首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
While fatty acids (FAs) released by white adipose tissue (WAT) provide energy for other organs, lipolysis is also critical in brown adipose tissue (BAT), generating FAs for oxidation and UCP-1 activation for thermogenesis. Here we show that adipose-specific ablation of desnutrin/ATGL in mice converts BAT to a WAT-like tissue. These mice exhibit severely impaired thermogenesis with increased expression of WAT-enriched genes but decreased BAT genes, including UCP-1 with lower PPARα binding to its promoter, revealing the requirement of desnutrin-catalyzed lipolysis for maintaining a BAT phenotype. We also show that desnutrin is phosphorylated by AMPK at S406, increasing TAG hydrolase activity, and provide evidence for increased lipolysis by AMPK phosphorylation of desnutrin in adipocytes and in?vivo. Despite adiposity and impaired BAT function, desnutrin-ASKO mice have improved hepatic insulin sensitivity with lower DAG levels. Overall, desnutrin is phosphorylated/activated by AMPK to increase lipolysis and brings FA oxidation and UCP-1 induction for thermogenesis.  相似文献   

3.
4.
Starvation is the most extensively studied condition that induces autophagy. Previous studies have demonstrated that starvation-induced autophagy is regulated by reactive oxygen species (ROS) such as superoxide (O2?) but the source for ROS under starvation conditions and the downstream signaling pathways regulating autophagy are unclear. In this study, a cervical cancer HeLa cell line was generated that was deficient in mitochondrial electron transport chain (mETC) (HeLa ρ° cells). This resulted in endogenous levels of O2? being significantly reduced and failed to be induced under starvation of glucose, L-glutamine, pyruvate, and serum (GP) or of amino acids and serum (AA) compared to wild type (wt) HeLa cells. In contrast, H2O2 production failed to increase under GP starvation in both wild type and ρ° cells whereas it increased in wt cells but not in ρ° cells under AA starvation. GP or AA starvation induced autophagy was blocked in ρ° cells as determined by the amount of autophagosomes and autolysosomes. Autophagy is regulated by 5′ adenosine monophosphate-activated protein kinase (AMPK) activation and AMPK is activated under starvation conditions. We demonstrate that ρ° cells and HeLa cells over expressing manganese-superoxide dismutase 2 (SOD2) cells fail to activate AMPK activation following starvation. This indicates that mitochondrial ROS might regulate AMPK activation. In addition, inhibiting AMPK activation either by siRNA or compound C resulted in reduced autophagy during starvation. Using a ROS scavenger NAC, AMPK activation is reduced under starvation condition and mTOR signaling is increased. Taken together, mitochondria-generated ROS induces autophagy mediated by the AMPK pathway under starvation conditions.  相似文献   

5.
Cardiac hypertrophy is positively regulated by MicroRNA miR-23a   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
Egan D  Kim J  Shaw RJ  Guan KL 《Autophagy》2011,7(6):643-644
The serine/threonine kinase ULK1 is a mammalian homolog of Atg1, part of the Atg1 kinase complex, which is the most upstream component of the core autophagy machinery conserved from yeast to mammals. In budding yeast, activity of the Atg1 kinase complex is inhibited by TORC1 (target of rapamycin complex 1), but how the counterpart ULK1 complex in mammalian cells is regulated has been unknown. Our laboratories recently discovered that AMPK associates with, and directly phosphorylates, ULK1 on several sites and this modification is required for ULK1 activation after glucose deprivation. In contrast, when nutrients are plentiful, the mTORC1 complex phosphorylates ULK1, preventing its association and activation by AMPK. These studies have revealed a molecular mechanism of ULK1 regulation by nutrient signals via the actions of AMPK and mTORC1.  相似文献   

8.
AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Together, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.  相似文献   

9.
10.
Ostrinia nubilalis larvae reared under both nondiapause and diapause-inducing conditions were chilled at 5°C for various periods and their haemolymph glycerol concentrations were measured enzymatically. The ability of fifth (final) instars to accumulate glycerol was dependent upon cold stress but not the diapause state. Furthermore this response was independent of any cold-induced release of cephalic or thoracic hormones. The capacity of O. nubilalis larvae to express cold-induced glycerol accumulation was found to require ecdysis from the fourth to fifth instar. Eggs as well as second, third and fourth instars were completely incompetent. These results indicate that, at the biochemical level, a specific developmental programme or sequence is required for O. nubilalis to demonstrate this response to cold stress.  相似文献   

11.
This study examined the time course of glycogen accumulation in skeletal muscle depleted by concentric work and subsequently subjected to eccentric exercise. Eight men exercised to exhaustion on a cycle ergometer [70% of maximal O2 consumption (VO2max)] and were placed on a carbohydrate-restricted diet. Approximately 12 h later they exercised one leg to subjective failure by repeated eccentric action of the knee extensors against a resistance equal to 120% of their one-repetition maximum concentric knee extension force (ECC leg). The contralateral leg was not exercised and served as a control (CON leg). During the 72-h recovery period, subjects consumed 7 g carbohydrate.kg body wt-1.day-1. Moderate soreness was experienced in the ECC leg 24-72 h after eccentric exercise. Muscle biopsies from the vastus lateralis of the ECC and CON legs revealed similar glycogen levels immediately after eccentric exercise (40.2 +/- 5.2 and 47.6 +/- 6.4 mmol/kg wet wt, respectively; P greater than 0.05). There was no difference in the glycogen content of ECC and CON legs after 6 h of recovery (77.7 +/- 7.9 and 85.1 +/- 4.9 mmol/kg wet wt, respectively; P greater than 0.05), but 18 h later, the ECC leg contained 15% less glycogen than the CON leg (90.2 +/- 8.2 vs. 105.8 +/- 8.9 mmol/kg wet wt; P less than 0.05). After 72 h of recovery, this difference had increased to 24% (115.8 +/- 8.0 vs. 153.0 +/- 12.2 mmol/kg wet wt; P less than 0.05). These data confirm that glycogen accumulation is impaired in eccentrically exercised muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
Serine-threonine kinase 38 (STK38) is a member of the protein kinase A (PKA)/PKG/PKC-like family. In the present study, we investigated the regulatory mechanism of STK38 and assessed its role in the cellular stress response. Among various environmental stresses, STK38 was specifically activated by H(2)O(2), and the phosphatidylinositol 3-kinase inhibitor wortmannin or AKT inhibitor IV suppressed this activation. STK38 was also activated by a constitutively active AKT1 or by GSK-3β inhibitor VII. The phosphorylation level of GSK-3β was correlated with the STK38 activity, in response to various stimuli and in different cell lines. Co-immunoprecipitation analysis revealed that GSK-3β physically interacted with STK38 in cells. GSK-3β overexpression inhibited the H(2)O(2)-stimulated STK38 activity. GSK-3β phosphorylated STK38 on residues S6 and T7 in vitro, depending largely on a PKA-mediated priming phosphorylation of STK38 on residues S10 and S11, respectively. STK38's H(2)O(2)-stimulated activity was enhanced by alanine substitution at its priming sites and/or at S6 and T7, and it was partially reduced by a phosphomimetic mutation at S6 or T7. STK38 knockdown enhanced the H(2)O(2)-induced JNK phosphorylation and cell death. Our results indicate that that GSK-3β inhibits STK38's full activation, and suggest that STK38 activation is required to prevent cell death in response to oxidative stress.  相似文献   

15.
16.
The regulation of angiotensinogen gene expression in response to adrenalectomy and dexamethasone treatment was examined in multiple rat tissues. Angiotensinogen mRNA as quantitated by slot blot hybridization utilizing an angiotensinogen cRNA probe was most abundant in the liver with levels in the brain, kidney, and adrenal of 50, 25, and 10%, respectively. No angiotensinogen mRNA was detected in testes or heart. Although no change in the quantity of angiotensinogen mRNA was found following adrenalectomy and maintenance on 0.9% saline, dexamethasone treatment of both normal and adrenalectomized rats resulted in a time-dependent and tissue-specific accumulation of angiotensinogen mRNA. In normal animals, the hepatic response to treatment was a 4.5-fold increase in angiotensinogen mRNA by 8 h which remained 2.4-fold above basal levels by 24 h. Angiotensinogen mRNA levels in the brains of normal rats treated with dexamethasone increased only 60% by 6 h and returned to basal levels by 24 h. In contrast to the increases seen in brain and liver, angiotensinogen mRNA derived from kidney did not significantly change following dexamethasone treatment. In adrenalectomized animals, the hepatic response to dexamethasone was similar to normal animals with a 3.7-fold increase by 6 h. The accumulation in brain was greater in these animals compared to normals and increased 3-fold by 8 h. Finally, dexamethasone did not significantly increase levels in the kidney. These results clearly demonstrate glucocorticoid regulation of angiotensinogen mRNA levels in liver and brain. In contrast, the kidney, an organ known to contain glucocorticoid receptors, does not respond with increased angiotensinogen mRNA levels following glucocorticoid stimulation. These studies provide the first evidence for tissue-specific differences in the control of angiotensinogen mRNA.  相似文献   

17.
Hickner, R. C., J. S. Fisher, P. A. Hansen, S. B. Racette,C. M. Mier, M. J. Turner, and J. O. Holloszy. Muscle glycogen accumulation after endurance exercise in trained and untrained individuals. J. Appl. Physiol. 83(3):897-903, 1997.Muscle glycogen accumulation was determined in sixtrained cyclists (Trn) and six untrained subjects (UT) at 6 and either48 or 72 h after 2 h of cycling exercise at ~75% peakO2 uptake(O2 peak), which terminated with five 1-min sprints. Subjects ate 10 gcarbohydrate · kg1 · day1for 48-72 h postexercise. Muscle glycogen accumulation averaged 71 ± 9 (SE) mmol/kg (Trn) and 31 ± 9 mmol/kg (UT) during the first 6 h postexercise (P < 0.01) and 79 ± 22 mmol/kg (Trn) and 60 ± 9 mmol/kg (UT) between 6 and 48 or 72 h postexercise (not significant). Muscle glycogenconcentration was 164 ± 21 mmol/kg (Trn) and 99 ± 16 mmol/kg(UT) 48-72 h postexercise (P < 0.05). Muscle GLUT-4 content immediately postexercise was threefoldhigher in Trn than in UT (P < 0.05)and correlated with glycogen accumulation rates (r = 0.66, P < 0.05). Glycogen synthase in theactive I form was 2.5 ± 0.5, 3.3 ± 0.5, and 1.0 ± 0.3 µmol · g1 · min1in Trn at 0, 6, and 48 or 72 h postexercise, respectively;corresponding values were 1.2 ± 0.3, 2.7 ± 0.5, and 1.6 ± 0.3 µmol · g1 · min1in UT (P < 0.05 at 0 h). Plasmainsulin and plasma C-peptide area under the curve were lower in Trnthan in UT over the first 6 h postexercise(P < 0.05). Plasma creatine kinaseconcentrations were 125 ± 25 IU/l (Trn) and 91 ± 9 IU/l (UT)preexercise and 112 ± 14 IU/l (Trn) and 144 ± 22 IU/l(UT; P < 0.05 vs.preexercise) at 48-72 h postexercise (normal: 30-200 IU/l).We conclude that endurance exercise training results in an increasedability to accumulate muscle glycogen after exercise.

  相似文献   

18.
AMPK beta subunit targets metabolic stress sensing to glycogen   总被引:12,自引:0,他引:12  
AMP-activated protein kinase (AMPK) is a multisubstrate enzyme activated by increases in AMP during metabolic stress caused by exercise, hypoxia, lack of cell nutrients, as well as hormones, including adiponectin and leptin. Furthermore, metformin and rosiglitazone, frontline drugs used for the treatment of type II diabetes, activate AMPK. Mammalian AMPK is an alphabetagamma heterotrimer with multiple isoforms of each subunit comprising alpha1, alpha2, beta1, beta2, gamma1, gamma2, and gamma3, which have varying tissue and subcellular expression. Mutations in the AMPK gamma subunit cause glycogen storage disease in humans, but the molecular relationship between glycogen and the AMPK/Snf1p kinase subfamily has not been apparent. We show that the AMPK beta subunit contains a functional glycogen binding domain (beta-GBD) that is most closely related to isoamylase domains found in glycogen and starch branching enzymes. Mutation of key glycogen binding residues, predicted by molecular modeling, completely abolished beta-GBD binding to glycogen. AMPK binds to glycogen but retains full activity. Overexpressed AMPK beta1 localized to specific mammalian subcellular structures that corresponded with the expression pattern of glycogen phosphorylase. Glycogen binding provides an architectural link between AMPK and a major cellular energy store and juxtaposes AMPK to glycogen bound phosphatases.  相似文献   

19.
20.
Although several reports demonstrated that accumulation of excess lipid in adipose tissue produces defects in adipocyte which leads to the disruption of energy homeostasis causing severe metabolic problems, underlying mechanism of this event remains yet unclear. Here we demonstrate that FetuinA (FetA) plays a critical role in the impairment of two metabolic sensors, SIRT1 and AMPK, in inflamed adipocytes of high fat diet (HFD) mice. A linear increase in adipocyte hypertrophy from 10 to 16 week was in tandem with the increase in FetA and that coincided with SIRT1 cleavage and decrease in pAMPK which adversely affects PGC1α activation. Knock down (KD) of FetA gene in HFD mice could significantly improve this situation indicating FetA's contribution in the damage of energy sensors in inflamed adipocyte. However, FetA effect was not direct, it was mediated through TNF-α which again is dependent on FetA as FetA augments TNF-α expression. FetA being an upstream regulator of TNF-α, its suppression prevented TNF-α mediated Caspase-1 activation and cleavage of SIRT1. FetA induced inactivation of PGC1α due to SIRT1 cleavage decreased PPARϒ, adiponectin, NRF1 and Tfam expression. All these together caused a significant fall in mitochondrial biogenesis and bioenergetics that disrupted energy homeostasis resulting loss of insulin sensitivity. Taken together, our findings revealed a new dimension of FetA, it not only induced inflammation in adipocyte but also acts as an upstream regulator of SIRT1 cleavage and AMPK activation. Intervention of FetA may be worthwhile to prevent metabolic imbalance that causes insulin resistance and type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号