首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An apurinic/apyrimidinic (AP) site is one of the most abundant lesions spontaneously generated in living cells and is also a reaction intermediate in base excision repair. In higher eukaryotes, there are two alternative pathways for base excision repair: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Here we have reconstituted PCNA-dependent repair of AP sites with six purified human proteins: AP endonuclease, replication factor C, PCNA, flap endonuclease 1 (FEN1), DNA polymerase delta, and DNA ligase I. The length of nucleotides replaced during the repair reaction (patch size) was predominantly two nucleotides, although longer patches of up to seven nucleotides could be detected. Neither replication protein A nor Ku70/80 enhanced the repair activity in this system. Disruption of the PCNA-binding site of either FEN1 or DNA ligase I significantly reduced efficiency of AP site repair but did not affect repair patch size.  相似文献   

2.
Greenberg MM  Weledji YN  Kim J  Bales BC 《Biochemistry》2004,43(25):8178-8183
2-Deoxyribonolactone (L) and the C4'-oxidized abasic site (C4-AP) are produced by a variety of DNA-damaging agents. If not repaired, these lesions can be mutagenic. Exonuclease III and endonuclease IV are the major enzymes in E. coli responsible for 5'-incision of abasic sites (APs), the first steps in AP repair. Endonuclease III efficiently excises AP lesions via intermediate Schiff-base formation. Incision of L and C4-AP lesions by exonuclease III and endonuclease IV was determined under steady-state conditions using oligonucleotide duplexes containing the lesions at defined sites. An abasic lesion (AP) in an otherwise identical DNA sequence was incised by exonuclease III or endonuclease IV approximately 6-fold more efficiently than either of the oxidized abasic sites (L, C4-AP). Endonuclease IV incision efficiency of 2-deoxyribonolactone or C4-AP was independent of whether the lesion was opposite dA or dG. 2-Deoxyribonolactone is known to cross-link to endonuclease III (Hashimoto, M. (2001) J. Am. Chem. Soc. 123, 3161.). However, the C4-AP lesion is efficiently excised by endonuclease III. Oxidized abasic site repair by endonuclease IV and endonuclease III (C4-AP only) is approximately 100-fold less efficient than repair by exonuclease III. These results suggest that the first step of C4-AP and L oxidized abasic site repair will be the same as that of regular AP lesions in E. coli.  相似文献   

3.
Nonhomologous end joining (NHEJ) is essential for efficient repair of chromosome breaks. However, the NHEJ ligation step is often obstructed by break-associated nucleotide damage, including base loss (abasic site or 5'-dRP/AP sites). Ku, a 5'-dRP/AP lyase, can excise such damage at ends in preparation for the ligation step. We show here that this activity is greatest if the abasic site is within a short 5' overhang, when this activity is necessary and sufficient to prepare such termini for ligation. In contrast, Ku is less active near 3' strand termini, where excision would leave a ligation-blocking α,β-unsaturated aldehyde. The Ku AP lyase activity is also strongly suppressed by as little as two paired bases 5' of the abasic site. Importantly, in vitro end joining experiments show that abasic sites significantly embedded in double-stranded DNA do not block the NHEJ ligation step. Suppression of the excision activity of Ku in this context therefore is not essential for ligation and further helps NHEJ retain terminal sequence in junctions. We show that the DNA between the 5' terminus and the abasic site can also be retained in junctions formed by cellular NHEJ, indicating that these sites are at least partly resistant to other abasic site-cleaving activities as well. High levels of the 5'-dRP/AP lyase activity of Ku are thus restricted to substrates where excision of an abasic site is required for ligation, a degree of specificity that promotes more accurate joining.  相似文献   

4.
Hazel RD  Tian K  de Los Santos C 《Biochemistry》2008,47(46):11909-11919
Ionizing radiation produces clustered lesions in DNA. Since the orientation of bistranded lesions affects their recognition by DNA repair enzymes, clustered damages are more difficult to process and thus more toxic than single oxidative lesions. In order to understand the structural determinants that lead to differential recognition, we used NMR spectroscopy and restrained molecular dynamics to solve the structure of two DNA duplexes, each containing two stable abasic site analogues positioned on opposite strands of the duplex and staggered in the 3' (-1 duplex, (AP) 2-1 duplex) or 5' (+1 duplex, (AP) 2+1 duplex) direction. Cross-peak connectivities observed in the nonexchangeable NOESY spectra indicate compression of the helix at the lesion site of the duplexes, resulting in the formation of two abasic bulges. The exchangeable proton spectra show the AP site partner nucleotides forming interstrand hydrogen bonds that are characteristic of a Watson-Crick G.C base pairs, confirming the extra helical nature of the AP residues. Restrained molecular dynamics simulations generate a set of converging structures in full agreement with the spectroscopic data. In the (AP) 2-1 duplex, the extra helical abasic site residues reside in the minor groove of the helix, while they appear in the major groove in the (AP) 2+1 duplex. These structural differences are consistent with the differential recognition of bistranded abasic site lesions by human AP endonuclease.  相似文献   

5.
The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms.  相似文献   

6.
S Jin  D T Weaver 《The EMBO journal》1997,16(22):6874-6885
Heterodimers of the 70 and 80 kDa Ku autoantigens (Ku70 and Ku80) activate the DNA-dependent protein kinase (DNA-PK). Mutations in any of the three subunits of this protein kinase (Ku70, Ku80 and DNA-PKcs) lead to sensitivity to ionizing radiation (IR) and to DNA double-strand breaks, and V(D)J recombination product formation defects. Here we show that the IR repair, DNA end binding and DNA-PK defects in Ku70-/- embryonic stem cells can be counteracted by introducing epitope-tagged wild-type Ku70 cDNA. Truncations and chimeras of Ku70 were used to identify the regions necessary for DNA end binding and IR repair. Site-specific mutational analysis revealed a core region of Ku70 responsible for DNA end binding and heterodimerization. The propensity for Ku70 to associate with Ku80 and to bind DNA correlates with the ability to activate DNA-PK, although two mutants showed that the roles of Ku70 in DNA-PK activation and IR repair are separate. Mutation of DNA-PK autophosphorylation sites and other structural motifs in Ku70 showed that these sites are not necessary for IR repair in vivo. These studies reveal Ku70 features required for double-strand break repair.  相似文献   

7.
The interaction of nucleotide excision repair (NER) proteins (XPC-HR23b, RPA, and XPA) with 48-mer DNA duplexes containing the bulky lesion-mimicking fluorescein-substituted derivative of dUMP (5-{3-[6-(carboxyamidofluo-resceinyl)amidocapromoyl]allyl}-2′-deoxyuridine-5′-monophosphate) in a cluster with a lesion of another type (apurinic/apyrimidinic (AP) site) has been studied. It is shown that XPC-HR23b is modified to a greater extent by the DNA duplex containing an AP site opposite nucleotide adjacent to the fluorescein residue than by DNA containing an AP site shifted to the 3′-or 5′-end of the DNA strand. The efficiency of XPA modification by DNA duplexes containing both AP site and fluorescein residue is higher than that by DNA lacking the bulky lesion; the modification pattern in this case depends on the AP site position. In accordance with its major function, RPA interacts more efficiently with single-stranded DNA than with DNA duplexes, including those bearing bulky lesions. The observed interaction between the proteins involved in nucleotide excision repair and DNA structures containing a bulky lesion processed by NER and the AP site repaired via base excision repair may be significant for both these repair pathways in cells and requires the specific sequence of repair of clustered DNA lesions.  相似文献   

8.
DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer   总被引:5,自引:0,他引:5  
  相似文献   

9.
Base excision repair is a major pathway for the removal of simple lesions in DNA including base damage and base loss (abasic site). Base excision repair requires the coordinated action of several repair and ancillary proteins, the impairment of which can lead to genetic instability. Using a protein-DNA cross-linking assay during repair in human whole cell extracts, we monitored proteins involved in the initial steps of repair of a substrate containing a site-specific abasic site to address the molecular events following incision of the abasic site by AP endonuclease. We find that after dissociation of AP endonuclease from the incised abasic site, both DNA polymerase beta (Pol beta) and the DNA ligase IIIalpha-XRCC1 heterodimer efficiently bind/cross-link to the substrate DNA. We also find that the cross-linking efficacy of the DNA ligase IIIalpha-XRCC1 heterodimer was decreased about 2-fold in the Pol beta-deficient cell extract but was rescued by addition of purified wild type but not a mutant Pol beta protein that does not interact with the DNA ligase IIIalpha-XRCC1 heterodimer. We further demonstrate that Pol beta and the DNA ligase IIIalpha-XRCC1 heterodimer are present at equimolar concentrations in whole cell extracts and that Pol beta has a 7-fold higher affinity to the incised abasic site containing substrate than DNA ligase IIIalpha. Using gel filtration of whole cell extracts prepared at physiological salt conditions (0.15 M NaCl), we find no evidence for a stable preexisting complex of DNA Pol beta with the DNA ligase IIIalpha-XRCC1 heterodimer. Taken together, these data suggest that following incision by AP endonuclease, DNA Pol beta recognizes and binds to the incised abasic site and promotes recruitment of the DNA ligase IIIalpha-XRCC1 heterodimer through its interaction with XRCC1.  相似文献   

10.
A unique characteristic of ionizing radiation and radiomimetic anticancer drugs is the induction of clustered damage: two or more DNA lesions (oxidized bases, abasic sites, or strand breaks) occurring in the same or different strands of the DNA molecule within a single turn of the helix. In spite of arising at a lower frequency than single lesions, clustered DNA damage represents an exotic challenge to the repair systems present in the cells and, in some cases, these lesions may escape detection and/or processing. To understand the structural properties of clustered DNA lesions we have prepared two oligodeoxynucleotide duplexes containing adjacent tetrahydrofuran residues (abasic site analogues), positioned one in each strand of the duplex in a 5' or 3' orientation, and determined their solution structure by NMR spectroscopy and molecular dynamics simulations. The NMR data indicate that both duplex structures are right-handed helices of high similarity outside the clustered damage site. The thermal stability of the duplexes is severely reduced by the presence of the abasic residues, especially in a 5' orientation where the melting temperature is 5 degrees C lower. The structures show remarkable differences at the lesion site where the extrahelical location of the tetrahydrofuran residues in the (AP)(2)-5'-staggered duplex contrasts with their smooth alignment along the sugar-phosphate backbone in the (AP)(2)-3'-staggered duplex.  相似文献   

11.
Loss of a base in DNA, i.e., creation of an abasic site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously, or under the action of radiations and alkylating agents, or enzymatically as an intermediate in the repair of modified or abnormal bases. The abasic site lesion is mutagenic or lethal if not repaired. From a chemical point of view,the abasic site is an alkali-labile residue that leads to strand breakage through beta- and delta- elimination. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of synthetic abasic duplexes. Several efficient synthetic methods have thus been developed to introduce the lesion (or a stable analogue) at defined position in the sequence. Physicochemical and spectroscopic examination of such duplexes, including calorimetry, melting temperature, high-field nmr and molecular modeling indicate that the lesion strongly destabilizes the duplex, although remaining in the canonical B-form with structural modifications strictly located at the site of the lesion. Probes have been developed to titrate the damage in DNA in vitro. Series of molecules have been devised to recognize specifically the abasic site, exhibiting a cleavage activity and mimicking the AP nucleases. Others have been prepared that bind strongly to the abasic site and show promise in potentiating the cytotoxic and antitumor activity of the clinically used nitrosourea (bis-chloroethylnitrosurea).  相似文献   

12.
DNA glycosylases are key enzymes in the first step of base excision DNA repair, recognizing DNA damage and catalyzing the release of damaged nucleobases. Bifunctional DNA glycosylases also possess associated apurinic/apyrimidinic (AP) lyase activity that nick the damaged DNA strand at an abasic (or AP) site, formed either spontaneously or at the first step of repair. NEIL1 is a bifunctional DNA glycosylase capable of processing lesions, including AP sites, not only in double-stranded but also in single-stranded DNA. Here, we show that proteins participating in DNA damage response, YB-1 and RPA, affect AP site cleavage by NEIL1. Stimulation of the AP lyase activity of NEIL1 was observed when an AP site was located in a 60 nt-long double-stranded DNA. Both RPA and YB-1 inhibited AP site cleavage by NEIL1 when the AP site was located in single-stranded DNA. Taking into account a direct interaction of YB-1 with the AP site, located in single-stranded DNA, and the high affinity of both YB-1 and RPA for single-stranded DNA, this behavior is presumably a consequence of a competition with NEIL1 for the DNA substrate. Xeroderma pigmentosum complementation group C protein (XPC), a key protein of another DNA repair pathway, was shown to interact directly with AP sites but had no effect on AP site cleavage by NEIL1.  相似文献   

13.
Naturally occurring abasic sites in DNA exist as an equilibrium mixture of the aldehyde, the hydrated aldehyde, and the hemiacetal forms (dominant). The influence of the configuration of the C1' hydroxyl group of the hemiacetal form on duplex structure and abasic site repair has been examined using novel carbocyclic analogues. Both the alpha- and beta-forms of this novel abasic site were introduced into oligomeric DNA using the standard DMT-phosphoramidite approach in an automated solid-phase synthesizer. Solution structures of the d(CGTACXCATGC).d(GCATGAGTACG) duplex (where X is the alpha- or beta-anomer of the carbocyclic abasic site analogue) were determined by NMR spectroscopy and restrained molecular dynamics simulations. The structures were only minimally perturbed by the presence of either anomer of the abasic site. All residues adopted an anti conformation, and Watson-Crick alignments were observed on all base pairs of the duplexes. At the lesion site, the abasic residues and their partner adenines showed increased dynamic behavior but adopted intrahelical positions in the final refined structures. Incision of duplexes having the alpha- or beta-anomer of the carbocyclic abasic site by human AP endonuclease showed that the enzyme recognizes both configurations of the lesion and nicks the DNA backbone with similar efficiency. Our results challenge the suggestion that Ape1 is stereoselective and imply a plasticity at the active site of the enzyme for accommodating either anomer of the lesion.  相似文献   

14.
One of the most frequent lesions formed in cellular DNA are abasic (apurinic/apyrimidinic, AP) sites that are both cytotoxic and mutagenic, and must be removed efficiently to maintain genetic stability. It is generally believed that the repair of AP sites is initiated by the AP endonucleases; however, an alternative pathway seems to prevail in Schizosaccharomyces pombe. A mutant lacking the DNA glycosylase/AP lyase Nth1 is very sensitive to the alkylating agent methyl methanesulfonate (MMS), suggesting a role for Nth1 in base excision repair (BER) of alkylation damage. Here, we have further evaluated the role of Nth1 and the second putative S.pombe AP endonuclease Apn2, in abasic site repair. The deletion of the apn2 open reading frame dramatically increased the sensitivity of the yeast cells to MMS, also demonstrating that the Apn2 has an important function in the BER pathway. The deletion of nth1 in the apn2 mutant strain partially relieves the MMS sensitivity of the apn2 single mutant, indicating that the Apn2 and Nth1 act in the same pathway for the repair of abasic sites. Analysis of the AP site cleavage in whole cell extracts of wild-type and mutant strains showed that the AP lyase activity of Nth1 represents the major AP site incision activity in vitro. Assays with DNA substrates containing base lesions removed by monofunctional DNA glycosylases Udg and MutY showed that Nth1 will also cleave the abasic sites formed by these enzymes and thus act downstream of these enzymes in the BER pathway. We suggest that the main function of Apn2 in BER is to remove the resulting 3′-blocking termini following AP lyase cleavage by Nth1.  相似文献   

15.
16.
DNA-dependent protein kinase (DNA-PK) is composed of a 460-kDa catalytic subunit and the regulatory subunits Ku70 and Ku80. The complex is activated on DNA damage and plays an essential role in double-strand-break repair and V(D)J recombination. In addition, DNA-PK is involved in S-phase checkpoint arrest following irradiation, although its role in damage-induced checkpoint arrest is not clear. In an effort to understand the role of DNA-PK in damage signaling, human and mouse cells containing the DNA-PK catalytic subunit (DNA-PKcs proficient) were compared with those lacking DNA-PKcs for c-Jun N-terminal kinase (JNK) activity that mediates physiologic responses to DNA damage. The DNA-PKcs-proficient cells showed much tighter regulation of JNK activity after DNA damage, while the level of JNK protein in both cell lines remained unchanged. The JNK proteins physically associated with DNA-PKcs and Ku70/Ku80 heterodimer, and the interaction was significantly stimulated after DNA damage. Various JNK isoforms not only contained a DNA-PK phosphorylation consensus site (serine followed by glutamine) but also were phosphorylated by DNA-PK in vitro. Together, our results suggest that DNA damage induces physical interaction between DNA-PK and JNK, which may in turn negatively affect JNK activity through JNK phosphorylation by DNA-PK.  相似文献   

17.
Tian K  McTigue M  de los Santos C 《DNA Repair》2002,1(12):1039-1049
Clustered DNA damage is a hallmark of ionizing radiation. These complex lesions, composed of any combination of oxidized bases, abasic sites, or strand breaks within one helical turn, create a tremendous challenge for the base excision repair system, which must process the damage without generating cytotoxic double strand breaks (DSB). Clustered lesions affect the DNA incision activity of DNA glycosylases and AP endonucleases. Different levels of enzyme inhibition are dependent on lesion identity, orientation and separation. Very little is known about the simultaneous action of both classes of enzymes, which may lead to the creation of DSB. We have developed a novel substrate system of double-labeled hairpin duplexes, which allows the simultaneous determination of enzyme incision and formation of DBS. We use this system to study the processing of four clustered 8-oxoguanine/abasic site lesions by purified mouse Ogg1, human Ape1 and mouse embryonic stem cell nuclear extracts. Ape1 activity is least affected by the presence of a nearby oxidized base. In contrast, an abasic site inhibits the glycosylase and lyase activities of Ogg1 in an orientation-dependent manner. The combined action of both enzymes leads to the preferential formation of DSB with 5'-overhang ends. Processing of clusters by nuclear extracts displayed similar patter of enzyme inhibition and the same preference for avoiding double strand breaks with 3'-overhang ends.  相似文献   

18.
Localized clustering of damage is a hallmark of certain DNA-damaging agents, particularly ionizing radiation. The potential for genetic change arising from the effects of clustered damage sites containing combinations of AP sites, 8-oxo-7,8-dihydroguanine (8-oxoG) or 5,6-dihydrothymine is high. To date clusters containing a DNA base lesion that is a strong block to replicative polymerases, have not been explored. Since thymine glycol (Tg) is non-mutagenic but a strong block to replicative polymerases, we have investigated whether clusters containing Tg are highly mutagenic or lead to potentially cytotoxic lesions, when closely opposed to either 8-oxoG or an AP site. Using a bacterial plasmid-based assay and repair assays using cell extracts or purified proteins, we have shown that DNA double-strand breaks (DSBs) arise when Tg is opposite to an AP site, either through attempted base excision repair or at replication. In contrast, 8-oxoG opposite to Tg in a cluster ‘protects’ against DSB formation but does enhance the mutation frequency at the site of 8-oxoG relative to that at a single 8-oxoG, due to the decisive role of endonucleases in the initial stages of processing Tg/8-oxoG clusters, removing Tg to give an intermediate with an abasic site or single-strand break.  相似文献   

19.
The Ku70/80 heterodimer is a major player in non-homologous end joining and the repair of DNA double-strand breaks. Studies suggest that once bound to a DNA double-strand break, Ku recruits the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) to form the DNA-dependent protein kinase holoenzyme complex (DNA-PK). We previously identified four DNA-PK phosphorylation sites on the Ku70/80 heterodimer: serine 6 of Ku70, serine 577 and 580 and threonine 715 of Ku80. This raised the interesting possibility that DNA-PK-dependent phosphorylation of Ku could provide a mechanism for the regulation of non-homologous end joining. Here, using mass spectrometry and phosphospecific antibodies we confirm that these sites are phosphorylated in vitro by purified DNA-PK. However, we show that neither DNA-PK nor the related protein kinase ataxia-telangiectasia mutated (ATM) is required for phosphorylation of Ku at these sites in vivo. Furthermore, Ku containing serine/threonine to alanine mutations at these sites was fully able to complement the radiation sensitivity of Ku negative mammalian cells indicating that phosphorylation at these sites is not required for non-homologous end joining. Interestingly, both Ku70 and Ku80 were phosphorylated in cells treated with the protein phosphatase inhibitor okadaic acid under conditions known to inactivate protein phosphatase 2A-like protein phosphatases. Moreover, okadaic acid-induced phosphorylation of Ku80 was inhibited by nanomolar concentrations of the protein kinase inhibitor staurosporine. These results suggest that the phosphorylation of Ku70 and Ku80 is regulated by a protein phosphatase 2A-like protein phosphatase and a staurosporine sensitive protein kinase in vivo, but that DNA-PK-mediated phosphorylation of Ku is not required for DNA double-strand break repair.  相似文献   

20.
Greenberg MM  Weledji YN  Kroeger KM  Kim J 《Biochemistry》2004,43(48):15217-15222
Abasic lesions are unable to form Watson-Crick hydrogen bonds with nucleotides. Nonetheless, polymerase and repair enzymes distinguish between various oxidized abasic lesions, as well as from nonoxidized abasic sites (AP). The C2-AP lesion is produced when DNA is exposed to gamma-radiolysis. Its effects on polymerases and repair enzymes are unknown. A recently reported method for the chemical synthesis of oligonucleotides containing C2-AP at a defined site was utilized for studying the activity of Klenow exo(-) and repair enzymes on templates containing the lesion. The C2-AP lesion has a similar effect on Klenow exo(-) as do AP and C4-AP sites. Deoxyadenosine is preferentially incorporated opposite C2-AP, but extension of the primer past the lesion is strongly blocked. C2-AP is incised less efficiently by exonuclease III and endonuclease IV than are other abasic lesions. Furthermore, although a Schiff base between C2-AP and endonuclease III can be chemically trapped, the location of the 3'-phosphate alpha with respect to the aldehyde prevents beta-elimination associated with the lyase activity of type I base excision repair enzymes. The interactions of the C2'-oxidized abasic site with Klenow exo(-) and repair enzymes suggest that the lesion will be mutagenic and that it will be removed by strand displacement synthesis and flap endonuclease processing via a long patch repair mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号