首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang X  Minasov G  Shoichet BK 《Proteins》2002,47(1):86-96
The class A beta-lactamase TEM-1 is a key bacterial resistance enzyme against beta-lactam antibiotics, but little is known about the energetic bases for complementarity between TEM-1 and its inhibitors. Most inhibitors form a covalent adduct with the catalytic Ser70, making the measurement of equilibrium constants, and hence interaction energies, technically difficult. This study evaluates noncovalent interactions within covalent complexes by examining the differential stability of TEM-1 and its inhibitor adducts. The thermal denaturation of TEM-1 follows a two-state, reversible model with a melting temperature (T(m)) of 51.6C and a van't Hoff enthalpy of unfolding (DeltaH(VH)) of 146.2 kcal/mol at pH 7.0. The stability of the enzyme changes on forming an inhibitor adduct. As expected, some inhibitors stabilize TEM-1; transition-state analogues increase the T(m) by up to 3.7C (1.7 kcal/mol). Surprisingly, all beta-lactam covalent acyl--enzyme complexes tested destabilize TEM-1 significantly relative to the apo-enzyme. For instance, the clinically used inhibitor clavulanic acid and the beta-lactamase-resistant beta-lactams moxalactam and imipenem destabilize TEM-1 by over 2.6C (1.2 kcal/mol) in their covalent adducts. Based on the structure of the TEM-1/imipenem complex (Maveyraud et al., J Am Chem Soc 1998;120:9748--52), destabilization by moxalactam and imipenem is thought to be caused by a steric clash between the side-chain of Asn132 and the 6(7)-alpha group of these beta-lactams. To test this hypothesis, the mutant enzyme N132A was made. In contrast with wild-type, the covalent complexes between N132A and both imipenem and moxalactam stabilize the enzyme, consistent with the hypothesis. To investigate the structural bases of this dramatic change in stability, the structure of N132A/imipenem was determined by X-ray crystallography. In the complex with N132A, imipenem adopts a very different conformation from that observed in the wild-type complex, and the putative destabilizing interaction with residue 132 is relieved. Studies of several enzymes suggest that beta-lactams, and covalent inhibitors in general, can have either net favorable or net unfavorable noncovalent interaction energies within the covalent complex. In the case of TEM-1, such unfavorable interactions convert substrate analogues into very effective inhibitors.  相似文献   

2.
Despite decades of intense study, the complementarity of beta-lactams for beta-lactamases and penicillin binding proteins is poorly understood. For most of these enzymes, beta-lactam binding involves rapid formation of a covalent intermediate. This makes measuring the equilibrium between bound and free beta-lactam difficult, effectively precluding measurement of the interaction energy between the ligand and the enzyme. Here, we explore the energetic complementarity of beta-lactams for the beta-lactamase AmpC through reversible denaturation of adducts of the enzyme with beta-lactams. AmpC from Escherichia coli was reversibly denatured by temperature in a two-state manner with a temperature of melting (Tm) of 54.6 degrees C and a van't Hoff enthalpy of unfolding (deltaH(VH)) of 182 kcal/mol. Solvent denaturation gave a Gibbs free energy of unfolding in the absence of denaturant (deltaG(u)H2O) of 14.0 kcal/mol. Ligand binding perturbed the stability of the enzyme. The penicillin cloxacillin stabilized AmpC by 3.2 kcal/mol (deltaTm = +5.8 degrees C); the monobactam aztreonam stabilized the enzyme by 2.7 kcal/mol (deltaTm = +4.9 degrees C). Both acylating inhibitors complement the active site. Surprisingly, the oxacephem moxalactam and the carbapenem imipenem both destabilized AmpC, by 1.8 kcal/mol (deltaTm = -3.2 degrees C) and 0.7 kcal/mol (deltaTm = -1.2 degrees C), respectively. These beta-lactams, which share nonhydrogen substituents in the 6(7)alpha position of the beta-lactam ring, make unfavorable noncovalent interactions with the enzyme. Complexes of AmpC with transition state analog inhibitors were also reversibly denatured; both benzo(b)thiophene-2-boronic acid (BZBTH2B) and p-nitrophenyl phenylphosphonate (PNPP) stabilized AmpC. Finally, a catalytically inactive mutant of AmpC, Y150F, was reversibly denatured. It was 0.7 kcal/mol (deltaTm = -1.3 degrees C) less stable than wild-type (WT) by thermal denaturation. Both the cloxacillin and the moxalactam adducts with Y150F were significantly destabilized relative to their WT counterparts, suggesting that this residue plays a role in recognizing the acylated intermediate of the beta-lactamase reaction. Reversible denaturation allows for energetic analyses of the complementarity of AmpC for beta-lactams, through ligand binding, and for itself, through residue substitution. Reversible denaturation may be a useful way to study ligand complementarity to other beta-lactam binding proteins as well.  相似文献   

3.
Methicillin resistant Staphylococcus aureus (MRSA), a pathogenic bacterium that causes life threatening outbreaks such as community-onset and nosocomial infections has emerged as 'superbug'. The organism developed resistance to all classes of antibiotics including the best known Vancomycin (VRSA). Hence, there is a need to develop new therapeutic agents. This study mainly evaluates the potential use of botanicals against MRSA infections. Computer aided design is an initial platform to screen novel inhibitors and the data finds applications in drug development. The drug-likeness and efficiency of various herbal compounds were screened by ADMET and docking studies. The virulent factor of most of the MRSA associated infections are Penicillin Binding Protein 2A (PBP2A) and Panton-Valentine Leukocidin (PVL). Hence, native structures of these proteins (PDB: 1VQQ and 1T5R) were used as the drug targets. The docking studies revealed that the active component of Aloe vera, β-sitosterol (3S, 8S, 9S, 10R, 13R, 14S, 17R) -17- [(2R, 5R)-5-ethyl-6-methylheptan-2-yl] -10, 13-dimethyl 2, 3, 4, 7, 8, 9, 11, 12, 14, 15, 16, 17- dodecahydro-1H-cyclopenta [a] phenanthren-3-ol) showed best binding energies of -7.40 kcal/mol and -6.34 kcal/mol for PBP2A and PVL toxin, respectively. Similarly, Meliantriol (1S-1-[ (2R, 3R, 5R)-5-hydroxy-3-[(3S, 5R, 9R, 10R, 13S, 14S, 17S)-3-hydroxy 4, 4, 10, 13, 14-pentamethyl-2, 3, 5, 6, 9, 11, 12, 15, 16, 17-decahydro-1H-cyclopenta[a] phenanthren-17-yl] oxolan-2-yl] -2- methylpropane-1, 2 diol), active compound in Azadirachta indica (Neem) showed the binding energies of -6.02 kcal/mol for PBP2A and -8.94 for PVL toxin. Similar studies were conducted with selected herbal compound based on pharmacokinetic properties. All in silico data tested in vitro concluded that herbal extracts of Aloe-vera, Neem, Guava (Psidium guajava), Pomegranate (Punica granatum) and tea (Camellia sinensis) can be used as therapeutics against MRSA infections.  相似文献   

4.
The binding properties of 25 beta-lactam antibiotics to Bacillus megaterium membranes have been studied. The affinities of the antibiotics for the penicillin-binding proteins (PBPs) are also reported. We found that PBP 4 has the highest affinity for nearly all the antibiotics studied whereas PBP 5 has the lowest affinity. Both PBP 4 and PBP 5 appear to be dispensable for the maintenance of bacterial growth and survival and appear to be DD-carboxypeptidases. Only the beta-lactam cefmetazol bound preferentially to PBP 5 and has been used to study the inhibition of DD-carboxypeptidase. Comparative studies with beta-lactam that simultaneously result in (a) binding to PBPs 1 and 3, (b) inhibition of cell growth and (c) lysis, stressed the importance of PBPs 1 and 3 for cell growth and survival.  相似文献   

5.
Emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created challenges in treatment of nosocomial infections. The recent clinical emergence of vancomycin-resistant MRSA is a new disconcerting chapter in the evolution of these strains. S. aureus normally produces four PBPs, which are susceptible to modification by beta-lactam antibiotics, an event that leads to bacterial death. The gene product of mecA from MRSA is a penicillin-binding protein (PBP) designated PBP 2a. PBP 2a is refractory to the action of all commercially available beta-lactam antibiotics. Furthermore, PBP 2a is capable of taking over the functions of the other PBPs of S. aureus in the face of the challenge by beta-lactam antibiotics. Three cephalosporins (compounds 1-3) have been studied herein, which show antibacterial activities against MRSA, including the clinically important vancomycin-resistant strains. These cephalosporins exhibit substantially smaller dissociation constants for the preacylation complex compared with the case of typical cephalosporins, but their pseudo-second-order rate constants for encounter with PBP 2a (k(2)/K(s)) are not very large (< or =200 m(-1) s(-1)). It is documented herein that these cephalosporins facilitate a conformational change in PBP 2a, a process that is enhanced in the presence of a synthetic surrogate for cell wall, resulting in increases in the k(2)/K(s) parameter and in more facile enzyme inhibition. These findings argue that the novel cephalosporins are able to co-opt interactions between PBP 2a and the cell wall in gaining access to the active site in the inhibition process, a set of events that leads to effective inhibition of PBP 2a and the attendant killing of the MRSA strains.  相似文献   

6.
We showed that the alpha-CH(2) --> NH substitution in octanoyl-CoA alters the ground and transition state energies for the binding of the CoA ligands to medium-chain acyl-CoA dehydrogenase (MCAD), and such an effect is caused by a small electrostatic difference between the ligands. To ascertain the extent that the electrostatic contribution of the ligand structure and/or the enzyme site environment modulates the thermodynamics of the enzyme-ligand interaction, we undertook comparative microcalorimetric studies for the binding of 2-azaoctanoyl-CoA (alpha-CH(2) --> NH substituted octanoyl-CoA) and octenoyl-CoA to the wild-type and Glu-376 --> Gln mutant enzymes. The experimental data revealed that both enthalpy (DeltaH degrees ) and heat capacity changes (DeltaC(p) degrees ) for the binding of 2-azaoctanoyl-CoA (DeltaH degrees (298) = -21.7 +/- 0.8 kcal/mole, DeltaC(p) degrees = -0.627 +/- 0.04 kcal/mole/K) to the wild-type MCAD were more negative than those obtained for the binding of octenoyl-CoA (DeltaH degrees (298) = -17.2 +/- 1.6 kcal/mole, DeltaC(p) degrees = -0.526 +/- 0.03 kcal/mole/K). Of these, the decrease in the magnitude of DeltaC(p) degrees for the binding of 2-azaoctanoyl-CoA (vis-à-vis octenoyl-CoA) to the enzyme was unexpected, because the former ligand could be envisaged to be more polar than the latter. To our further surprise, the ligand-dependent discrimination in the above parameters was completely abolished on Glu-376 --> Gln mutation of the enzyme. Both DeltaH degrees and DeltaC(p) degrees values for the binding of 2-azaoctanoyl-CoA (DeltaH degrees (298) = -13.3 +/- 0.6 kcal/mole, DeltaC(p) degrees = -0.511 +/- 0.03 kcal/mole/K) to the E376Q mutant enzyme were found to be correspondingly identical to those obtained for the binding of octenoyl-CoA (DeltaH degrees (298) = -13.2 +/- 0.6 kcal/mole, DeltaC(p) degrees = -0.520 +/- 0.02 kcal/mole/K). However, in neither case could the experimentally determined DeltaC(p) degrees values be predicted on the basis of the changes in the water accessible surface areas of the enzyme and ligand species. Arguments are presented that the origin of the above thermodynamic differences lies in solvent reorganization and water-mediated electrostatic interaction between ligands and enzyme site groups, and such interactions are intrinsic to the molecular basis of the enzyme-ligand complementarity.  相似文献   

7.
Corilagin and tellimagrandin I are polyphenols isolated from the extract of Arctostaphylos uvaursi and Rosa canina L. (rose red), respectively. We have reported that corilagin and tellimagrandin I remarkably reduced the minimum inhibitory concentration (MIC) of beta-lactams in methicillin-resistant Staphylococcus aureus(MRSA). In this study, we investigated the effect of corilagin and tellimagrandin I on the penicillin binding protein 2 '(2a) (PBP2 '(PBP2a)) which mainly confers the resistance to beta-lactam antibiotics in MRSA. These compounds when added to the culture medium were found to decrease production of the PBP2 '(PBP2a) slightly. Using BOCILLIN FL, a fluorescent-labeled benzyl penicillin, we found that PBP2 '(PBP2a) in MRSA cells that were grown in medium containing corilagin or tellimagrandin I almost completely lost the ability to bind BOCILLIN FL. The binding activity of PBP2 and PBP3 were also reduced to some extent by these compounds. These results indicate that inactivation of PBPs, especially of PBP2 '(PBP2a), by corilagin or tellimagrandin I is the major reason for the remarkable reduction in the resistance level of beta-lactams in MRSA. Corilagin or tellimagrandin I suppressed the activity of beta-lactamase to some extent.  相似文献   

8.
The thermodynamic stabilities of three monomeric variants of the bacteriophage lambda Cro repressor that differ only in the sequence of two amino acids at the apex of an engineered beta-hairpin have been determined. The sequences of the turns are EVK-XX-EVK, where the two central residues are DG, GG, and GT, respectively. Standard-state unfolding free energies, determined from circular dichroism measurements as a function of urea concentration, range from 2.4 to 2.7 kcal/mole, while those determined from guanidine hydrochloride range from 2.8 to 3.3 kcal/mole for the three proteins. Thermal denaturation yields van't Hoff unfolding enthalpies of 36 to 40 kcal /mole at midpoint temperatures in the range of 53 to 58 degrees C. Extrapolation of the thermal denaturation free energies with heat capacities of 400 to 600 cal/mole deg gives good agreement with the parameters determined in denaturant titrations. As predicted from statistical surveys of amino acid replacements in beta-hairpins, energetic barriers to transformation from a type I' turn (DG) to a type II' turn (GT) can be quite small.  相似文献   

9.
Beta-lactam antibiotics, including penicillins and cephalosporins, inhibit penicillin-binding proteins (PBPs), which are essential for bacterial cell wall biogenesis. Pathogenic bacteria have evolved efficient antibiotic resistance mechanisms that, in Gram-positive bacteria, include mutations to PBPs that enable them to avoid beta-lactam inhibition. Lactivicin (LTV; 1) contains separate cycloserine and gamma-lactone rings and is the only known natural PBP inhibitor that does not contain a beta-lactam. Here we show that LTV and a more potent analog, phenoxyacetyl-LTV (PLTV; 2), are active against clinically isolated, penicillin-resistant Streptococcus pneumoniae strains. Crystallographic analyses of S. pneumoniae PBP1b reveal that LTV and PLTV inhibition involves opening of both monocyclic cycloserine and gamma-lactone rings. In PBP1b complexes, the ring-derived atoms from LTV and PLTV show a notable structural convergence with those derived from a complexed cephalosporin (cefotaxime; 3). The structures imply that derivatives of LTV will be useful in the search for new antibiotics with activity against beta-lactam-resistant bacteria.  相似文献   

10.
Bacillus subtilis mutants with altered penicillin-binding proteins (PBPs), or altered expression of PBPs, were isolated by screening for changes in susceptibility to beta-lactam antibiotics. Mutations affecting only PBPs 2a, 2b and 3 were isolated. Cell shape and peptidoglycan metabolism were examined in representative mutants. Cells of a PBP 2a mutant (UB8521) were usually twisted whereas PBP 2b (UB8524) and 3 (UB8525) mutants produced helices, particularly after growth at 41 degrees C. The PBP 2a mutant (UB8521) had a higher peptidoglycan synthetic activity than its parent strain whereas the opposite applied to the PBP 2b mutant UB8524. The PBP 3 mutant (UB8525) had a similar peptidoglycan synthetic activity to that of the parent strain when grown at 37 degrees C, but 40% higher activity after growth at 41 degrees C. The PBP 2a mutant (UB8521) exhibited the same wall thickening activity as the parent, but the PBP 2b and 3 mutants (UB8524 and UB8525) were partially defective in this respect. The changes in the susceptibility of PBP 2a, 2b and 3 mutants to beta-lactam antibiotics imply that these PBPs are killing targets, consistent with the fact that these PBPs are also important for shape determination and peptidoglycan synthesis.  相似文献   

11.
Penicillin-binding protein 2a (PBP2a) of Staphylococcus aureus is refractory to inhibition by available beta-lactam antibiotics, resulting in resistance to these antibiotics. The strains of S. aureus that have acquired the mecA gene for PBP2a are designated as methicillin-resistant S. aureus (MRSA). The mecA gene was cloned and expressed in Escherichia coli, and PBP2a was purified to homogeneity. The kinetic parameters for interactions of several beta-lactam antibiotics (penicillins, cephalosporins, and a carbapenem) and PBP2a were evaluated. The enzyme manifests resistance to covalent modification by beta-lactam antibiotics at the active site serine residue in two ways. First, the microscopic rate constant for acylation (k2) is attenuated by 3 to 4 orders of magnitude over the corresponding determinations for penicillin-sensitive penicillin-binding proteins. Second, the enzyme shows elevated dissociation constants (Kd) for the non-covalent pre-acylation complexes with the antibiotics, the formation of which ultimately would lead to enzyme acylation. The two factors working in concert effectively prevent enzyme acylation by the antibiotics in vivo, giving rise to drug resistance. Given the opportunity to form the acyl enzyme species in in vitro experiments, circular dichroism measurements revealed that the enzyme undergoes substantial conformational changes in the course of the process that would lead to enzyme acylation. The observed conformational changes are likely to be a hallmark for how this enzyme carries out its catalytic function in cross-linking the bacterial cell wall.  相似文献   

12.
Our aim was to use a conformational analysis technique developed for peptides to identify structural relationships between bacterial cell wall peptides and beta-lactam antibiotics that might help to explain their different actions as substrates and inhibitors of penicillin binding proteins (PBPs). The conformational forms of the model cell wall peptide Ac-L-Lys(Ac)-D-Ala-D-Ala are described by just a few backbone torsion combinations: three C-terminal carboxylate regions, with Tor8 (psi(i+1)) ranges of D3 region (50 degrees to 70 degrees ), D6 region (140 degrees to 170 degrees ) and D9 region (-50 degrees to -70 degrees ) are combined with either of two Tor6 (phi(i))-Tor4 (psi(i)) combinations, C4 region (-50 degrees to -80 degrees ) with B8 region (-40 degrees to -70 degrees ) or C11 region (30 degrees to 50 degrees ) with B2 region (30 degrees to 70 degrees ). From these results, and comparisons with conformational analyses of various beta-lactams and Ac-L-Lys(Ac)-D-Ala-D-Lac, it is concluded that molecular recognition of cell wall peptide substrates by PBPs requires conformers with backbone torsion angles of D3C4B8. beta-Lactam antibiotics are constrained compounds with fewer conformational forms; these match well the backbone torsions of cell wall peptides at D3C4, allowing their recognition and acylation by PBPs, whereas their unique Tor4 produces differently orientated CO and N atoms that appear to prevent subsequent deacylation, leading to their action as suicide substrates. The results are also related to the selective pressures involved in evolution of beta-lactamases from PBPs. From analysis of conformers of Ac-L-Lys(Ac)-D-Ala-D-Ala and the vancomycin-resistant analogue Ac-L-Lys(Ac)-D-Ala-D-Lac, it is concluded that vancomycin may recognise D6C11B2 conformers, giving it complementary substrate specificity to PBPs. This approach could have applications in the rational design of antibiotics targeted against PBPs and their substrates.  相似文献   

13.
The beta-lactam resistance of genus Streptococcus has been explained by the low binding affinity of penicillin-binding proteins (PBPs) to the drug. This study was carried out to resolve the mechanisms of resistance to beta-lactam antibiotics in the species of genus Enterococcus by means of binding affinities of PBPs. Streptococcus pyogenes, Enterococcus faecalis, Enterococcus faecium and Enterococcus avium were employed as assay microbes. Cefepime (CFPM) and ampicillin (ABPC) were used as representatives of cephems and penicillins, respectively. All the PBP fractions of S. pyogenes manifested high binding affinities to CFPM and ABPC, whereas PBPs 1 and 4 of E. faecalis showed high binding affinities to ABPC but not to CFPM. In E. faecium, PBPs of an exceptionally penicillin-susceptible strain manifested a high binding affinity to ABPC, but PBPs 5 and 6 showed low affinities to CFPM. beta-lactam resistant strains of E. faecium possessed PBPs 5 and 6 with low binding affinities to CFPM and ABPC. All the fractions of PBPs but PBP 1 in E. avium showed low binding affinities to CFPM. Although all the PBP fractions but PBPs 3 and 6 manifested high binding affinities to ABPC, PBPs 3 and 6 showed low binding affinities to ABPC. A strain of E. avium, which is susceptible to ABPC but moderately resistant to CFPM, lacked PBP 6. In conclusion, the resistance of E. avium to CFPM is based upon low binding affinities of the many fractions to this drug, and ABPC resistance is based upon PBPs 3 and 6 with low binding affinities to ABPC.  相似文献   

14.
Oliva M  Dideberg O  Field MJ 《Proteins》2003,53(1):88-100
Beta-lactam antibiotics inhibit enzymes involved in the last step of peptidoglycan synthesis. These enzymes, also identified as penicillin-binding proteins (PBPs), form a long-lived acyl-enzyme complex with beta-lactams. Antibiotic resistance is mainly due to the production of beta-lactamases, which are enzymes that hydrolyze the antibiotics and so prevent them reaching and inactivating their targets, and to mutations of the PBPs that decrease their affinity for the antibiotics. In this study, we present a theoretical study of several penicillin-recognizing proteins complexed with various beta-lactam antibiotics. Hybrid quantum mechanical/molecular mechanical potentials in conjunction with molecular dynamics simulations have been performed to understand the role of several residues, and pK(a) calculations have also been done to determine their protonation state. We analyze the differences between the beta-lactamase TEM-1, the membrane-bound PBP2x of Streptococcus pneumoniae, and the soluble DD-transpeptidase of Streptomyces K15.  相似文献   

15.
High-molecular-mass penicillin-binding proteins (HMM PBPs) are essential for bacterial cell wall biosynthesis and are the lethal targets of β-lactam antibiotics. When purified, HMM PBPs give undetectable or weak enzyme activity. This has impeded efforts to develop assays for HMM PBPs and to develop new inhibitors for HMM PBPs as HMM PBP targeted antibacterial agents. However, even when purified, HMM PBPs retain their ability to bind β-lactams. Here we describe a fluorescently detected microtiter plate-based assay for inhibitor binding to HMM PBPs based on competition with biotin-ampicillin conjugate (BIO-AMP) binding.  相似文献   

16.

Background

Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs β-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for β-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs.

Methodology/Principal Findings

Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains.

Conclusions

We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria.  相似文献   

17.
The cytoplasmic membrane of Thiobacillus versutus was found to contain at least nine penicillin-binding proteins (PBPs) with apparent molecular weights as judged by sodium dodecyl sulphate polyacrylamide slab gel electrophoresis of 87000 (PBP1), 81000 (PBP2), 68000 (PBP3), 63000 (PBP4), 57000 (PBP5), 40000 (PBP6), 37000 (PBP70, 33000 (PBP8) and 31000 (PBP9). The PBP pattern of T. versutus was thus quite different from that of the Enterobacteria and the Pseudomonads. Also the properties of the PBPs of T. versutus such as affinity for various beta-lactam antibiotics, heat stability and release of bound penicillin were different from similar properties of Escherichia coli, Pseudomonas aeruginosa and other gram-negative bacteria.  相似文献   

18.
Relatedness of penicillin-binding proteins from various Listeria species   总被引:1,自引:0,他引:1  
The heterogeneity of penicillin-binding proteins (PBPs) of five Listeria species was investigated. Similarities in the overall PBP pattern were found between those of L. welshimeri and L. innocua, and between L. ivanovii and L. seeligeri, and all were distinct from the PBPs of L. monocytogenes. In all species, however, the primary target for beta-lactam antibiotics, as identified in L. monocytogenes recently, appeared highly conserved. In addition, the low-Mr PBP 5 was biochemically very similar in all strains and contained identical binding properties to beta-lactam compounds, suggesting that this protein may play an important role. All other PBPs varied considerably in their penicilloyl-peptide pattern, indicating differences in their amino acid sequences.  相似文献   

19.
Incubation of pneumococci with D-alanine-containing peptides naturally occurring in peptidoglycan protected cells against lysis and killing by beta-lactam antibiotics near MIC. Such peptides caused decreased binding of the antibiotic to penicillin-binding proteins (PBPs), primarily PBP 2B. This provides direct evidence in vivo for the hypothesis that beta-lactams act as substrate analogues and identifies PBP 2B as a killing target in pneumococci.  相似文献   

20.
Development of penicillin resistance in Streptococcus pneumoniae is due to successive mutations in penicillin-binding proteins (PBPs) which reduce their affinity for beta-lactam antibiotics. PBP2x is one of the high-Mr PBPs which appears to be altered both in resistant clinical isolates, and in cefotaxime-resistant laboratory mutants. In this study, we have sequenced a 2564 base-pair chromosomal fragment from the penicillin-sensitive S. pneumoniae strain R6, which contains the PBP2x gene. Within this fragment, a 2250 base-pair open reading frame was found which coded for a protein having an Mr of 82.35kD, a value which is in good agreement with the Mr of 80-85 kD measured by SDS-gel electrophoresis of the PBP2x protein itself. The N-terminal region resembled an unprocessed signal peptide and was followed by a hydrophobic sequence that may be responsible for membrane attachment of PBP2x. The corresponding nucleotide sequence of the PBP2x gene from C504, a cefotaxime-resistant laboratory mutant obtained after five selection steps, contained three nucleotide substitutions, causing three amino acid alterations within the beta-lactam binding domain of the PBP2x protein. Alterations affecting similar regions of Escherichia coli PBP3 and Neisseria gonorrhoeae PBP2 from beta-lactam-resistant strains are known. The penicillin-binding domain of PBP2x shows highest homology with these two PBPs and S. pneumoniae PBP2b. In contrast, the N-terminal extension of PBP2x has the highest homology with E. coli PBP2 and methicillin-resistant Staphylococcus aureus PBP2'. No significant homology was detected with PBP1a or PBP1b of Escherichia coli, or with the low-Mr PBPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号