an endemic scavenger in colonies of western honey bee subspecies (Apis mellifera L.) inhabiting sub-Saharan Africa where it only occasionally damages host colonies. Such damage is usually restricted to weakened/diseased colonies or is associated with after absconding events (all bees, including the queen, leave the hive) due to behavioral resistance mechanisms of its host. In sharp contrast, the beetle has proven deleterious to honey bee colonies in introduced ranges of the United States and Australia. With this review we synthesize the existing data in a manner that allows us to discuss the beetle’s natural history from an ecological perspective. A thorough exploration of beetle ecology allows us to 1) illuminate the unique symbiotic relationship it and its host share and understand how this relationship is fostered, 2) place this relationship in context with those of other arthropods inhabiting social insect colonies, 3) understand its natural reliance on honey bee colonies, 4) predict its spread outside its native range, and 5) predict its effects on non-African honey bees and non-target species. Here we present an amalgamation of information that will contribute to a more thorough and appropriate understanding of not only small hive beetles as symbionts, but of social insect symbionts in general. Received 4 April 2005; revised 15 October 2005; accepted 18 October 2005.  相似文献   

18.
1 In south‐western Australia, Eucalyptus globulus plantations are defoliated by a complex of beetle species, yet only scant information exists on these species under such climatic conditions. To improve management of these defoliating beetles in the region, canopy fogging and shoot clipping were conducted in plantations between 1999 and 2002 to identify and document the phenology of the beetle species present. 2 Eucalyptus weevil, Gonipterus scutellatus, was the most common and destructive defoliating beetle. Gonipterus scutellatus undergoes one principal generation each year with a lesser second generation or cohort in some seasons, which contrasts greatly with reports of two to four annual generations for the species in other regions. This limited reproduction by G. scutellatus may be due to the limited availability from summer onwards of new flushing foliage, which is essential for feeding and oviposition. 3 Several species of chrysomelid beetles were collected in plantations, but these were present in much lower numbers than G. scutellatus and were only a minor concern. However, some species, such as Chrysophtharta variicollis, appear to be capable of developing short‐lived outbreaks. 4 A diverse suite of natural enemies was fogged from plantations but they were significantly less abundant than defoliating beetles and are not likely to provide significant control of beetles. 5 In terms of managing these defoliating beetles, monitoring and control should focus on G. scutellatus, and be conducted during spring when most damage occurs.  相似文献   

19.
The effects of dung form and condition and of dung beetles on the emergence of seedlings from herbaceous seeds in sika deer dung were examined in a temperate grassland ecosystem dominated by Zoysia japonica and Hydrocotyle maritima. I conducted field experiments to compare seedling emergence between dung exposed to dung beetles and intact dung using both dung pellets and pats during a typical rainy month (June) and the hottest, drier month (August), when large numbers of seeds of the dominant species were present in the dung. The exposed dung was immediately attacked and broken up by dung beetles, whereas dung protected from the beetles remained intact. In June, at least 12 herbaceous species, including Z. japonica, H. maritima, Mazus pumilus, and Plantago asiatica, emerged from the dung, versus at least six species in August. Decomposition rates of the pellets in June and decomposition scores of the pats in June and August were positively correlated with the number of emerging seedlings, suggesting that the acceleration of decomposition by dung beetles can positively affect seed germination. In this system of interactions among sika deer, herbaceous plants, and dung beetles, sika deer dung prevented seeds from germinating, and beetles had an indirect positive effect on seedling emergence by accelerating decomposition of the dung, although the extent of the effect may depend on the dung type, plant species, and environmental factors.  相似文献   

20.
Fungi are among the most important aeroallergens. The aim of this study was to provide aeromycological baseline information about Zarqa area, Jordan, for the first time. During the entire survey and from 170 settle plate exposures, a total of 735 mould- and 274 yeast colony-forming units (CFU) were collected. mould colonies were assigned to 35 genera and 59 species. The highest abundance was attributed to Cladosporium with a percentage of 29.1% of the total colony count followed by Fusarium 20%, Alternaria 7.7%, Ulocladium 6.5% Penicillium 4.2% and then Aspergillus 3.6%. Cladosporium showed one peak in October while Aspergillus and Penicillium peaked in September. Fusarium peaked in May and August and Alternaria in March and July. However, Ulocladium showed almost the same abundance from March to June and then in September and December. A double peak in total colony count and fungal diversity was found, the first was in March and the second in November–December. Significant differences of total fungal colony counts favouring the 1500 hours collection time over that at 1000 hours were found between November and January while no such significant differences were obtained between February and April. Our results also indicated differences in species composition between the two periods in different months. Spores of the three abundant species, Cladosporium, Fusarium and Alternaria, might favour high release in the 1500 hours period during winter while having a similar incidence during the two periods in the spring months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号