首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Selections were made among individual plants of Gossypium hirsutum cv `Coker 310' for high-frequency in vitro regeneration by somatic embryogenesis. After three generations of selection, a pure line for high-frequency somatic embryogenesis was selected and named Coker 310 FR (FR, fully regenerating). Coker 310 FR could be regenerated by following previously published protocols (see Materials and methods) and a modified protocol developed in this study that reduced the time necessary for in vitro regeneration. Coker 310 FR was crossed with individual plants of major cotton cultivars grown in India, namely `MCU 5', `MCU 7', `Khandwa 2', `Bikaneri Nerma', `F 846' that have been shown to be recalcitrant to in vitro regeneration, to evaluate the regeneration potential of F1s. All the F1s showed regeneration by somatic embryogenesis. However, the F1 of G. barbadense×G. hirsutum Coker 310 FR did not regenerate. Received: 16 September 1997 / Revision received: 1 April 1998 / Accepted: 15 May 1998  相似文献   

2.
植物激素对棉花体细胞胚胎发生的诱导及调节作用   总被引:19,自引:0,他引:19  
选用11种激素研究了外源激素对棉花胚性愈伤组织增殖、胚胎发生和发育的调控作用。结果表明不同激素对棉花胚性愈伤组织增殖、胚胎发生与发育的影响不同。除2,4-D和BA对棉花胚性愈伤组织的增殖影响不大外,其他激素对棉花胚性愈伤组织的增殖均具有抑制作用,且具有一定的时间效应,同时还受基因型的影响。激素对棉花体细胞胚的形成和发育的影响极大,2,4-D既抑制了体细胞胚的形成,又抑制了体细胞胚的发育;TDZ的作用与2,4-D相似,显抑制了体细胞胚的形成,且诱导获得的体细胞胚均停留在球形胚阶段;GA也抑制了体细胞胚的形成,且不利于体细胞的成熟与萌发;BU-30对棉花体细胞胚形成与发育的影响不大。其他7类生长素类物质和细胞分裂素类物质对棉花体细胞胚的形成均具有促进作用,且依IBA、ABA、IAA、BA、KT、ZT、2iP序增强,其总胚数为对照的1.193—3.852倍;其中2iP的促进作用最大,可使产生的体细胞胚数提高2.852倍。  相似文献   

3.
4.
一种新型的棉花体细胞胚胎发生的快速诱导法   总被引:5,自引:0,他引:5  
用异常苗的茎段和叶片进行培养,可快速高效诱导获得棉花体细胞胚胎发生,激素组膈及其浓度配比影响异常苗的直接胚胎发生,在附加有0.1mg/L IAA和0.1mg/LZT的改良MS培养基上,异常苗不仅体细胞胚胎发生率高,而且形成的体细胞胚数目多,用异常苗作外植体获得胚性愈伤组织仅需要时间10d,获得成熟胚需要20-30d,获得再生植株需要60d,大大短于常规方法获得胚性愈伤组织、体细胞胚和再生植株的时间  相似文献   

5.
Cotton (Gossypium hirsutum L.) was transformed by the EHA101 strain of Agrobacterium tumefaciens harboring a binary vector pGA482GG plasmid carrying the marker genes for neomycin phosphotransferase II (nptII) determining resistance to kanamycin and β-glucuronidase (GUS). The cotyledons, hypocotyls, shoot meristem tissue, and its segments taken from in vitro growing seedlings were used as explants. Explants were cultured in a Murashige and Skoog (MS) medium containing various hormone combinations to induce shoot regeneration. The highest frequency of shoot formation was obtained from the shoot meristem. After selection in the MS medium containing kanamycin (50 mg/l), these tissues were tested by histochemical GUS assay. Shoots regenerated from excised shoot meristems or their halves were cultured for 4–6 weeks to obtain rooted plants, which then produced fully-developed plants and seeds in pots. Genomic integration of the kanamycin-resistance gene was detected by the PCR analysis. Seed germination percentage was 95% after the F1 seeds of transgenic cotton plants were cultured on half-strength MS medium supplemented with 50 mg/l kanamycin. Thus, a protocol for effective Agrobacterium-mediated genetic transformation of cotton was optimized. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 3, pp. 462–467. The text was submitted by the authors in English.  相似文献   

6.
棉花体细胞胚发生机理的研究进展   总被引:1,自引:0,他引:1  
棉花是一种较难通过体细胞胚发生完成植株再生的作物,而体细胞胚发生是限制棉花基因工程和细胞工程得以广泛应用的主要因素.研究者从不同角度探讨了棉花体细胞胚发生机理并取得了很大的进展,为棉花的遗传转化提供了重要的技术支持,同时成功建立了一些棉花植株再生体系.本文分别从基因型限制、胚胎学、生理生化变化、分子机理等方面阐述了近年来棉花体细胞发生机制的研究进展,并讨论了本研究领域目前存在的主要问题及相应对策.  相似文献   

7.
8.
Plant regeneration via somatic embryogenesis in cotton   总被引:6,自引:0,他引:6  
An efficient in vitro plant regeneration system characterized by rapid and continuous production of somatic embryos using leaf and stem explants of abnormal seedling as an explant have been developed in Gossypium hirsutum L. Embryogenic callus and somatic embryos have been obtained directly from the explants of cotton abnormal seedlings. Plant growth regulators influenced the induction of cotton somatic embryogenesis. The optimal medium for direct somatic embryogenesis was modified MS medium supplemented with 0.1 mg l-1 ZT and 2 g l-1 activated carbon. On this medium, an average of 28.0 and 28.1 matured somatic embryos formed from per leaf and stem explants respectively. The highest frequency of somatic embryogenesis was 100%. The somatic embryos were converted into normal plantlets when cultured on modified MS medium supplemented with 0.1 mg l-1 ZT. Upon transfer to soil, plants grew well and appeared normal. Plants could be regenerated within 60–80 days. The system of cotton somatic embryogenesis and plant regeneration described here will facilitate the application of plant tissue culture and genetic engineering on cotton genetic improvement. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The effect of a three-component oligosaccharide fragment of xyloglucan FucGalXyl (XG3) on callus-tissue growth and somatic embryogenesis was investigated in a cotton (Gossypium hirsutumL.) cell suspension culture. The oligosaccharide introduced into an induction medium at 10–8and 10–7M concentrations did not affect the frequency of callus formation from hypocotyl segments; however, it enhanced the monthly increment of callus-tissue weight 1.5- and 3-fold, respectively. Induction and culturing of the callus on an XG3-containing medium adversely affected its morphogenetic potential. Addition of XG3 to the culture medium during the cell suspension preparation stimulated cell division resulting, after 40 days, in a 3.4-fold (at 10–8M XG3) and a 1.7-fold (at 10–7M XG3) increase in the cell number as compared to the control. Exclusion of 2,4-D, kinetin, and oligosaccharide from the culture medium caused, after two weeks, a 3.8-fold increase in the number of embryos in the 10–7M XG3-treated suspension culture as compared to the control. The stimulation of somatic embryogenesis by the oligosaccharide was accompanied by a 12-fold decrease in ethylene emission. The morphogenetic effect of oligosaccharide is suggested to result from its anti-auxin action, which, in particular, inhibited the auxin-dependent ethylene synthesis.  相似文献   

10.
A simple and efficient method for high frequency somatic embryogenesis and plant regeneration from hypocotyl-derived cultures and suspension cultures of Gossypium klotzschianum Anderss, a wild, diploid species of cotton is described here. Embryogenic cultures were induced from hypocotyl sections on MSB medium with 0.9 M 2,4-D and 2.32 M kinetin. MSB medium containing 0.045 M 2,4-D, 0.93 M kinetin, 2.46 M IBA promoted embryogenic culture proliferation and embryo development. Suspension cultures with 0.23 M 2,4-D and 0.93 M kinetin also produced many embryos. Somatic embryos cultured on MSB medium with PGRs produced secondary embryos, and embryos developed into normal plantlets on PGR-free MSB medium. Regenerated plantlets were transferred onto the quarter-strength MSB medium with 0.5% active charcoal to avoid recallusing. Hypocotyls were better than cotyledons for culture induction and plant regeneration. 2,4-D and kinetin were essential for culture induction and maintenance.  相似文献   

11.
Effects of kanamycin on tissue culture and somatic embryogenesis in cotton   总被引:5,自引:0,他引:5  
The aminoglycoside antibiotic kanamycin was evaluated for its effects on callus initiation from hypocotyl and cotyledon explants, proliferation of non-embryogenic and embryogenic calli, initiation and development of somatic embryos in cotton (Gossypium hirsutum L.). On this basis, the potential use of kanamycin as a selective agent in genetic transformation with the neomycin phosphotransferase II gene as the selective marker gene was evaluated. Cotton cotyledon and hypocotyl explants, and embryogenic calluses were highly sensitive to kanamycin. Kanamycin at 10 mg/L or higher concentrations reduced callus formation, with complete inhibition at 60 mg/L. Kanamycin inhibited embryogenic callus growth and proliferation, as well as the initiation and development of cotton somatic embryos. The sensitivity of embryogenic callus and somatic embryos to kanamycin was different during the initiation and development stages. Kanamycin was considered as a suitable selective agent for transformed callus formation and growth of non-embryogenic callus. Forty to sixty mg/L was the optimal kanamycin concentration for the induction and proliferation of transformed callus. The concentration of kanamycin must be increased (from 50 to 200 mg/L) for the selection of transformation embryogenic callus and somatic embryos. A scheme for selection of transgenic cotton plants when kanamycin is used as the selection agent is discussed.  相似文献   

12.
Calli of cotton (Gossypium hirsutum L.) initiated from seedling hypocotyl tissue were placed in liquid suspension and maintained by serial subculture in hormone-free Murashige and Skoog (MS) medium. Suspensions were sieved and globular embryos collected, washed, resuspended in basal medium and plated onto various semi-solid media. High inorganic salts (MS), low salt (2/3 MS), excess KNO3, and the growth regulators napthaleneacetic acid (NAA), gibberellic acid (GA3) and kinetin were tested for their effects on somatic embryo maturation. Long-term embryo proliferation and maturation were best on medium containing MS plus 1.9g/l KNO3. Embryos 3 mm to 10 mm in size were removed from this plating medium and placed on sterile vermiculite saturated with Stewart and Hsu's medium plus 0.1 mg/l indoleacetic acid (IAA). Plants were recovered from 10.6% of the embryos. When 5 mm embryos were placed on this medium, 30% of the embryos formed plants within six weeks. Smaller embryos required a longer period of development on the vermiculite and the addition of fresh medium supplemented with 0.1 mg/l GA3. Plants with an extensive root system and two true leaves were removed from sterile culture and potted in either one-to-one peat and sand, or vermiculite. Eighty percent of the regenerants were successfully hardened when glass beakers of increasing size (10 to 150 ml) were sequentially placed over the young plants during a two-week period.  相似文献   

13.
Tissue culture methods for improvement of cotton has lagged seriously compared to other major crops. A method for regeneration of cotton which includes a morphogenetically competent cell suspension was needed to facilitate selection of stress-resistant variants and gene manipulation. Preliminary screening of eight strains of Gossypium hirsutum L. for embryogenic potential resulted in the production of somatic embryos in all strains. Coker 312 was selected for use in the development of a model regeneration system for G. hirsutum. Calli were initiated from hypocotyl tissues of 3-day-old-seedlings. Globular embryos were present after six weeks in culture. Calli were subcultured to liquid suspension in growth regulator-free medium. After three to four weeks, suspensions were sieved to collect globular and heart stage embryos. Collected embryos developed further when plated onto semi-solid medium. To induce germination and plantlet growth, mature embryos were placed on sterile vermiculite saturated with medium. Upon development of roots and two true leaves, plantlets were potted in peat and sand, and hardened. Mature plants and progeny have been obtained with this procedure. A high percentage of infertile plants was observed among the regenerants.Abbreviations NAA 1 naphthaleneacetic acid - IAA indole-3-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - MS Murashige and Skoog - BA 6 benzylamino purine - 2i P N6-(2-isopentenyladenine  相似文献   

14.
Optimal media for induction of somatic embryogenesis from mature and immature tissues ofG. hirsutum L. cv Coker 312 were determined. Explants of three-day-old seedlings form somatic embryos in 100% of cultures when treated with 0.1 mg/1 2,4-dichlorophenoxyacetic acid plus 0.5 mg/1 kinetin. Mature tissues are more recalcitrant than immature tissues and formed somatic embryos on a limited number of hormone treatments. Stem tissue is most readily induced to form somatic embryos by 2 mg/1 napthaleneacetic acid plus 0.1 mg/1 kinetin, whereas leaf tissue formed embryos best when treated with 0.1 mg/1 2,4-dichlorophenoxyacetic acid plus 1.0 mg/1 (2-isopentyl)-adenine, or 1.0 mg/1 napthaleneacetic acid plus 0.5 mg/1 (2-isopentyl)-adenine.  相似文献   

15.
Successful shoot and root induction were obtained from shoot apices of two cotton (Gossypium hirsutum L.) genotypes, Nazilli 84S and Çukurova 1518, which are widely planted in Turkey. Plant tissue culture systems were established on Murashige and Skoog (MS) medium supplemented with various plant growth regulators using seven-day-old shoot apices as explants. The shoot apex size was of 2–3 mm; it contained the meristem and unexpanded leaves. Shoot apices were placed on MS plus vitamins and combinations of various plant hormones. The best regeneration responses were obtained for cv. Nazilli 84S (98%) on MS + 0.1 mg/l kinetin (KIN) + 1 g/l polyvinylpyrrolidone (PVP) and for Çukurova 1518 (94%) on MS + 0.1 mg/l KIN + 2 mg/l NAA + 1 g/l PVP. Including germination, all regeneration and rooting processes lasted only 5 weeks. The shoot apices of both genotypes developed successfully without intervening callus formation, and no significant differences between cultivars were found. All regenerated plants of both genotypes were phenotypically normal and set seeds. This shoot meristem-based rapid regeneration method can also be used in the cases of biolistic and Agrobacterium-mediated transformation.  相似文献   

16.
Abstract Diurnal cycling of osmotic potential was studied in leaves of cotton plants (Gossypium hirsutum L.) grown in the field. Osmotic potential was determined by a pressure-volume procedure as the value coinciding with zero turgor. In plants grown under favourable conditions (no water stress or N stress), osmotic potential at zero-turgor measured at midday was initially about 0.3 MPa lower than before dawn, but this cycling disappeared during the season as the number of fruits per plant increased. In water-stressed or N-deficient plants, osmotic cycling was decreased or even eliminated. Across treatments, cycling of osmotic potential occurred only when plants carried at least 560 cm2 of leaf area per fruit. The results are interpreted to mean that diurnal cycling of osmotic potential reveals a ‘sink-limited’ condition within the plant.  相似文献   

17.
Plant regeneration by somatic embryogenesis was attempted with diploid (Musa acuminata ssp. malaccensis) and triploid ('Grand Nain') bananas. Explants inoculated in vitro were, respectively, immature zygotic embryos and male flower bud primordia. An histological study showed that the embryogenic process involves a sequence of similar events for both species. A yellow-green compact callus was initiated, which consisted of an actively dividing meristematic zone surrounded by several layers of starchy cells. A white and friable callus, characterized by the presence of proembryonic cells, bicellular proembryos and proembryonal masses in its periphery gradually appeared, which finally gave rise to somatic embryos from which plants were recovered. Induction media contained 2,4-D (and also NAA and IAA for the triploid); zeatin and kinetin were necessary for embryo maturation and 6-BA and IAA were used for germination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Embryogenesis in cotton is a difficult task due its genome dependency. We used 3 cotton cultivars (Khandwa-2, G. Cot. 10, and BC-68–2) and Coker-312 as control for regeneration. Efficient somatic embryogenesis was induced in agronomically important Indian cotton cultivars, Khandwa-2 and G. Cot. 10. For callusing in all the cultivars, different media combinations were tried. Embryogenesis was initiated on a hormone-free MS medium (MSB). For embryo maturation and recovery excess of L-glutamine and l-asparagine were used. Khandwa-2 somatic embryos were successfully regenerated into plants. However, no plantlet was obtained in case of G. Cot. 10. Callus induction was also observed in BC-68–2 but there was no embryogenesis observed. The study indicated that the medium and genotype significantly effects embryogenesis. An efficient protocol is described here for regenerating plants via somatic embryogenesis in an elite Indian cotton cultivar Khandwa-2.  相似文献   

19.
A recombinant inbred line mapping population of intra-species upland cotton was generated from a cross between the drought-tolerant female parent (AS2) and the susceptible male parent (MCU13). A linkage map was constructed deploying 1,116 GBS-based SNPs and public domain-based 782 SSRs spanning a total genetic distance of 28,083.03 cM with an average chromosomal span length of 1,080.12 cM with inter-marker distance of 10.19 cM.A total of 19 quantitative trait loci (QTLs) were identified in nine chromosomes for field drought tolerance traits. Chromosomes 3 and 8 harbored important drought tolerant QTLs for chlorophyll stability index trait while for relative water content trait, three QTLs on chromosome 8 and one QTL each on chromosome 4, 12 were identified. One QTL on each chromosome 8, 5, and 7, and two QTLs on chromosome 15 linking to proline content were identified. For the nitrate reductase activity trait, two QTLs were identified on chromosome 3 and one on each chromosome 8, 13, and 26. To complement our QTL study, a meta-analysis was conducted along with the public domain database and resulted in a consensus map for chromosome 8. Under field drought stress, chromosome 8 harbored a drought tolerance QTL hotspot with two in-house QTLs for chlorophyll stability index (qCSI01, qCSI02) and three public domain QTLs (qLP.FDT_1, qLP.FDT_2, qCC.ST_3). Identified QTL hotspot on chromosome 8 could play a crucial role in exploring abiotic stress-associated genes/alleles for drought trait improvement.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01041-y.  相似文献   

20.
The biosynthesis of cotton ( Gossypium hirsutum L. 'Stoneville 208') peroxidase (EC 1.11.1.7) has been investigated in an organ culture system, since this enzyme may play a role in cell wall biogenesis or host defense mechanisms. Electrophoretic analysis of proteins from cotton ovule cultures indicated relatively few proteins being released into the surrounding medium. De novo synthesis of released peroxidase and other medium proteins was determined by in vivo labeling of ovule cultures with [35S]-methionine. Analysis of labeled culture medium by denatured gel electrophoresis followed by fluorography showed incorporation of isotope into 2 major proteins with molecular weights of 30 kD and 56 kD, as well as a limited number of minor proteins. Similar analysis of native isoelectric focusing gels coupled with autoradiography demonstrated [35S]-methionine incorporation into 2 major proteins with pI values of 4.3 and 5.0. The pI 5.0 protein was shown to have a molecular weight of 30 kD. The pI 4.3 protein had a molecular weight of 56 kD and was shown to be peroxidase by activity staining. Minor radiolabeled proteins were observed in the cationic region of the isoelectric focusing gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号