首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Question: Biological soil crusts (BSCs) exist in arid and semi‐arid ecosystems worldwide, and their recovery following the removal of a disturbance agent is integral to the rehabilitation of degraded landscapes. We asked: what is the likelihood of success and time frame of BSC recovery in vegetation remnants of southeast Australia, following livestock exclusion by fencing. Location: Dryland agricultural region of northwest Victoria, Australia. Methods: We conducted a “space for time” study of BSC recovery across 21 sites where livestock have been excluded by fencing between 1 and >50 years ago, and used boosted regression tree models to explore the response of BSCs to livestock exclusion while controlling for the influence of environmental variables on BSC abundance. Results: Our results show a relatively rapid, passive recovery of BSCs following livestock exclusion, with cover stabilizing after 20 years. Sites heavily disturbed by livestock grazing at the time of fencing stabilized at a lower cover. In contrast to studies from other countries, our results suggest mosses, not cyanobacteria, are the important colonizers in our study region. Conclusions: Ecosystem function in degraded remnants of southern Australia can be improved in a relatively short time frame through passive recovery alone. This knowledge will benefit land managers choosing between restoration options in disturbed and fragmented arid‐landscapes.  相似文献   

2.
Biological soil crusts (BSCs) are comprised of soil particles, bacteria, cyanobacteria, green algae, microfungi, lichens, and bryophytes and confer many ecosystem services in arid and semiarid ecosystems worldwide, including the highly threatened California sage scrub (CSS). These services, which include stabilizing the soil surface, can be adversely affected when BSCs are disturbed. Using field and greenhouse experiments, we tested the hypothesis that mechanical disturbance of BSC increases emergence of exotic vascular plants in a coastal CSS ecosystem. At Whiting Ranch Wilderness Park in southern California, 22 plots were established and emergence of exotic and native plants was compared between disturbed and undisturbed subplots containing BSC. In a separate germination study, seed fate in disturbed BSC cores was compared to seed fate in undisturbed BSC cores for three exotic and three native species. In the field, disturbed BSCs had significantly (>3×) greater exotic plant emergence than in undisturbed BSC, particularly for annual grasses. Native species, however, showed no difference in emergence between disturbed and undisturbed BSC. Within the disturbed treatment, emergence of native plants was significantly, and three times less than that of exotic plants. In the germination study, seed fates for all species were significantly different between disturbed and undisturbed BSC cores. Exotic species had greater emergence in disturbed BSC, whereas native plants showed either no response or a positive response. This study demonstrates another critical ecosystem service of BSCs—the inhibition of exotic plant species—and underscores the importance of BSC conservation in this biodiversity hotspot and possibly in other aridland ecosystems.  相似文献   

3.
Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands.  相似文献   

4.
Biological soil crusts (BSCs) are key biotic components of dryland ecosystems worldwide that control many functional processes, including carbon and nitrogen cycling, soil stabilization and infiltration. Regardless of their ecological importance and prevalence in drylands, very few studies have explicitly evaluated how climate change will affect the structure and composition of BSCs, and the functioning of their constituents. Using a manipulative experiment conducted over 3 years in a semi-arid site from central Spain, we evaluated how the composition, structure and performance of lichen-dominated BSCs respond to a 2.4°C increase in temperature, and to an approximately 30 per cent reduction of total annual rainfall. In areas with well-developed BSCs, warming promoted a significant decrease in the richness and diversity of the whole BSC community. This was accompanied by important compositional changes, as the cover of lichens suffered a substantial decrease with warming (from 70 to 40% on average), while that of mosses increased slightly (from 0.3 to 7% on average). The physiological performance of the BSC community, evaluated using chlorophyll fluorescence, increased with warming during the first year of the experiment, but did not respond to rainfall reduction. Our results indicate that ongoing climate change will strongly affect the diversity and composition of BSC communities, as well as their recovery after disturbances. The expected changes in richness and composition under warming could reduce or even reverse the positive effects of BSCs on important soil processes. Thus, these changes are likely to promote an overall reduction in ecosystem processes that sustain and control nutrient cycling, soil stabilization and water dynamics.  相似文献   

5.
In drylands worldwide, biological soil crusts (BSC) form a thin photosynthetic cover across landscapes, and provide vital benefits in terms of stabilizing soil and fixing nitrogen (N) and carbon (C). Numerous studies have examined the effects of climate and disturbance on BSC functions; however, few have characterized these responses in rolling BSCs typical of northern ecosystems in the Intermountain West, US. With temperature increases and shifts in precipitation projected, it is unclear how BSCs in this region will respond to climate change, and how the response could affect their capacity to perform key ecosystem functions, such as providing ‘new’ N through biological N2 fixation. To address this important knowledge gap, we examined nitrogenase activity (NA) associated with rolling BSCs along a climatic gradient in southwestern Idaho, US, and quantified how acetylene reduction rates changed as a function of climate, grazing (using exclosures), and shrub-canopy association. Results show that warmer, drier climates at lower elevations hosted greater cover of late successional BSC communities (e.g., mosses and lichens), and higher NA compared with colder, wetter climates at higher elevations. Highest NA (0.5–29.3 µmol C2H4 m?2 h?1) occurred during the early summer/spring, when water was more available than in late summer/autumn. Activity was strongly associated with soil characteristics including pH and ammonium concentrations suggesting these characteristics as potentially strong controls on NA in BSCs. The relationship between grazing and NA varied with elevation. Specifically, lower elevation sites had lower NA at grazed locations, whereas higher elevation sites had higher NA with grazing. At both low and high ends of the elevation gradient, shrub-canopy associated BSCs maintained two to three times higher NA compared to BSCs in the interspace among shrubs. Taken together, our findings indicate that the controls and rates of NA in BSCs vary seasonally and strongly with climate in the Intermountain West, and that drier springs are likely to influence rates of NA more than warmer summers.  相似文献   

6.
Biological soil crusts (BSCs) are found in all dryland regions of the world, including the polar regions. They are also known to occur in the southern African region. Although there were a number of case studies on BSCs from that region, we did not know if they are a normal part of the vegetation cover or just a phenomenon that occasionally occurs here and there. In order to investigate diversity, distribution patterns, and the driving factors of both, we followed a random sampling system of observatories along a transect, stretching from the Namibian-Angolan border down south to the Cape Peninsula, covering seven different major biomes. Biological soil crusts were found to occur in six out of seven biomes. Despite the fact that soil-dwelling algae occurred in the Fynbos biome, crust formation was not observed for hitherto unknown reasons. Seven BSC types were distinguished on the basis of morphology and taxonomic composition: three of them were cyanobacteria-dominated, one with additional chlorolichens, two with bryophytes, one hypolithic type restricted to quartz gravel pavements, and the unique lichen fields of the Namib Desert. Besides 29 green algal species in 21 genera, one heterokont alga, 12 cyanolichens, 14 chlorolichens, two genera of liverworts, and three genera of mosses, these crusts are positioned among the most diverse BSCs worldwide mainly because of the unusual high cyanobacterial species richness comprising 58 species in 21 genera. They contribute considerably to the biodiversity of arid and semi-arid bioregions. Taxonomic diversity of cyanobacteria was significantly higher in the winter rain zone than in the summer rain zone (54 versus 32 species). The soil photosynthetic biomass (chlorophylla/m2), the carbon content of the soil and the number of BSC types were significantly higher in the winter rain zone (U27, 29=215.0, p=0.004 [chla]; U21, 21=135.0, p=0.031 [C]; U27, 29=261.5, p=0.028 [BSC types]; excluding the fog-dominated Namib biome). The winter rain zone is characterized by a lower precipitation amount, but a higher rain frequency with the number of rainy days more evenly distributed over the year. The dry period is significantly shorter per year in the winter rain zone (U8, 9=5.0, p=0.003). We conclude that rain frequency and duration of dry periods rather than the precipitation amount is the main factor for BSC growth and succession. Nitrogen content of the soils along the transect was generally very low and correlated with soil carbon content. There was a weak trend that an increasing proportion of silt and clay (<0.63 mm) in the soil is associated with higher values of BSC chlorophyll content (Pearson correlation coefficient=0.314, p=0.237). Furthermore, we found a significant positive correlation between silt and clay and the number of BSC types (Pearson correlation coefficient=0.519, p=0.039), suggesting that fine grain-size promotes BSC succession and their biomass content. Lichens and bryophytes occurred in BSCs with lower disturbance frequencies (e.g. trampling) only. Crust thickness and chlorophyll content increased significantly from crusts of the early successional type to the late successional crust types. From our results, we conclude that BSCs are a normal and frequent element of the vegetation in arid and semi-arid southwestern Africa, and that rain frequency and duration of dry periods rather than the precipitation amount are the key factors for the development, differentiation and composition of BSCs.  相似文献   

7.
Biological soil crusts (BSCs) can play an important role in hydrological cycles, especially in dryland ecosystems where the availability of water is limited. Many factors influence the hydrological behavior of BSCs, one of which is the microstructure. In order to describe the influence of the soil microstructure of BSCs on water redistribution, we investigated the change of the pore system of three different successional stages of BSCs, as well as their respective subcrusts in the NW Negev desert, Israel, using 2-dimensional thin sections, as well as non-invasive X-ray 3D computed microtomography (XCMT) and mercury intrusion porosimetry. Our results show that the pore system undergoes significant changes during crust succession. Both the total porosity, as well as the pore sizes significantly increased from cyano- to lichen- to mosscrust and the pore geometry changed from tortuous to straight pore shapes. We introduce two new mechanisms that contribute to the hydrological properties of the BSCs in the NW Negev that impede infiltration: (i) vesicular pores and (ii) a discontinuous pore system with capillary barrier effects, caused by a rapid change of grain sizes due to sand burial. Since both of these mechanisms are present mostly in early stage cyanobacterial crusts and their abundance decreases strongly with succession, it is very likely that they influence BSC hydrology to different extents in the various crust types and that they are partly responsible for differences in runoff in the NW Negev.  相似文献   

8.
Biological soil crusts (BSCs) cover non-vegetated areas in most arid and semiarid ecosystems. BSCs play a crucial role in the redistribution of water and sediments and, ultimately, in the maintenance of ecosystem function. The effects of BSCs on water infiltration are complex. BSCs increase porosity and micro-topography, thus enhancing infiltration, but, at the same time, they can increase runoff by the secretion of hydrophobic compounds and clogging of soil pores upon wetting. BSCs confer stability on soil surfaces, reducing soil detachment locally; however, they can also increase runoff, which may increase sediment yield. Although the key role of BSCs in controlling infiltration–runoff and erosion is commonly accepted, conflicting evidence has been reported concerning the influence of BSCs on runoff generation. Very little is known about the relative importance of different BSC features such as cover, composition, roughness, or water repellency, and the interactions of these attributes in runoff and erosion. Because BSC characteristics can affect water flows and erosion both directly and indirectly, we examined the direct and indirect effects of different BSC features on runoff and erosion in a semiarid ecosystem under conditions of natural rainfall. We built structural equation models to determine the relative importance of BSC cover and type and their derived surface attributes controlling runoff and soil erosion. Our results show that the hydrological response of BSCs varies depending on rainfall properties, which, in turn, determine the process governing overland flow generation. During intense rainfalls, runoff is controlled not only by rainfall intensity but also by BSC cover, which exerts a strong direct and indirect influence on infiltration and surface hydrophobicity. Surface hydrophobicity was especially high for lichen BSCs, thus masking the positive effect of lichen crust on infiltration, and explaining the lower infiltration rates recorded on lichen than on cyanobacterial BSCs. Under low intensity, rainfall volume exerts a stronger effect than rainfall intensity, and BSC features play a secondary role in runoff generation, reducing runoff through their effect on surface micro-topography. Under these conditions, lichen BSCs presented higher infiltration rates than cyanobacterial BSCs. Our results highlight the significant protective effect against erosion exerted by BSCs at the plot scale, enhancing surface stability and reducing sediment yield in both high- and low-magnitude rainfall events.  相似文献   

9.
氮素限制在陆地生态系统中普遍存在,在干旱受损生态系统中表现得尤为明显.生物土壤结皮是干旱、半干旱区受损生态系统植被恢复过程中的重要组成部分和氮源贡献者.以黑岱沟露天煤矿植被恢复区广泛分布的两类典型生物土壤结皮(藻类结皮和藓类结皮)为研究对象,通过野外调查采集样品,在实验室条件下测定了两类结皮的固氮活性,分析了其固氮活性对水热因子的响应特征及其与草本、结皮盖度的关系.结果表明:不同演替阶段人工植被及相邻撂荒地和天然植被下生物土壤结皮的固氮活性在9~150 μmol C2H4·m-2·h-1,藻类结皮(平均为77 μmol C2H4·m-2·h-1)显著高于藓类结皮(17 μmol C2H4·m-2·h-1).人工植被区3种常见植被类型下藻类和藓类结皮固氮活性均表现为“灌-草型”显著高于“乔-灌型”和“乔-灌-草型”.藻类和藓类结皮的固氮活性与样品相对含水量(10%~100%)和培养温度(5~45 ℃)均呈显著的二次函数关系,其固氮活性随水分、温度升高均呈先上升后下降的趋势,分别在60%和80%相对含水量时达到最大固氮速率,其最适固氮温度均为25 ℃.藻类结皮固氮活性与草本盖度呈显著的二次函数关系,草本盖度超过20%时固氮活性开始降低,藓类结皮固氮活性与草本植物盖度呈显著负相关.两类结皮固氮活性与其盖度均呈显著的正相关关系,随结皮盖度增加其固氮活性显著升高.露天煤矿植被恢复区两类生物土壤结皮固氮活性差异主要由结皮组成生物体即隐花植物的差异所致,不同植被类型下的水热差异及不同植被演替阶段草本、结皮盖度的差异是影响生物土壤结皮氮固定的关键因子,生物土壤结皮在人工植被区的拓殖发育及其氮输入是系统健康发展的重要标志.  相似文献   

10.
The Kalahari of southern Africa is characterised by sparse vegetation interspersed with microbe-dominated biological soil crusts (BSC) which deliver a range of ecosystem services including soil stabilisation and carbon fixation. We characterised the bacterial communities of BSCs (0–1 cm depth) and the subsurface soil (1–2 cm depth) in an area typical of lightly grazed Kalahari rangelands, composed of grasses, shrubs, and trees. Our data add substantially to the limited amount of existing knowledge concerning BSC microbial community structure, by providing the first bacterial community analyses of both BSCs and subsurface soils of the Kalahari region based on a high throughput 16S ribosomal RNA gene sequencing approach. BSC bacterial communities were distinct with respect to vegetation type and soil depth, and varied in relation to soil carbon, nitrogen, and surface temperature. Cyanobacteria were predominant in the grass interspaces at the soil surface (0–1 cm) but rare in subsurface soils (1–2 cm depth) and under the shrubs and trees. Bacteroidetes were significantly more abundant in surface soils of all areas even in the absence of a consolidated crust, whilst subsurface soils yielded more sequences affiliated to Acidobacteria, Actinobacteria, Chloroflexi, and Firmicutes. The common detection of vertical stratification, even in disturbed sites, suggests a strong potential for BSC recovery after physical disruption, however severe depletion of Cyanobacteria near trees and shrubs may limit the potential for natural BSC regeneration in heavily shrub-encroached areas.  相似文献   

11.
Neotropical rainforests are global biodiversity hotspots and are challenging to restore. A core part of this challenge is the very long recovery trajectory of the system: recovery of structure can take 20–190 years, species composition 60–500 years, and reestablishment of rare/endemic species thousands of years. Passive recovery may be fraught with instances of arrested succession, disclimax or emergence of novel ecosystems. In these cases, active restoration methods are essential to speed recovery and set a desired restoration trajectory. Tree plantation is the most common active approach to reestablish a high density of native tree species and facilitate understory regeneration. While this approach may speed the successional trajectory, it may not achieve, and possibly inhibit, a long-term restoration trajectory towards the high species diversity characteristic of these forests. A range of nucleation techniques (e.g., tree island planting) are important restoration options: although they may not speed recovery of structure as quickly as plantations, their emphasis on natural regeneration processes may enable greater and more natural patterns of diversity to develop. While more work needs to be done to compare forest restoration techniques in different environmental contexts, it appears that nucleation and, at times, passive restoration may best preserve the diverse legacy of these forested systems (both with lower costs). An integrated approach using both plantation productivity but also the natural functions associated with nucleation may develop composition and diversity trajectory desired in Neotropical conservation efforts.  相似文献   

12.
In arid and semiarid ecosystems, the potential threats of exotic invasive species are enhanced due to increasing human activities. Biological soil crusts (BSCs), acting as arid ecosystem engineers, may play an important role in preventing the establishment of exotic invasive plants. Our goal was to examine whether BSCs could inhibit the establishment of probable exotic plant species originating from adjacent grasslands located along the southeast edge of the Tengger Desert. In our study, we investigated the effects of three BSC types (cyanobacteria, lichen, and moss crusts) under two disturbance conditions (intact and disturbed) on the establishment of two exotic plant species (Ceratoides latens and Setaria viridis) using indoor experiments. We found both negative and positive effects of BSCs on the establishment of the two exotic plant species. Compared with the disturbed BSCs, the germination percentages of C. latens and S. viridis were reduced by 54% to 87% and 89% to 93%, respectively, in intact BSCs. In contrast, BSCs significantly promoted the height growth and aboveground biomass of the two exotic plant species (< .05) by enhancing the soil water and nutrient availability for the exotic plants. Our results confirm that BSCs strongly suppress the rapid expansion of exotic plant populations by inhibiting germination of seed with big size or appendages and have a weak inhibitory effect on exotic plant with small and smooth seeds. This may decrease the threat of propagation of exotic species. In the meantime, BSCs promote the growth of a few successful engraftment seedlings, which increased the beta diversity. Our work suggests that better understanding the two opposing effects of BSCs on the establishment of exotic plant species in different growth stages (germination and growth) is important for maintaining the health and stability of revegetated regions.  相似文献   

13.
植被类型与坡位对喀斯特土壤氮转化速率的影响   总被引:4,自引:0,他引:4  
土壤氮素转化对于植物氮素营养具有重要作用,尤其是对于受氮素限制的喀斯特退化生态系统。选取植被恢复过程中4种典型喀斯特植被类型(草丛、灌丛、次生林、原生林)和3个坡位(上、中、下坡位)表层土壤(0—15cm)为对象,利用室内培养的方法,研究不同植被类型和坡位下土壤氮素养分与氮转化速率(氮净矿化率、净硝化率和净氨化率)的特征及其影响因素。结果表明,植被类型对土壤硝态氮含量、无机氮含量、氮净矿化率、净硝化率和净氨化率均有显著影响(P0.01),即随着植被的正向演替(草丛—灌丛—次生林—原生林),土壤硝态氮含量、无机氮含量、土壤氮净矿化速率和净硝化速率整体上呈增加趋势,而坡位以及坡位与植被类型的交互作用对上述土壤氮素指标无显著影响(P0.05)。冗余分析结果表明凋落物氮含量、凋落物C∶N比和硝态氮含量对土壤氮转化速率有显著影响,其中凋落物氮含量是影响土壤氮转化速率的主要因子(F=35.634,P=0.002)。可见,尽管坡位影响喀斯特水土再分配过程,但植被类型决定的凋落物质量(如凋落物氮含量等)对喀斯特土壤氮素转化速率的作用更为重要。因此,在喀斯特退化生态系统植被恢复初期,应注重植被群落的优化配置(如引入豆科植物)和土壤质量的改善(如降低土壤C∶N),促进土壤氮素转化及氮素的有效供给。  相似文献   

14.
Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine‐protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014–2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs.  相似文献   

15.
Biological soil crusts (BSCs) are key components of ecosystem productivity in arid lands and they cover a substantial fraction of the terrestrial surface. In particular, BSC N2-fixation contributes significantly to the nitrogen (N) budget of arid land ecosystems. In mature crusts, N2-fixation is largely attributed to heterocystous cyanobacteria; however, early successional crusts possess few N2-fixing cyanobacteria and this suggests that microorganisms other than cyanobacteria mediate N2-fixation during the critical early stages of BSC development. DNA stable isotope probing with 15N2 revealed that Clostridiaceae and Proteobacteria are the most common microorganisms that assimilate 15N2 in early successional crusts. The Clostridiaceae identified are divergent from previously characterized isolates, though N2-fixation has previously been observed in this family. The Proteobacteria identified share >98.5% small subunit rRNA gene sequence identity with isolates from genera known to possess diazotrophs (for example, Pseudomonas, Klebsiella, Shigella and Ideonella). The low abundance of these heterotrophic diazotrophs in BSCs may explain why they have not been characterized previously. Diazotrophs have a critical role in BSC formation and characterization of these organisms represents a crucial step towards understanding how anthropogenic change will affect the formation and ecological function of BSCs in arid ecosystems.  相似文献   

16.
马华  钟炳林  岳辉  曹世雄 《生态学报》2015,35(18):6148-6156
自然修复主要通过封山育林、禁止农作、禁牧禁伐措施,减少人类对环境的扰动,利用自然生态环境的自我演替能力,恢复生态环境,实现生态平衡。自然修复作为一种成本低、无污染的生态修复手段很早就受到人们重视,但关于自然修复适用范围的研究较少。为了正确认识自然修复的适用性,选择了我国南方红壤地区长期遭受严重土壤侵蚀危害的福建省长汀县为研究对象,通过对长期自然修复样地的监测资料分析,发现在坡度条件为20%—30%下,当植被覆盖度低于20%的退化阈值时,严重的土壤侵蚀引发的土壤肥力损失将导致生态系统自我退化,自然修复不仅无法改善当地的生态系统,反而会引起生态系统的进一步恶化。由此可见,自然修复并不适合所有的生态系统,当生态系统退化到一定程度时,退化生态系统必须通过人工干预来修复。因此,必须探索适合当地的生态修复模式,在生态系统退化突破阈值时,红壤丘陵区应通过恢复土壤肥力、促进自然植被覆盖度增加、综合提高生态系统健康水平。  相似文献   

17.
Understanding the biodiversity of functionally important communities in Earth’s ecosystems is vital in the apportionment of limited ecosystem management funds and efforts. In southern California shrublands, which lie in a global biodiversity hotspot, biological soil crusts (BSCs) confer critical ecosystem services; however, their biodiversity remains unknown. In this study, six sites (n = 4 each, 25 m2) were established along a mediterranean shrubland environmental gradient in southern California. Here, the biodiversity of all BSC-forming lichens and bryophytes was evaluated, related to environmental traits along the gradient, and compared to species richness among North American ecosystems supporting BSCs (data from previous studies). In total, 59 BSC-forming lichens and bryophytes were observed, including the very rare Sarcogyne crustacea, a rare moss, and five endemic lichen species. Over half (61%) of the species observed were found at a single site. Along the gradient, species evenness of late-successional BSC was related to dew point and elevation, and both evenness and richness were related to distance to coast. Using an ordination analysis, five distinct late-successional BSC communities were identified: Riversidian, Spike moss, Casperian, Alisian, and Lagunian. Twenty-five lichens and 19 bryophytes are newly reported for North American BSC-forming organisms, now comprising ~1/2 of the North American total. BSCs in North American hot and cold deserts were approximately 4.0 and 2.4 times less species rich than BSCs found in southern California shrublands, respectively. Given the anthropogenic impacts on quality and distribution of California mediterranean shrublands, our results show that these sites represent important refugia of BSC species in this globally important region.  相似文献   

18.
李杨  刘梅  孙庆业 《生态学报》2016,36(18):5884-5892
分布于铜尾矿废弃地的裸地表面及维管植物群落中的生物土壤结皮在尾矿废弃地生态恢复过程中扮演重要角色。利用分子生物学技术探讨了不同维管植物下以及不同演替阶段的生物土壤结皮中真菌的多样性及其群落结构的变化。结果表明:生物土壤结皮中的真菌主要包括子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和壶菌门(Chytridiomycota),其中子囊菌门占绝对优势,其相对丰度为55.12%—87.73%,其次为担子菌门相对丰度为12.27%—43.86%;不同样本真菌群落结构在门、纲、目以及属的水平存在显著差异;生物土壤结皮中真菌群落结构和多样性的差异与维管植物群落类型以及演替阶段不同的生物土壤结皮的类型有关,与基质化学性质之间无显著的相关性。  相似文献   

19.
黄土丘陵区生物土壤结皮表面糙度特征及影响因素   总被引:1,自引:0,他引:1  
地表糙度是影响地表径流和侵蚀过程的重要属性.生物结皮在干旱半干旱区广泛分布,是地表糙度的影响因子之一.本文采用链条法测定了黄土丘陵区不同发育阶段生物结皮表面糙度特征,分析了不同发育阶段生物结皮表面糙度对坡向、土壤含水量和冻融作用的响应及其与各理化性质的相关性,初步探索了生物结皮对地表糙度的影响及其相关因素.结果表明: 生物结皮显著改变地表糙度,随着生物结皮从藻结皮向藓结皮演替,其糙度先降低后增加,生物结皮发育形成10年以后,其表面糙度基本趋于稳定;研究区早期形成的藻结皮表面糙度较裸土降低47.0%,深色藻结皮(藓类盖度<20%)较裸土降低20.4%,混生结皮(藓类盖度为20%~60%)和苔藓结皮(藓类盖度>70%)表面糙度与深色藻结皮基本一致;坡向对发育10年以上的生物结皮表面糙度的影响不显著;土壤含水量影响地表糙度特征.研究区浅色藻结皮表面糙度随水分变化较为剧烈;随着生物结皮发育,深色藻结皮、混生结皮和苔藓结皮表面糙度随水分的变化趋于平缓.冻融增加了生物结皮表面糙度.浅色藻结皮经两次冻融后表面糙度增加29.7%;深色藻结皮、混生结皮和藓结皮表面糙度的影响需经过反复冻融才有所体现.生物结皮表面糙度与藓结皮盖度呈显著正相关(P<0.1).  相似文献   

20.
Questions: To what degree do biological soil crusts (BSCs), which are regulators of the soil surface boundary, influence associated microbial communities? Are these associations important to ecosystem functioning in a Mediterranean semi‐arid environment? Location: Gypsum outcrops near Belmonte del Tajo, Central Spain. Methods: We sampled a total of 45 (50 cm × 50 cm) plots, where we estimated the cover of every lichen and BSC‐forming lichen species. We also collected soil samples to estimate bacterial species richness and abundance, and to assess different surrogates of ecosystem functioning. We used path analysis to evaluate the relationships between the richness/abundance of above‐ and below‐ground species and ecosystem functioning. Results: We found that the greatest direct effect upon the ecosystem function matrix was that of the biological soil crust (BSC) richness matrix. A few bacterial species were sensitive to the lichen community, with a disproportionate effect of Collema crispum and Toninia sedifolia compared to their low abundance and frequency. The lichens Fulgensia subbracteata and Toninia spp. also had negative effects on bacteria, while Diploschistes diacapsis consistently affected sensitive bacteria, sometimes positively. Despite these results, very few of the BSC effects on ecosystem function could be ascribed to changes within the bacterial community. Conclusion: Our results suggest the primary importance of the richness of BSC‐forming lichens as drivers of small‐scale changes in ecosystem functioning. This study provides valuable insights on semi‐arid ecosystems where plant cover is spatially discontinuous and ecosystem function in plant interspaces is regulated largely by BSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号