首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins from potato cells which recognize fungal cell wall components of Phytophthora infestans were isolated after passage of a potato homogenate through an affinity column which contained bound fungal cell wall components. Bound potato proteins were eluted with NN′-diacetylchitobiose, and fractionated by SDS-polyaciylamide gel electrophoresis. Eluted proteins from cv. Yukijiro (R1-gene) and cv. Irish Cobbler (r-gene) had similar profiles and the same apparent Mr, 66, 58 and 41.5 kD and other proteins with lower molecular weight. Only the 41.5 kD and lower molecular weight proteins reaeted with polyclonal antibodies against the β-lectin from the R1 cultivar, Rishiri. The surfaces of protoplasts from cvs Yukijiro and Irish Cobbler also reacted with the antibodies to the lectin. Treatment of potato protoplasts with hyphal cell wall components of P. infestans caused cytoplasmic aggregation, a response characteristic of the hypersensitive reaction. Oligomers of N-acetyl glucosamine reduced the ability of fungal cell wall components to cause this cytoplasmic aggregation. These results suggest that binding between fungal cell wall eomponents and certain potato proteins is sensitive to N-acetylglucosamine, and may play a role in the hypersensitive reaction.  相似文献   

2.
3.
Changes in contents of starch and protein, and activities of enzymes involved in starch synthesis were studied during tubcrization of stolon tips of Solanum tuberosum L. cv. Irish Cobbler. Starch content and activities of phosphorylase and granule-bound starch synthctase based on fresh weight increased rapidly in the early phase (stage I, the stolon tips just before swelling; stage 2, the swelling tips; stage 3, young tubers of 0.2–0.5 cm diameter), and they all remained nearly unchanged in the later phase (stage 3 to stage 6, young tubers of 3.5 cm diameter). The content of soluble protein based on fresh weight remained unchanged. Activities of soluble starch snythetase and ADP-glucose pyrophosphorylase were not detected at stage 1 and 2, but increased at later stages. Endogenous levels of auxin, cytokinin and gibberellin were assayed for the materials at the corresponding developmental stages. Auxin content was high at stages 1 and 2, and lowered at later stages. Cytokinin content increased abruptly at stage 6. Gibberellin content was low at all stages. The internal conditions for starch deposition and tuberization in potato were discussed in regard to regulation of enzyme activities by growth regulators.  相似文献   

4.
The roots of date palm contain four cell wall‐bound phenolic acids identified as p‐hydroxybenzoic, p‐coumaric, ferulic and sinapic acids. The ferulic acid represents the major phenolic compound since it constitutes 48.2–55.8% of cell wall‐bound phenolic acids. All these phenolic acids were present in the resistant cultivar (BSTN) and the susceptible cultivar (JHL). However, the pre‐infection contents of p‐coumaric, ferulic and sinapic acids were greater in the resistant cultivar than in the susceptible one. For the contents of p‐hydroxybenzoic acid, there was no significant difference between the resistant cultivar and the susceptible cultivar. Similarly, the pre‐infection contents of lignin were approximately equal for both cultivars. Inoculation of the date palm roots by Fusarium oxysporum f. sp. albedinis induced important modifications to the contents of the cell wall‐bound phenolic compounds and lignin, which made it possible to distinguish between resistant and susceptible cultivars. The post‐infection contents of cell wall‐bound phenolic compounds underwent a rapid and intense increase with a maximum accumulation on the tenth day for p‐hydroxybenzoic acid (1.54 μmol/g), p‐coumaric acid (2.77 μmol/g) and ferulic acid (2.64 μmol/g) and on the fifteenth day for sinapic acid (1.85 μmol/g). The maximum contents accumulated in the resistant cultivar were greater than those in the susceptible cultivar, namely, 11 times for p‐hydroxybenzoic acid, 2.6 times for p‐coumaric acid, 1.8 times for ferulic acid and 12.3 times for sinapic acid. In the susceptible cultivar, p‐coumaric acid and ferulic acid contents also increased after inoculation although they did not reach the pre‐infection contents of the resistant cultivar. The contents of p‐hydroxybenzoic acid in the susceptible cultivar roots did not present post‐infection modification and those of sinapic acid decreased instead. The lignin contents increased in both cultivars with a maximum accumulation on the fifteenth day. However, the maximum contents accumulated in the resistant cultivar roots were 1.5 times greater than those of the susceptible cultivar. These results showed clear differences between the resistant BSTN and the susceptible JHL cultivars. The implication of cell wall‐bound phenolic compounds and lignin in the resistance of date palm to F. oxysporum f. sp. albedinis appears to be dependent on the speed and intensity of their accumulation with greater contents in the first stage of infection.  相似文献   

5.
In order to improve perimeter trapping for apple maggot fly behavioral control, we designed a set of experiments which aimed to reach a better understanding of the nature of the interaction between the natural host odor released by susceptible and low‐susceptibility apple cultivars, and an artificial host odor currently employed as a lure along with visual traps for apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), perimeter trapping programs. The response of apple maggot flies to lured and unlured visual traps deployed in different rectangular arrays of susceptible and low‐susceptibility apple cultivars (two central trees of a particular cultivar surrounded by four perimeter trees of the same or a different cultivar) was evaluated over 2 years under field conditions. In uniform blocks of susceptible (Tidemann Red, Jersey Mac) or low‐susceptibility (Marshall McIntosh) cultivars, lured traps recovered a significantly greater proportion of the total capture than unlured traps, irrespective of lure position (center or perimeter trees). Unlured traps on central susceptible apple cultivars (Red Astrachan, Gala, Fuji) recovered a significantly greater proportion of the total capture than unlured traps on surrounding low‐susceptibility cultivars (Marshall McIntosh, Paula Red, Red Delicious, and Golden Delicious). Placing the lures near traps on low‐susceptibility cultivar trees surrounding unlured traps on central susceptible cultivar trees reduced apple maggot fly visits to traps on central trees, but the latter still recovered a similar proportion of the total capture as lured traps on perimeter trees. By contrast, placing the lures near traps on central susceptible cultivar trees surrounded by unlured traps on low‐susceptibility cultivar trees allowed lured central traps to receive a significantly greater proportion of the total capture than unlured perimeter traps. We conclude that the synthetic and natural host odor of susceptible cultivars interact additively in attracting apple maggot flies to visual traps, and that, when given the choice, traps and lures should be deployed on preferred rather than on less preferred cultivar trees. Implications for trap deployment strategies for tephritid monitoring and control are discussed in the light of our findings.  相似文献   

6.
Danshen (Salvia miltiorrhiza Bunge, Lamiaceae) is a commonly used and highly valued Chinese medicinal herb grown widely in China. In the present work, we studied cultivar variations of Australian‐grown Danshen in order to select optimal cultivars for local herbal production. Root yields of seven cultivars, V1–V7, were monitored in a one‐year field trial, and bioactive markers, including cryptotanshinone, tanshinone I, tanshinone IIA, and salvianolic acid B, were quantitatively determined using a validated RP‐HPLC method. Significant variations were found in root yields, root production efficiencies, and contents of the bioactive marker compounds. Linear correlations were observed among the contents of three tanshinones but not among those of tanshinones and salvianolic acid B. Among the cultivars, V6 was the best cultivar for production of tanshinones, and V4 and V5 were best for production of salvianolic acid B. The findings indicate that it is possible to achieve optimal root yields, and high contents of tanshinones and salvianolic acid B by selecting specific Danshen cultivars.  相似文献   

7.
The genetically tractable microalga Chlamydomonas reinhardtii has many advantages as a model for renewable bioproducts and/or biofuels production. However, one limitation of C. reinhardtii is its relatively low‐lipid content compared with some other algal species. To overcome this limitation, we combined ethane methyl sulfonate mutagenesis with fluorescence‐activated cell sorting (FACS) of cells stained with the lipophilic stain Nile Red to isolate lipid hyperaccumulating mutants of C. reinhardtii. By manipulating the FACS gates, we sorted mutagenized cells with extremely high Nile Red fluorescence signals that were rarely detected in nonmutagenized populations. This strategy successfully isolated several putative lipid hyperaccumulating mutants exhibiting 23% to 58% (dry weight basis) higher fatty acid contents than their progenitor strains. Significantly, for most mutants, nitrogen starvation was not required to attain high‐lipid content nor was there a requirement for a deficiency in starch accumulation. Microscopy of Nile Red stained cells revealed that some mutants exhibit an increase in the number of lipid bodies, which correlated with TLC analysis of triacyglycerol content. Increased lipid content could also arise through increased biomass production. Collectively, our findings highlight the ability to enhance intracellular lipid accumulation in algae using random mutagenesis in conjunction with a robust FACS and lipid yield verification regime. Our lipid hyperaccumulating mutants could serve as a genetic resource for stacking additional desirable traits to further increase lipid production and for identifying genes contributing to lipid hyperaccumulation, without lengthy lipid‐induction periods.  相似文献   

8.
Triplicate groups of 30 channel catfish Ictalurus punctatus (initial weight: 76.13 ± 0.78 g) were stocked in indoor flow‐through fiberglass tanks and starved for 80 days. Body weight, morphometric parameters, body composition, amino acid and fatty acid changes in muscle and liver tissues were investigated to determine the effect of long‐term starvation on body weight and body composition of juvenile channel catfish. During the starvation period, body weight, condition factor (CF), viscerosomatic index (VSI), hepatosomatic index (HSI) and intraperitoneal fat ratio (IPR) declined (P < 0.05). In the whole body, both protein and lipid decreased while changes in the amount of fat were relatively rapid. Hepatic lipid and carbohydrate contents declined as starvation progressed, but crude protein and moisture contents increased (P < 0.05). In contrast, muscle crude protein showed a greater decline than did muscle lipids, and muscle glycogen remained relatively constant. During the 80‐day starvation period the ratio of total essential amino acids (EAA) to total non‐essential amino acids (NEAA) in muscle and liver (P < 0.05) increased. In muscle tissue, total mono‐unsaturated fatty acids (MUFA) and n‐6 fatty acids decreased, but total saturated fatty acids (SFA) and n‐3 fatty acids, as well as the ratio of n‐3 to n‐6 fatty acids increased (P < 0.05). However, in the liver, starvation resulted in the relative increase of total MUFA and reduction in n‐3 fatty acid contents as well as the ratio of n‐3 to n‐6 fatty acids (P < 0.05). Based on these observations, lipids and glycogen can be considered as more important sources of catabolizable energy in liver, whereas protein might be preferentially mobilized in muscle; lipids played a more important role as energy reserves on a relative basis in the whole body. Channel catfish preferentially utilized NEAA to EAA as an energy substrate and preferentially reserved EAA during starvation. Mobilization of fatty acids showed more variation in the muscle and liver during starvation.  相似文献   

9.
Invasive animals depend on finding a balanced nutritional intake to colonize, survive, and reproduce in new environments. This can be especially challenging during situations of fluctuating cold temperatures and food scarcity, but phenotypic plasticity may offer an adaptive advantage during these periods. We examined how lifespan, fecundity, pre‐oviposition periods, and body nutrient contents were affected by dietary protein and carbohydrate (P:C) ratios at variable low temperatures in two morphs (winter morphs WM and summer morphs SM) of an invasive fly, Drosophila suzukii. The experimental conditions simulated early spring after overwintering and autumn, crucial periods for survival. At lower temperatures, post‐overwintering WM lived longer on carbohydrate‐only diets and had higher fecundity on low‐protein diets, but there was no difference in lifespan or fecundity among diets for SM. As temperatures increased, low‐protein diets resulted in higher fecundity without compromising lifespan, while high‐protein diets reduced lifespan and fecundity for both WM and SM. Both SM and WM receiving high‐protein diets had lower sugar, lipid, and glycogen (but similar protein) body contents compared to flies receiving low‐protein and carbohydrate‐only diets. This suggests that flies spend energy excreting excess dietary protein, thereby affecting lifespan and fecundity. Despite having to recover from nutrient depletion after an overwintering period, WM exhibited longer lifespan and higher fecundity than SM in favorable diets and temperatures. WM exposed to favorable low‐protein diet had higher body sugar, lipid, and protein body contents than SM, which is possibly linked to better performance. Although protein is essential for oogenesis, WM and SM flies receiving low‐protein diets did not have shorter pre‐oviposition periods compared to flies on carbohydrate‐only diets. Finding adequate carbohydrate sources to compensate protein intake is essential for the successful persistence of D. suzukii WM and SM populations during suboptimal temperatures.  相似文献   

10.
Detailed in this study are the results of fluorometric assays used to assess the impact of gradual nutrient limitation versus punctuated nitrate limitation on the lipid content and morphology of Neochloris oleoabundans cells in batch culture. Punctuated nitrate limitation was imposed during pre‐log, log, late‐log, stationary, and senescent growth phases, and the cells were analyzed by bulk fluorescence emission, flow cytometry, and hyperspectral fluorescence imaging. In addition to intrinsic spectroscopic signatures provided by scatter and endogenous fluorescence, Nile Red staining was employed to monitor relative changes in lipid concentration. Analysis of the fluorescence images and temporal data sets was performed using multivariate curve resolution and fitting to logistic growth models to extract parameters of interest. The spectral components independently isolated from the image and temporal data sets showed close agreement with one another, especially relating to chlorophylls and Nile Red in polar and neutral lipid fractions, respectively. The fastest accumulation and highest total neutral lipid per cell and per chlorophyll were obtained with punctuated nitrate limitation during log phase growth on day 4 of culture. The presence of unbound chlorophyll in the resulting lipid bodies supports a membrane recycling TAG accumulation mechanism mediated by chloropolast–ER lipid exchange. Furthermore, an increase in cell size, indicated by forward scatter, was also found to correlate with increased neutral lipid, providing a size selection mechanism for passive harvest of algal cells at peak lipid enrichment. Biotechnol. Bioeng. 2012; 109: 2503–2512. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Schizochytrium mangrovei strain PQ 6 was investigated for coproduction of docosahexaenoic acid (C22: 6ω‐3, DHA ) and squalene using a 30‐L bioreactor with a working volume of 15 L under various batch and fed‐batch fermentation process regimes. The fed‐batch process was a more efficient cultivation strategy for achieving higher biomass production rich in DHA and squalene. The final biomass, total lipid, unsaponifiable lipid content, and DHA productivity were 105.25 g · L?1, 43.40% of dry cell weight, 8.58% total lipid, and 61.66 mg · g?1 · L?1, respectively, after a 96 h fed‐batch fermentation. The squalene content was highest at 48 h after feeding glucose (98.07 mg · g?1 of lipid). Differences in lipid accumulation during fermentation were correlated with changes in ultrastructure using transmission electron microscopy and Nile Red staining of cells. The results may be of relevance to industrial‐scale coproduction of DHA and squalene in heterotrophic marine microalgae such as Schizochytrium .  相似文献   

12.
The Norway lobster, Nephrops norvegicus, is a commercially exploited decapod which is widely distributed throughout the north-eastern Atlantic and the Mediterranean Sea. Ovigerous females originating from the Mediterranean and the Irish Seas were held in the laboratory until larvae hatched. Biomass and biochemical composition, as well as digestive gland structure, were examined in newly hatched larvae from these two regions. In addition, previously published data from a North Sea population were included in our comparison. Elemental analyses showed that the absolute quantities of dry mass (DM), carbon (C), nitrogen (N) and hydrogen (H) (collectively referred to as CHN) per individual, and the C:N mass ratios, were significantly lower, while the relative CHN, protein and lipid values (in % of DM) were higher in samples from the Irish Sea compared to larvae originating from either the Mediterranean or the North Sea. As in CHN, the absolute level of protein per individual was higher in larvae from the Mediterranean, while no significant differences were observed in the individual lipid contents. Likewise, the digestive gland structure at hatching did not show any differences between study areas. Intraspecific variability in biomass and chemical composition of newly hatched larvae from different regions may be related to differential patterns of reproduction in regions with different climatic conditions. Lobster larvae hatch in the Mediterranean Sea predominantly in winter when both water temperature and planktonic food availability are at a minimum, while hatching in the Irish Sea occurs under more favourable conditions in spring. Hence, significantly higher wet mass, dry mass and protein values in Mediterranean larvae may represent adaptive traits allowing for early posthatching survival and development under food-limited conditions in an oligotrophic environment.Communicated by H.-D. Franke  相似文献   

13.
Plant‐insect herbivore‐entomopathogen interactions are one of the hot topics in biological control and humoral immunity, and biochemical metabolism are important responses of herbivores to pathogen infection. Entomopathogens are key biocontrol agents of caterpillars, but how plants affect the responses of caterpillars to these organisms is not well understood. We studied hormonal immunity (lysozyme and phenoloxidase activities) and biochemical metabolism (total protein and lipid contents) of Beauveria bassiana‐infected beet armyworm (Spodoptera exigua) larvae that feed on five different host plants (soya bean, Chinese cabbage, edible amaranth, water convolvulus and pepper). Results indicated that plant species differentially affected lysozyme and phenoloxidase activity and lipid content, but had no effect on protein content of pathogen‐infected caterpillars. Both lysozyme and phenoloxidase activities were generally higher in entomopathogen‐infected larvae that feed on edible amaranth or water convolvulus compared with the other three plants from days 1 to 5 after treatment. Plant species did not affect in regular changes during the 5 days in the lipid content of infected or non‐infected caterpillars. Our study reveals that plants fail to affect the biochemical metabolism but plants can mediate the humoral immunity of caterpillars to defend against pathogens. This study provides insight into plant‐mediated effects on the response of herbivores to pathogens.  相似文献   

14.
The study was designed to investigate the effects of frozen storage on the proximate composition and chemical indices of pike (Esox lucius) stored for a period of six months at ?20°C. During storage the moisture, protein and fatty acid contents decreased and the ash, total volatile basic nitrogen (TVB‐N) and peroxide value (PV) content increased significantly (P < 0.05). In the fresh samples the moisture, total protein and total lipid contents were 77.61%, 19.21%, and 2.3% respectively. At the end of the storage time the above‐mentioned parameters were measured as 75.98%, 16.95%, 0.9%, respectively. TVB‐N and PV contents changed from 1.30%, 6.27, 0.18 in fresh samples to 2.21%, 15.12 mg/100 g and 1.73 meq o2 kg?1 after six months frozen storage, respectively. Thirty fatty acids were found in pike fillets, with a higher percentage in fresh fish of polyunsaturated fatty acids (51.14%), saturated fatty acids (22.94%) and mono unsaturated fatty acids (22.61%). The PUFAs decreased to 31.67% at the end of the storage time. Although some changes in quality and nutritional value were observed in the pike fillets during frozen storage, the changes were within the acceptable range.  相似文献   

15.
Aphidius colemani Viereck, emerging from Myzus persicae (Sulzer) mummies on the Brussels sprout cultivar ‘Bedford Winter Harvest’ (BWH), responds positively in the olfactometer to the odour of that cultivar in comparison with air. Responses to the odours of other sprout cultivars, cabbage and broad bean could be explained by the humidity from plant leaves. In a choice between BWH and other sprout cultivars, the BWH odour is preferred, or that of cv. ‘Red Delicious’ (RD) if the parasitoids are reared on RD. This confirms previous work showing that the secondary chemistry of a cultivar is learnt from the mummy cuticle during emergence. Adults emerging from pupae excised from the mummy show a similar but less pronounced preference. Parasitoids developing in aphids on an artificial diet do not discriminate between the odours of BWH and RD, unless allowed contact with a mummy from the same cultivar that the mother develops on. This suggests a cultivar‐specific maternal cue. This cue is speculated to consist of a small amount of the secondary chemistry (probably glucosinolates in the present study) that are left in or on the egg at oviposition, which subsequently induces enzymes that detoxify plant‐derived toxins in the aphid host. Indeed, when parasitoids emerging from diet‐reared aphids are released on aphid‐infested sprout plants, fewer mummies are produced than by parasitoids emerging from mummies of plant‐reared aphids or from excised pupae. Only parasitoids that emerge from mummies of plant‐reared aphids prefer the cultivar of origin as shown by the number of mummified hosts.  相似文献   

16.
The protein, carbohydrate and lipid contents of the food ingested and their absorption in the intestine of Heterotis niloticus inhabiting a small man-made lake; Awba Lake, in Ibadan were investigated.The ingested food had mean total protein, mean total carbohydrate and mean total lipid contents of 53.0%, 28.8% and 15.5% of the organic content, respectively. Calculated percentages absorbed were 56.4–72.7% (mean — 64.9%) total protein, 32.2–50.8% (mean — 40.3%) total carbohydrates and 71.9–87.3% (mean = 78.3%) lipid.Absorption mostly occurred in the fore-gut (the first one-third of the intestine) and least in the hind-gut (the last one-third of the intestine). Different sizes of fish showed different dietary protein, carbohydrate and lipid contents. Absorptive capacity for these components of the food also varied with fish size.  相似文献   

17.
The relationship between age-related resistance of peper plants to Phytophthora capsici and contents of carbohydrates, amino acids, phenolics and mineral nutrients in pepper stems was studied using two pepper cultivars, Hanbyul (susceptible) and Kingkun (resistant). With increasing age of pepper plants, the two cultivars, which differ in their susceptibility to Phytophthora blight, became gradually resistant to the disease. The cultivar Kingkun distinctly showed the age-related resistance to Phytophthora blight at the second branch stage. The weight of dry matter in healthy stems of pepper plants at the second branch stage was twice that at the six leaf stage. The resistant cultivar Kingkun contained lower levels of fructose, glucose and sucrose in stems than the susceptible cultivar Hanbyul at the different developmental stages. No consistent differences between the developmental stages of the plants were recognized with regard to their glucose content. However, the contents of fructose and sucrose in the cultivar Hanbyul greatly increased at the second branch stage. The levels of inositol reduced in both pepper cultivars during plant development. In view of the fact that there were only slight changes in the amount of total amino acids, it seems unlikely that there is a relationship between the amino acid metabolism and the retardation of Phytophthora infection during plant development. The amounts of total phenolic compounds in pepper stems were relatively low at the later growth stages of the plants and also in the resistant cultivar Kingkun. The contents of macroelemental nutrients such as nitrogen, phosphorus, potassium, calcium and magnesium were drastically reduced in pepper stems at the later plant growth stage. No significant differences between the cultivars or the plant growth stages were found in the silicon and microelemental nutrients such as sodium, iron, zinc and manganese. These results suggest that the expression of age-related resistance of pepper plants may be due to the morphological and nutritional changes in tissues of pepper stems during ageing, i.e. the pronounced increase in weight of dry matter, the significant decrease in amounts of mineral nutrients such as nitrogen, phosphorus, potassium, calcium and magnesium, and the tow contents of fructose, glucose and sucrose in the stem tissues.  相似文献   

18.
The objective of this research was to investigate how ferulic and p-coumaric acids affect lipid and fatty acid composition during canola (Brassica napus L.) seed germination. Data showed that both compounds increased total lipid and fatty acid contents in the cotyledons during germination. The largest accumulation in lipids occurred at 1.0 mM p-coumaric acid with an increase in all unsaturated fatty acids. The results suggest that allelochemicals interfere in canola seed germination by reducing lipid mobilization.  相似文献   

19.
20.
A factorial experiment was designed to examine the effect on compensatory growth (CG) of Nile tilapia Oreochromis niloticus fed diets containing different protein and lipid levels under normal and temporally restricted feeding regimes. Four diets were formulated to contain either 30% or 36% crude protein, and 5% or 11% crude lipid. Triplicate replicates of each treatment were assigned to 24 150‐L tanks (20 fish/tank density). Fish (mean initial weight ± SD = 8.79 ± 0.34 g) were then fed either the normal feeding regime (thrice daily to apparent satiation) or the restricted regime (1 day feed deprivation followed by 3 days of feeding to apparent satiation) over a 44‐days study period. Fish receiving a diet under the restricted regime achieved weight gains (WG) comparable to fish consuming the diet containing 30% protein and 5% lipids under the normal feeding regime. Fish maintained on the restricted feeding regime exhibited reduced feed intake (FI), WG, feed efficiency ratio (FE), protein efficiency rate (PER) and hepatosomatic index versus fish on the normal feeding regime, except WG in fish fed the diet with 30% protein and 5% lipids. However, the resultant FI (85%~94%) was higher than the excepted 75% intake when fish were subjected to the restricted regime. Feeding 11% lipid diets led to improved FI, WG, FE, and PER compared to feeding the 5% lipid diets. Increased FI, WG, and FE, but reduced PER were observed in fish fed with 36% protein versus fish fed 30% protein. Fish receiving the 36% protein diets had lower whole‐body moisture and ash contents, but elevated whole‐body protein and lipid contents compared to those receiving the 30% protein diets. Whole‐body moisture contents were lower, but whole‐body protein, lipid and ash contents were higher in fish fed 11% lipid diets than in fish fed 5% lipid diets. There was an increase in whole‐body moisture content, but a decrease in protein and lipid content in response to the restricted feeding regime. Ash content was not affected by the feeding regime. The present study shows that Nile tilapia fed diets subjected to a restricted feeding regime exhibited growth comparable to those fed the diet at 30% protein and 5% lipid levels under a normal feeding regime. This positive effect was more pronounced in diets at a high protein level or in a combination of high protein and lipid levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号