首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

2.
Ebp2p, the yeast homolog of human Epstein-Barr virus nuclear antigen 1-binding protein 2, is essential for biogenesis of the 60 S ribosomal subunit. Two-hybrid screening exhibited that, in addition to factors necessary for assembly of the 60 S subunit, Ebp2p interacts with Rps16p, ribosomal protein S16, and the 40 S ribosomal subunit assembly factor, Utp11p, as well as Yil019w, the function of which was previously uncharacterized. Depletion of Yil019w resulted in reduction in levels of both of 18 S rRNA and 40 S ribosomal subunit without affecting levels of 25 S rRNA and 60 S ribosomal subunits. 35 S pre-rRNA and aberrant 23 S RNA accumulated, indicating that pre-rRNA processing at sites A(0)-A(2) is inhibited when Yil019w is depleted. Each combination from Yil019w, Utp11p, and Rps16p showed two-hybrid interaction.  相似文献   

3.
The biosynthesis of 60 S ribosomal subunits in Saccharomyces cerevisiae requires Tif6p, the yeast homologue of mammalian eIF6. This protein is necessary for the formation of 60 S ribosomal subunits because it is essential for the processing of 35 S pre-rRNA to the mature 25 S and 5.8 S rRNAs. In the present work, using molecular genetic and biochemical analyses, we show that Hrr25p, an isoform of yeast casein kinase I, phosphorylates Tif6p both in vitro and in vivo. Tryptic phosphopeptide mapping of in vitro phosphorylated Tif6p by Hrr25p and (32)P-labeled Tif6p isolated from yeast cells followed by mass spectrometric analysis revealed that phosphorylation occurred on a single tryptic peptide at Ser-174. Sucrose gradient fractionation and coimmunoprecipitation experiments demonstrate that a small but significant fraction of Hrr25p is bound to 66 S preribosomal particles that also contain bound Tif6p. Depletion of Hrr25p from a conditional yeast mutant that fails to phosphorylate Tif6p was unable to process pre-rRNAs efficiently, resulting in significant reduction in the formation of 25 S rRNA. These results along with our previous observations that phosphorylatable Ser-174 is required for yeast cell growth and viability, suggest that Hrr25p-mediated phosphorylation of Tif6p plays a critical role in the biogenesis of 60 S ribosomal subunits in yeast cells.  相似文献   

4.
Bachand F  Silver PA 《The EMBO journal》2004,23(13):2641-2650
The mammalian protein arginine methyltransferase 3 (PRMT3) catalyzes the formation of asymmetric (type I) dimethylarginine in vitro. As yet, natural substrates and cellular pathways modulated by PRMT3 remain unknown. Here, we have identified an ortholog of PRMT3 in fission yeast. Tandem affinity purification of fission yeast PRMT3 coupled with mass spectrometric protein identification revealed that PRMT3 associates with components of the translational machinery. We identified the 40S ribosomal protein S2 as the first physiological substrate of PRMT3. In addition, a fraction of yeast and human PRMT3 cosedimented with free 40S ribosomal subunits, as determined by sucrose gradient velocity centrifugation. The activity of PRMT3 is not essential since prmt3-disrupted cells are viable. Interestingly, cells lacking PRMT3 showed an accumulation of free 60S ribosomal subunits resulting in an imbalance in the 40S:60S free subunits ratio; yet pre-rRNA processing appeared to occur normally. Our results identify PRMT3 as the first type I ribosomal protein arginine methyltransferase and suggest that it regulates ribosome biosynthesis at a stage beyond pre-rRNA processing.  相似文献   

5.
The protein encoded by the fission yeast gene, moe1(+) is the homologue of the p66/eIF3d subunit of mammalian translation initiation factor eIF3. In this study, we show that in fission yeast, Moe1 physically associates with eIF3 core subunits as well as with 40 S ribosomal particles as a constituent of the eIF3 protein complex that is similar in size to multisubunit mammalian eIF3. However, strains lacking moe1(+) (Deltamoe1) are viable and show no gross defects in translation initiation, although the rate of translation in the Deltamoe1 cells is about 30-40% slower than wild-type cells. Mutant Deltamoe1 cells are hypersensitive to caffeine and defective in spore formation. These phenotypes of Deltamoe1 cells are similar to those reported previously for deletion of the fission yeast int6(+) gene that encodes the fission yeast homologue of the p48/Int6/eIF3e subunit of mammalian eIF3. Further analysis of eIF3 subunits in Deltamoe1 or Deltaint6 cells shows that in these deletion strains, while all the eIF3 subunits are bound to 40 S particles, dissociation of ribosome-bound eIF3 results in the loss of stable association between the eIF3 subunits. In contrast, eIF3 isolated from ribosomes of wild-type cells are associated with one another in a protein complex. These observations suggest that Moe1 and spInt6 are each required for stable association of eIF3 subunits in fission yeast.  相似文献   

6.
We previously cloned RRP14/YKL082c, whose product exhibits two-hybrid interaction with Ebp2p, a regulatory factor of assembly of 60S ribosomal subunits. Depletion of Rrp14p results in shortage of 60S ribosomal subunits and retardation of processing from 27S pre-rRNA to 25S rRNA. Furthermore, 35S pre-rRNA synthesis appears to decline in Rrp14p-depleted cells. Rrp14p interacts with regulatory factors of 60S subunit assembly and also with Utp11p and Faf1p, which are regulatory factors required for assembly of 40S ribosomal subunits. We propose that Rrp14p is involved in ribosome synthesis from the beginning of 35S pre-rRNA synthesis to assembly of the 60S ribosomal subunit. Disruption of RRP14 causes an extremely slow growth rate of the cell, a severe defect in ribosome synthesis, and a depolarized localization of cortical actin patches throughout the cell cycle. These results suggest that Rrp14p has dual functions in ribosome synthesis and polarized cell growth.  相似文献   

7.
Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process.  相似文献   

8.
Saccharomyces cerevisiae Rrs1p is a nuclear protein that is essential for the maturation of 25 S rRNA and the 60 S ribosomal subunit assembly. In two-hybrid screening, using RRS1 as bait, we have cloned YKR081c/RPF2. Rpf2p is essential for growth and is mainly localized in the nucleolus. The amino acid sequence of Rpf2p is highly conserved in eukaryotes from yeast to human. Similar to Rrs1p, Rpf2p shows physical interaction with ribosomal protein L11 and appears to associate with preribosomal subunits fairly tightly. Northern, methionine pulse-chase, and sucrose density gradient ultracentrifugation analyses reveal that the depletion of Rpf2p results in a delayed processing of pre-rRNA, a decrease of mature 25 S rRNA, and a shortage of 60 S subunits. An analysis of processing intermediates by primer extension shows that the Rpf2p depletion leads to an accumulation of 27 SB pre-rRNA, suggesting that Rpf2p is required for the processing of 27 SB into 25 S rRNA.  相似文献   

9.
Ribosome biogenesis requires, in addition to rRNA molecules and ribosomal proteins, a multitude of trans-acting factors. Recently it has become clear that in the yeast Saccharomyces cerevisiae many RNA helicases of the DEAD-box and related families are involved in ribosome biogenesis. Here we show that the previously uncharacterised open reading frame YDL031w (renamed DBP10 for DEAD-box protein 10) encodes an essential putative RNA helicase that is required for accurate ribosome biogenesis. Genetic depletion of Dbp10p results in a deficit in 60S ribosomal subunits and an accumulation of half-mer polysomes. Furthermore, pulse-chase analyses of pre-rRNA processing reveal a strong delay in the maturation of 27SB pre-rRNA intermediates into 25S rRNA and 7S pre-rRNA. Northern blot analyses indicate that this delay leads to higher steady-state levels of 27SB species and reduced steady-state levels of 7S pre-rRNA and 25S/5.8S mature rRNAs, thus explaining the final deficit in 60S subunit and the formation of half-mer polysomes. Consistent with a direct role in ribosome biogenesis, Dbp10p was found to be located predominantly in the nucleolus.  相似文献   

10.
Eukaryotic initiation factor 3 (eIF3) is a 12-subunit protein complex that plays a central role in binding of initiator methionyl-tRNA and mRNA to the 40 S ribosomal subunit to form the 40 S initiation complex. The molecular mechanisms by which eIF3 exerts these functions are poorly understood. To learn more about the structure and function of eIF3 we have expressed and purified individual human eIF3 subunits or complexes of eIF3 subunits using baculovirus-infected Sf9 cells. The results indicate that the subunits of human eIF3 that have homologs in Saccharomyces cerevisiae form subcomplexes that reflect the subunit interactions seen in the yeast eIF3 core complex. In addition, we have used an in vitro 40 S ribosomal subunit binding assay to investigate subunit requirements for efficient association of the eIF3 subcomplexes to the 40 S ribosomal subunit. eIF3j alone binds to the 40 S ribosomal subunit, and its presence is required for stable 40 S binding of an eIF3bgi subcomplex. Furthermore, purified eIF3 lacking eIF3j binds 40 S ribosomal subunits weakly, but binds tightly when eIF3j is added. Cleavage of a 16-residue C-terminal peptide from eIF3j by caspase-3 significantly reduces the affinity of eIF3j for the 40 S ribosomal subunit, and the cleaved form provides substantially less stabilization of purified eIF3-40S complexes. These results indicate that eIF3j, and especially its C terminus, play an important role in the recruitment of eIF3 to the 40 S ribosomal subunit.  相似文献   

11.
NSR1 is a yeast nuclear localization sequence-binding protein showing striking similarity in its domain structure to nucleolin. Cells lacking NSR1 are viable but have a severe growth defect. We show here that NSR1, like nucleolin, is involved in ribosome biogenesis. The nsr1 mutant is deficient in pre-rRNA processing such that the initial 35S pre-rRNA processing is blocked and 20S pre-rRNA is nearly absent. The reduced amount of 20S pre-rRNA leads to a shortage of 18S rRNA and is reflected in a change in the distribution of 60S and 40S ribosomal subunits; there is no free pool of 40S subunits, and the free pool of 60S subunits is greatly increased in size. The lack of free 40S subunits or the improper assembly of these subunits causes the nsr1 mutant to show sensitivity to the antibiotic paromomycin, which affects protein translation, at concentrations that do not affect the growth of the wild-type strain. Our data support the idea that NSR1 is involved in the proper assembly of pre-rRNA particles, possibly by bringing rRNA and ribosomal proteins together by virtue of its nuclear localization sequence-binding domain and multiple RNA recognition motifs. Alternatively, NSR1 may also act to regulate the nuclear entry of ribosomal proteins required for proper assembly of pre-rRNA particles.  相似文献   

12.
The protein “factor activating Pos9 (Skn7)”, Fap7, is an essential protein in yeast and plays an important role in the biogenesis of the small ribosomal subunit. In eukaryotes, the final processing step of the small ribosomal subunit RNA is the endonucleolytic cleavage of 20S pre-rRNA at cleavage site D yielding mature 18S rRNA. Depletion of Fap7 in yeast leads to a dramatic accumulation of 20S pre-rRNA and a concomitant decrease in 18S rRNA in the cytoplasm. In addition, these cells contain higher levels of 60S, but decreased numbers of 40S ribosomal subunits. Fap7 contains a P-loop like motif placing it in a class with NTPases and kinases and a role for it as an adenylate kinase has been suggested. Up to now both the structure of Fap7 and its detailed function during ribosome biogenesis remain elusive. Here, we present the backbone NMR assignments of a Fap7 homolog from the thermophilic archaeon Pyrococcus horikoshii in its nucleotide free form and bound to the adenylate kinase inhibitor AP5A.  相似文献   

13.
The complex eukaryotic initiation factor 3 (eIF3) was shown to promote the formation of the 43 S preinitiation complex by dissociating 40 S and 60 S ribosomal subunits, stabilizing the ternary complex, and aiding mRNA binding to 40 S ribosomal subunits. Recently, we described the identification of RPG1 (TIF32), the p110 subunit of the eIF3 core complex in yeast. In a screen for Saccharomyces cerevisiae multicopy suppressors of the rpg1-1 temperature-sensitive mutant, an unknown gene corresponding to the open reading frame YLR192C was identified. When overexpressed, the 30-kDa gene product, named Hcr1p, was able to support, under restrictive conditions, growth of the rpg1-1 temperature-sensitive mutant, but not of a Rpg1p-depleted mutant. An hcr1 null mutant was viable, but showed slight reduction of growth when compared with the wild-type strain. Physical interaction between the Hcr1 and Rpg1 proteins was shown by co-immunoprecipitation analysis. The combination of Deltahcr1 and rpg1-1 mutations resulted in a synthetic enhancement of the slow growth phenotype at a semipermissive temperature. In a computer search, a significant homology to the human p35 subunit of the eIF3 complex was found. We assume that the yeast Hcr1 protein participates in translation initiation likely as a protein associated with the eIF3 complex.  相似文献   

14.
Ribosomal protein L3 is an evolutionarily conserved protein that participates in the assembly of early pre-60S particles. We report that the rpl3[W255C] allele, which affects the affinity and function of translation elongation factors, impairs cytoplasmic maturation of 20S pre-rRNA. This was not seen for other mutations in or depletion of L3 or other 60S ribosomal proteins. Surprisingly, pre-40S particles containing 20S pre-rRNA form translation-competent 80S ribosomes, and translation inhibition partially suppresses 20S pre-rRNA accumulation. The GTP-dependent translation initiation factor Fun12 (yeast eIF5B) shows similar in vivo binding to ribosomal particles from wild-type and rpl3[W255C] cells. However, the GTPase activity of eIF5B failed to stimulate processing of 20S pre-rRNA when assayed with ribosomal particles purified from rpl3[W255C] cells. We conclude that L3 plays an important role in the function of eIF5B in stimulating 3′ end processing of 18S rRNA in the context of 80S ribosomes that have not yet engaged in translation. These findings indicate that the correct conformation of the GTPase activation region is assessed in a quality control step during maturation of cytoplasmic pre-ribosomal particles.  相似文献   

15.
Diazaborine treatment of yeast cells was shown previously to cause accumulation of aberrant, 3'-elongated mRNAs. Here we demonstrate that the drug inhibits maturation of rRNAs for the large ribosomal subunit. Pulse-chase analyses showed that the processing of the 27S pre-rRNA to consecutive species was blocked in the drug-treated wild-type strain. The steady-state level of the 7S pre-rRNA was clearly reduced after short-term treatment with the inhibitor. At the same time an increase of the 35S pre-rRNA was observed. Longer incubation with the inhibitor resulted in a decrease of the 27S precursor. Primer extension assays showed that an early step in 27S pre-rRNA processing is inhibited, which results in an accumulation of the 27SA2 pre-rRNA and a strong decrease of the 27SA3, 27SB1L, and 27SB1S precursors. The rRNA processing pattern observed after diazaborine treatment resembles that reported after depletion of the RNA binding protein Nop4p/Nop77p. This protein is essential for correct pre-27S rRNA processing. Using a green fluorescent protein-Nop4 fusion, we found that diazaborine treatment causes, within minutes, a rapid redistribution of the protein from the nucleolus to the periphery of the nucleus, which provides a possible explanation for the effect of diazaborine on rRNA processing.  相似文献   

16.
The Has1 protein, a member of the DEAD-box family of ATP-dependent RNA helicases in Saccharomyces cerevisiae, has been found by different proteomic approaches to be associated with 90S and several pre-60S ribosomal complexes. Here, we show that Has1p is an essential trans-acting factor involved in 40S ribosomal subunit biogenesis. Polysome analyses of strains genetically depleted of Has1p or carrying a temperature-sensitive has1-1 mutation show a clear deficit in 40S ribosomal subunits. Analyses of pre-rRNA processing by pulse-chase labelling, Northern hybridization and primer extension indicate that these strains form less 18S rRNA because of inhibition of processing of the 35S pre-rRNA at the early cleavage sites A0, A1 and A2. Moreover, processing of the 27SA3 and 27SB pre-rRNAs is delayed in these strains. Therefore, in addition to its role in the biogenesis of 40S ribosomal subunits, Has1p is required for the optimal synthesis of 60S ribosomal subunits. Consistent with a role in ribosome biogenesis, Has1p is localized to the nucleolus. On sucrose gradients, Has1p is associated with a high-molecular-weight complex sedimenting at positions equivalent to 60S and pre-60S ribosomal particles. A mutation in the ATP-binding motif of Has1p does not support growth of a has1 null strain, suggesting that the enzymatic activity of Has1p is required in ribosome biogenesis. Finally, sequence comparisons suggest that Has1p homologues exist in all eukaryotes, and we show that a has1 null strain can be fully complemented by the Candida albicans homologue.  相似文献   

17.
We have recently shown that the mammalian nucleolar protein Bop1 is involved in synthesis of the 28S and 5.8S ribosomal RNAs (rRNAs) and large ribosome subunits in mouse cells. Here we have investigated the functions of the Saccharomyces cerevisiae homolog of Bop1, Erb1p, encoded by the previously uncharacterized open reading frame YMR049C. Gene disruption showed that ERB1 is essential for viability. Depletion of Erb1p resulted in a loss of 25S and 5.8S rRNAs synthesis, while causing only a moderate reduction and not a complete block in 18S rRNA formation. Processing analysis showed that Erb1p is required for synthesis of 7S pre-rRNA and mature 25S rRNA from 27SB pre-rRNA. In Erb1p-depleted cells these products of 27SB processing are largely absent and 27SB pre-rRNA is under-accumulated, apparently due to degradation. In addition, depletion of Erb1p caused delayed processing of the 35S pre-rRNA. These findings demonstrate that Erb1p, like its mammalian counterpart Bop1, is required for formation of rRNA components of the large ribosome particles. The similarities in processing defects caused by functional disruption of Erb1p and Bop1 suggest that late steps in maturation of the large ribosome subunit rRNAs employ mechanisms that are evolutionarily conserved throughout eukaryotes.  相似文献   

18.
We report the characterization of a novel factor, Rsa4p (Ycr072cp), which is essential for the synthesis of 60S ribosomal subunits. Rsa4p is a conserved WD-repeat protein that seems to localize in the nucleolus. In vivo depletion of Rsa4p results in a deficit of 60S ribosomal subunits and the appearance of half-mer polysomes. Northern hybridization and primer extension analyses of pre-rRNA and mature rRNAs show that depletion of Rsa4p leads to the accumulation of the 27S, 25.5S and 7S pre-rRNAs, resulting in a reduction of the mature 25S and 5.8S rRNAs. Pulse–chase analyses of pre-rRNA processing reveal that, at least, this is due to a strong delay in the maturation of 27S pre-rRNA intermediates to mature 25S rRNA. Furthermore, depletion of Rsa4p inhibited the release of the pre-60S ribosomal particles from the nucleolus to the nucleoplasm, as judged by the predominantly nucleolar accumulation of the large subunit Rpl25-eGFP reporter construct. We propose that Rsa4p associates early with pre-60S ribosomal particles and provides a platform of interaction for correct processing of rRNA precursors and nucleolar release of 60S ribosomal subunits.  相似文献   

19.
Putative ATP-dependent RNA helicases are ubiquitous, highly conserved proteins that are found in most organisms and they are implicated in all aspects of cellular RNA metabolism. Here we present the functional characterization of the Dbp7 protein, a putative ATP-dependent RNA helicase of the DEAD-box protein family from Saccharomyces cerevisiae. The complete deletion of the DBP7 ORF causes a severe slow-growth phenotype. In addition, the absence of Dbp7p results in a reduced amount of 60S ribosomal subunits and an accumulation of halfmer polysomes. Subsequent analysis of pre-rRNA processing indicates that this 60S ribosomal subunit deficit is due to a strong decrease in the production of 27S and 7S precursor rRNAs, which leads to reduced levels of the mature 25S and 5.8S rRNAs. Noticeably, the overall decrease of the 27S pre-rRNA species is neither associated with the accumulation of preceding precursors nor with the emergence of abnormal processing intermediates, suggesting that these 27S pre-rRNA species are degraded rapidly in the absence of Dbp7p. Finally, an HA epitope-tagged Dbp7 protein is localized in the nucleolus. We propose that Dbp7p is involved in the assembly of the pre-ribosomal particle during the biogenesis of the 60S ribosomal subunit.  相似文献   

20.
p27(BBP/eIF6) is an evolutionarily conserved protein that was originally identified as p27(BBP), an interactor of the cytoplasmic domain of integrin beta4 and, independently, as the putative translation initiation factor eIF6. To establish the in vivo function of p27(BBP/eIF6), its topographical distribution was investigated in mammalian cells and the effects of disrupting the corresponding gene was studied in the budding yeast, Saccharomyces cerevisiae. In epithelial cells containing beta4 integrin, p27(BBP/eIF6) is present in the cytoplasm and enriched at hemidesmosomes with a pattern similar to that of beta4 integrin. Surprisingly, in the absence and in the presence of the beta4 integrin subunit, p27(BBP/eIF6) is in the nucleolus and associated with the nuclear matrix. Deletion of the IIH S. cerevisiae gene, encoding the yeast p27(BBP/eIF6) homologue, is lethal, and depletion of the corresponding gene product is associated with a dramatic decrease of the level of free ribosomal 60S subunit. Furthermore, human p27(BBP/eIF6) can rescue the lethal effect of the iihDelta yeast mutation. The data obtained in vivo suggest an evolutionarily conserved function of p27(BBP/eIF6) in ribosome biogenesis or assembly rather than in translation. A further function related to the beta4 integrin subunit may have evolved specifically in higher eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号