首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
To clarify the mechanism by which Delta9-tetrahydrocannabinol, a major psychoactive component of marijuana, impairs spatial memory in the 8-arm radial maze in rats via the cholinergic system, we used two acetylcholinesterase inhibitors, physostigmine and tetrahydroaminoacridine. Moreover, we examined the effect of Delta9-tetrahydrocannabinol on acetylcholine release in the frontal cortex and dorsal and ventral hippocampus using in vivo microdialysis. Physostigmine (0.01-0.05 mg/kg, i.p.) and tetrahydroaminoacridine (1-5 mg/kg, p.o.) improved the impairment of spatial memory induced by Delta9-tetrahydrocannabinol (6 mg/kg, i.p.) in the 8-arm radial maze. Delta9-tetrahydrocannabinol (6 mg/kg, i.p.) produced a significant decrease in acetylcholine release in the dorsal hippocampus as assessed by microdialysis. Moreover, tetrahydroaminoacridine at a dose of 1 mg/kg, which improved the impairment of spatial memory, reversed the decrease in acetylcholine release induced by Delta9-tetrahydrocannabinol in the dorsal hippocampus during 60-120 min after the Delta9-tetrahydrocannabinol injection. These findings suggest that inhibition of the cholinergic pathway by reduced acetylcholine release is one of the means by which Delta9-tetrahydrocannabinol impairs spatial memory in the 8-arm radial maze.  相似文献   

2.
APPswe+PS1/ΔE9 transgenic (Tg) mice with Aβ plaque formation in neocortex and hippocampus were evaluated in tests measuring exploratory activity, anxiety, and memory ability using open field test (OFT), Y-maze, contextual fear conditioning (CFC), and Morris water maze (MWM). Wild type (WT) and Tg mice over eight months old showed same locomotion activity and anxiety level in novel stimulation, open field, and Y-maze contexts. In other experiments that measured associative memory and spatial memory in Tg mice and their littermates, the subjects also presented similar deficiencies in memory acquisition. These two aged groups showed abnormal freezing level variance especially in CFC test. In comparison to that in non-transgenic 8-week-old mice group, the acquisition of spatial memory in MWM task was impaired in aged WT and bigenic Tg mice. Taken together, aged wild-type littermates and Tg mice present similar deficits in associative learning and spatial memory independent of amyloid plaques.  相似文献   

3.
Memory is essential for our normal daily lives and our sense of self. Ca(2+) influx through the NMDA-type glutamate receptor (NMDAR) and the ensuing activation of the Ca(2+) and calmodulin-dependent protein kinase (CaMKII) are required for memory formation and its physiological correlate, long-term potentiation (LTP). The Ca(2+) influx induces CaMKII binding to the NMDAR to strategically recruit CaMKII to synapses that are undergoing potentiation. We generated mice with two point mutations that impair CaMKII binding to the NMDAR GluN2B subunit. Ca(2+)-triggered postsynaptic accumulation is largely abrogated for CaMKII and destabilized for TARPs, which anchor AMPA-type glutamate receptors (AMPAR). LTP is reduced by 50% and phosphorylation of the AMPAR GluA1 subunit by CaMKII, which enhances AMPAR conductance, impaired. The mutant mice learn the Morris water maze (MWM) as well as WT but show deficiency in recall during the period of early memory consolidation. Accordingly, the activity-driven interaction of CaMKII with the NMDAR is important for recall of MWM memory as early as 24 h, but not 1-2 h, after training potentially due to impaired consolidation.  相似文献   

4.
Capacity of the working memory was tested in 12 rats highly overtrained in the 12- and 24-arm radial mazes. Asymptotic performance levels were characterized by 1.01 and 2.78 errors/trial in the 12- and 24-arm mazes, respectively. The incidence of errors increased from 31% on the last choice in the 12-arm maze to 51% on choices 23 and 24 in the 24-arm maze, but remained significantly below the expected error probability of about 85%. Linear extrapolation of the above trend to mazes with more arms suggests working memory capacity of 40 to 50 items. When two trials in a 12-arm maze were repeated in immediate succession, error incidence increased from 1.17 in the first trial to 2.13 in the second trial. The tendency to avoid choice repetition could be observed in any string of 12 continuous choices, but was weakest in segments divided by trial boundary (2.48 errors in choices 7 to 18). With a different trial separation (choices 1–6 and 19–24 in maze A, choices 7–18 in an adjacent maze B) errors dropped to 1.09 in B but increased to 2.30 in A. It is concluded that radial maze performance reflects avoidance of choice repetition which is improved by recognition of trial boundaries and is adversely influenced by forgetting and interference.  相似文献   

5.
The present study was undertaken to evaluate the effects on hippocampal vascular endothelial growth factor (VEGF) levels in rats when they experience hippocampal-dependent spatial learning via the Morris water maze (MWM) task. Rats underwent one of two different versions of the MWM: weak or intensive. After one day of intensive training, a highly sensitive enzyme-linked immunosorbent assay (ELISA) was used to measure VEGF protein levels in the hippocampus, cortex, and serum, and higher levels were found in the trained group compared to a naive control group. VEGF levels also increased in rats that swam only for durations equal to the intensive training periods. In contrast, rats trained under the weaker MWM paradigm for five days showed a decrease in hippocampal VEGF protein level. Mimicking increases in neuronal VEGF in the hippocampus by direct infusion of VEGF into CA1 resulted in up-regulation of the phosphorylation of the cAMP response element-binding (CREB) protein and the Ca2+/calmodulin-dependent protein kinases II (CaMKII). These results suggest that VEGF may be a physiological parameter involved in learning procedures that include physical activity.  相似文献   

6.
Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout mice, have deficits in the Morris water maze and trace fear memory tests, showing impairment in hippocampus-dependent learning and memory. However, results for synaptic long-term potentiation (LTP), a key cellular model for learning and memory, remain inconclusive in the hippocampus of Fmr1 knockout mice. Here, we demonstrate that FMRP is required for glycine induced LTP (Gly-LTP) in the CA1 of hippocampus. This form of LTP requires activation of post-synaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Genetic deletion of FMRP interrupted the phosphorylation of ERK1/2, suggesting the possible role of FMRP in the regulation of the activity of ERK1/2. Our study provide strong evidences that FMRP participates in Gly-LTP in the hippocampus by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS.  相似文献   

7.
Akbari E  Naghdi N  Motamedi F 《Peptides》2007,28(3):650-656
The novel neuropeptides orexin-A and orexin-B derive from a common 130-amino acid precursor molecule (prepro-orexin), are mainly localized to neurons within and around the lateral hypothalamus, and exhibit high affinity to the closely related G-Protein-coupled receptors orexin 1 and 2 receptor (OX1R, OX2R). Orexinergic neurons send their axons to the hippocampal formation (CA1, CA2 and dentate gyrus), which expresses OX1Rs. Recent studies have shown that central administration of orexin-A and orexin-B have effects on learning and memory but literature concerning the role of orexinergic system in cognition remains controversial. More recently, antagonists have been described. The most potent and selective is SB-334867-A, which has an affinity of 40 nM at OX1R which is at least 50-fold selective over OX2R. It is likely that the intracerebroventricular (i.c.v.) administration may block OX1Rs in many brain regions. Previously we have shown that intra-CA1 injection of SB-334867-A impairs acquisition, consolidation and retrieval of spatial memory in MWM task. In the present study, the effect of pre-training, post-training and pre-probe of trial intra-DG (dentate gyrus) administration of SB-334867-A (1.5, 3, 6 microg/0.5 microl) on acquisition, consolidation and retrieval in a single-day testing version of MWM (Morris water maze) task was examined. Our results show impaired acquisition and consolidation of MWM task for SB-334867-A as compared with the control group. However, SB-334867-A had no effect on retrieval in spatial memory. Also, this antagonist had no effect on escape latency of a non-spatial visual discrimination task. Therefore, it seems that endogenous orexin-A and orexin-B, through DG OX1Rs, play an important role in spatial learning and memory in the rat.  相似文献   

8.

Cognitive dysfunction is an important complication observed in type 2 diabetes mellitus (T2DM) patients. Tetramethylpyrazine (TMP) is known to exhibit anti-diabetic and neuroprotective properties. Therefore, the present study aimed to investigate the possible therapeutic effects of TMP against type 2 diabetes-associated cognitive impairment in rats. High-fat diet (HFD) followed by a low dose of streptozotocin (35 mg/kg) was used to induce diabetes in Sprague–Dawley rats. TMP (20, 40, and 80 mg/kg) and Pioglitazone (10 mg/kg) were administered for 4 weeks. The Morris water maze (MWM) and novel objective recognition task (NOR) tests were used to assess memory function. Fasting blood glucose (FBG), lipid profile, HOMA-IR, glycosylated hemoglobin (HbA1c), and glucose tolerance were measured. Acetylcholinesterase (AChE) and choline acetytransferase (ChAT) activity, acetylcholine (ACh) levels, oxidative stress, apoptotic (Bcl-2, Bax, caspase-3), and inflammatory markers (TNF-α, IL-1β, and NF-kβ) were assessed. BDNF, p-AKT, and p-CREB levels were also measured. In the present work, we observed that treatment of diabetic rats with TMP alleviated learning and memory deficits, improved insulin sensitivity, and attenuated hyperglycemia and dyslipidemia. Furthermore, treatment with TMP increased BDNF, p-Akt, and p-CREB levels, normalized cholinergic dysfunction, and suppressed oxidative, inflammatory, and apoptotic markers in the hippocampus. Collectively, our results suggest that the TMP may be an effective neuroprotective agent in alleviating type 2 diabetes-associated cognitive deficits.

  相似文献   

9.
Exposure to intermittent hypoxia (IH) is associated with cognitive impairments and oxidative stress in brain regions involved in learning and memory. In earlier studies, erythropoietin (EPO) showed a neuroprotective effect in large doses. The aim of the present study was to explore the effect of smaller doses of EPO, such as those used in the treatment of anemia, on IH-induced cognitive deficits and hippocampal oxidative stress in young rats. The effect of concurrent EPO treatment (500 and 1,000 IU/kg/day ip) on spatial learning and memory deficits induced by long-term exposure to IH for 6 weeks was tested using the Morris water maze (MWM) test and the elevated plus maze (EPM) test. Moreover, the effect on hippocampal glutamate and oxidative stress were assessed. Exposure to IH induced a significant impairment of spatial learning and cognition of animals in both MWM and EPM performance parameters. Moreover, hippocampal glutamate and thiobarbituric acid reactive substances (TBARS) increased while antioxidant defenses (GSH and GSH-Px) decreased. EPO in the tested doses significantly reduced the IH-induced spatial learning deficits in both MWM and EPM tests and dose-dependently antagonized the effects of IH on hippocampal glutamate, TBARS, GSH levels, and GSH-Px activity. Treatment with EPO in moderate doses that used for anemia, concurrently with IH exposure can antagonize IH-induced spatial learning deficits and protect hippocampal neurons from IH-induced lipid peroxidation and oxidative stress-induced damage in young rats, possibly through multiple mechanisms involving a potential antioxidative effect.  相似文献   

10.
Nitric oxide is implicated in modulation of memory and pharmacological as well as genetic inhibition of neuronal nitric oxide synthase (nNOS) leads to impaired cognitive function. We therefore decided to study learning and memory functions and cognitive flexibility in the Morris water maze (MWM) in 1-month-old male mice lacking nNOS (nNOS KO). Hippocampal protein profiling was carried out to possibly link protein derangement to impaired cognitive function. Two-dimensional gel electrophoresis with in-gel digestion of spots and subsequent MALDI-TOF identification of proteins and quantification of proteins using specific software was applied. In the memory as well as in the relearning task of the MWM, most of the nNOS KO failed to find the submerged platform within a given time. Proteomic evaluation of hippocampus, the main anatomical structure computing cognitive functions, revealed aberrant expression of a synaptosomal associated protein of the exocytotic machinery (NSF), glycolytic enzymes, chaperones 78 kDa glucose-regulated protein, T-complex protein 1; the signaling structure guanine nucleotide-binding protein G(I)/G(S)/G(T) and heterogeneous nuclear ribonucleoprotein H of the splicing machinery. We conclude that nNOS knockout mice show impaired spatial performance in the MWM, a finding that may be either linked to direct effects of nNOS/NO and/or to specific hippocampal protein derangements.  相似文献   

11.
On the basis of abnormal neuropsychological behavior in the open-field test after 2-week zinc deprivation, neurochemical response was examined in young mice fed a zinc-deficient diet for 2 weeks. Serum corticosterone concentration was markedly higher in zinc-deficient mice than in the control mice. Basal signals of intracellular calcium (fluo-4 FF) were also significantly more in hippocampal slices from zinc-deficient mice. These results suggest that basal Ca2+ levels in hippocampal cells are increased by zinc deficiency. On the other hand, Schaffer collateral long-term potentiation (LTP) was unaffected by zinc deficiency; the averaged fEPSP after tetanic stimulation was 162+/-8% of baseline value in the control and 172+/-22% in zinc-deficient mice. In the Morris water maze, there was also no significant difference in learning behavior for the hidden platform task between the control and zinc-deficient mice. The present study indicates that Schaffer collateral LTP associated with spatial cognition performance are unaffected by calcium dyshomeostasis in the hippocampus elicited by 2-week zinc deprivation, which may be linked to the increased serum corticosterone concentration.  相似文献   

12.
The relative lack of sensitive and clinically valid tests of rodent behavior might be one of the reasons for the limited success of the clinical translation of preclinical Alzheimer's disease (AD) research findings. There is a general interest in innovative behavioral methodology, and protocols have been proposed for touchscreen operant chambers that might be superior to existing cognitive assessment methods. We assessed and analyzed touchscreen performance in several novel ways to examine the possible occurrence of early signs of prefrontal (PFC) functional decline in the APP/PS1 mouse model of AD. Touchscreen learning performance was compared between APP/PS1-21 mice and wildtype littermates on a C57BL/6J background at 3, 6 and 12 months of age in parallel to the assessment of spatial learning, memory and cognitive flexibility in the Morris water maze (MWM). We found that older mice generally needed more training sessions to complete the touchscreen protocol than younger ones. Older mice also displayed defects in MWM working memory performance, but touchscreen protocols detected functional changes beginning at 3 months of age. Histological changes in PFC of APP/PS1 mice indeed occurred as early as 3 months. Our results suggest that touchscreen operant protocols are more sensitive to PFC dysfunction, which is of relevance to the use of these tasks and devices in preclinical AD research and experimental pharmacology.  相似文献   

13.
目的探讨阿尔茨海默病(AD)模型鼠双侧海马区移植含多因子孵育的神经祖细胞(NPCs)后记忆认知功能改善情况及NPCs移植后迁移定位和分化能力。 方法取胎龄10?d的C57BL/6J孕鼠,分离得胎鼠NPCs,NPCs体外分化及鉴定,AD模型鼠分3组:NPCs+因子组、因子组及PBS组,对照组为同月龄C57BL/6J小鼠;Morris水迷宫及新物体识别实验检测AD模型鼠移植NPCs细胞前,及移植1至6个月后记忆行为变化情况;通过免疫荧光,免疫组化和Western-blot检测海马区移植的NPCs向神经元和胆碱能神经元分化及迁移能力。组间比较采用F检验。 结果Morris水迷宫实验中,NPCs+因子组找到平台前的逃避潜伏期时间(14.12±7.45)s要明显低于注射PBS的AD模型鼠组[(39.65±4.64)?s,F = 2.578,P = 0.0094],因子组时间(15.68±5.34)s同样低于PBS组[(39.65±4.64)s,F?= 1.324,P = 0.0016],24 h撤去平台后,NPCs+因子组逃避潜伏期时间(15.12±3.52)s仍低于PBS组[(37.17±2.18)?s,F = 2.598,P = 0.0003],因子组时间(16.62±3.23)s同样低于PBS组[(37.17±2.18)s,F = 2.186,P = 0.0004)];新物体识别实验中,各实验组对新物体探究时间占总探究时间百分比结果中,NPCs+因子组(68.46±2.4)%要高于PBS组[(54.47±4.79)%,F =3.983,P = 0.018],因子组(65.20±1.03)%同样高于PBS组[(54.47±4.79)%,F = 21.63,P = 0.042];实验结果表明,通过移植细胞与因子AD模型鼠的记忆认知功能在早期均得到改善,随着时间的增长,移植NPCs组的记忆改善情况持续时间更长久;Western blot结果显示AD模型鼠海马区胆碱能神经元与正常C57BL/6J鼠相比表达减少,移植NPCs后,AD模型鼠脑内胆碱能神经元增多;免疫荧光与免疫组化结果显示,移植的NPCs在AD模型鼠脑内移植区存活,并向胆碱能神经元分化。 结论AD模型鼠双侧海马区移植的含多因子孵育的NPCs,通过分化成功能性的胆碱能神经元来改善AD鼠的记忆认知功能。  相似文献   

14.
Little is known about the molecular mechanisms of learned and innate fear. We have identified stathmin, an inhibitor of microtubule formation, as highly expressed in the lateral nucleus (LA) of the amygdala as well as in the thalamic and cortical structures that send information to the LA about the conditioned (learned fear) and unconditioned stimuli (innate fear). Whole-cell recordings from amygdala slices that are isolated from stathmin knockout mice show deficits in spike-timing-dependent long-term potentiation (LTP). The knockout mice also exhibit decreased memory in amygdala-dependent fear conditioning and fail to recognize danger in innately aversive environments. By contrast, these mice do not show deficits in the water maze, a spatial task dependent on the hippocampus, where stathmin is not normally expressed. We therefore conclude that stathmin is required for the induction of LTP in afferent inputs to the amygdala and is essential in regulating both innate and learned fear.  相似文献   

15.
Social isolation starting from the 21st day of birth affected neither a short-term nor a long-term memory in male rats at primary acquisition learning in an 8-arm radial maze. A number of the short-term and long-term memory errors were substantially decreased during primary learning but the difference between groups was not significant. Isolates were faster to start a search in an individual trial and took less time to finish offa trial. During the reversal learning, when baited and non-baited arms were reversed, the isolates outperformed of socially reared rats on working but not reference memory task. In overall they made twice less working memory errors than socially reared animals. During the reversal learning the isolates were also faster than non-isolates in initiation and completion of a trial. Maternal separation of rat's pups on the postnatal days 1-21 for 4 hr per day did not affect either working or reference memory on both primary and reversal learning. The data obtained are discussed on basis of influence of stress in early postnatal life on hypothalamo-pituitary axis and its effects on behavior of adult animals.  相似文献   

16.
Fast excitatory transmission in the mammalian central nervous system is mediated by AMPA‐type glutamate receptors. The tetrameric AMPA receptor complexes are composed of four subunits, GluR1–4. The GluR4 subunit is highly expressed in the cerebellum and the early postnatal hippocampus and is thought to be involved in synaptic plasticity and the development of functional neural circuitry through the recruitment of other AMPA receptor subunits. Previously, we reported an association of the human GluR4 gene (GRIA4) with schizophrenia. To examine the role of the GluR4 subunit in the higher brain function, we generated GluR4 knockout mice and conducted electrophysiological and behavioural analyses. The mutant mice showed normal long‐term potentiation (LTP) in the CA1 region of the hippocampus. The GluR4 knockout mice showed mildly improved spatial working memory in the T‐maze test. Although the retention of spatial reference memory was intact in the mutant mice, the acquisition of spatial reference memory was impaired in the Barnes circular maze test. The GluR4 knockout mice showed impaired prepulse inhibition. These results suggest the involvement of the GluR4 subunit in cognitive function.  相似文献   

17.
Cui Y  Jin J  Zhang X  Xu H  Yang L  Du D  Zeng Q  Tsien JZ  Yu H  Cao X 《PloS one》2011,6(5):e20312
Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.  相似文献   

18.
The influence of 20% alcohol consumption on training of low-active rats in 8-arm radial maze was studied. One group of animals was trained before and the other group after the alcoholization. All the animals acquired the conditioned reaction in the radial maze. However, the behavioral difference between the groups consisted in spatially-motor asymmetry. The rats trained before the alcohol consumption had less stereotyped behavior and more distinctly preferred to enter the maze arms at the angle of 45 degrees than the animals trained after the alcohol consumption. After the alcohol consumption, rats more frequently refused from behavioral task performance in comparison with the animals trained after the alcoholization. The influence of alcohol consumption of learning and memory in low-active rats is discussed.  相似文献   

19.
Protein tyrosine phosphatase delta (PTPdelta) is a receptor-type PTP expressed in the specialized regions of the brain including the hippocampal CA2 and CA3, B lymphocytes and thymic medulla. To elucidate the physiological roles of PTPdelta, PTPdelta-deficient mice were produced by gene targeting. It was found that PTPdelta-deficient mice were semi-lethal due to insufficient food intake. They also exhibited learning impairment in the Morris water maze, reinforced T-maze and radial arm maze tasks. Interestingly, although the histology of the hippocampus appeared normal, the magnitudes of long-term potentiation (LTP) induced at hippocampal CA1 and CA3 synapses were significantly enhanced in PTPdelta-deficient mice, with augmented paired-pulse facilitation in the CA1 region. Thus, it was shown that PTPdelta plays important roles in regulating hippocampal LTP and learning processes, and that hippocampal LTP does not necessarily positively correlate with spatial learning ability. To our knowledge, this is the first report of a specific PTP involved in the regulation of synaptic plasticity or in the processes regulating learning and memory.  相似文献   

20.
Allopregnanolone (ALLO, or 3α-hydroxy-5α-pregnan-20-one) is a steroid metabolite of progesterone and a potent endogenous positive allosteric modulator of GABA-A receptors. Systemic ALLO has been reported to impair spatial, but not nonspatial learning in the Morris water maze (MWM) and contextual memory in rodents. These cognitive effects suggest an influence of ALLO on hippocampal-dependent memory, although the specific nature of the neurosteroid's effects on learning, memory or performance is unclear. The present studies aimed to determine: (i) the memory process(es) affected by systemic ALLO using a nonspatial object memory task; and (ii) whether ALLO affects object memory via an influence within the dorsal hippocampus. Male C57BL/6J mice received systemic ALLO either before or immediately after the sample session of a novel object recognition (NOR) task. Results demonstrated that systemic ALLO impaired the encoding and consolidation of object memory. A subsequent study revealed that bilateral microinfusion of ALLO into the CA1 region of dorsal hippocampus immediately following the NOR sample session also impaired object memory consolidation. In light of debate over the hippocampal-dependence of object recognition memory, we also tested systemic ALLO-treated mice on a contextual and cued fear-conditioning task. Systemic ALLO impaired the encoding of contextual memory when administered prior to the context pre-exposure session. Together, these results indicate that ALLO exhibits primary effects on memory encoding and consolidation, and extend previous findings by demonstrating a sensitivity of nonspatial memory to ALLO, likely by disrupting dorsal hippocampal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号