首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific interaction of histone H1 with eukaryotic DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
The interaction of calf thymus histone H1 with homologous and heterologous DNA has been studied at different ionic strengths. It has been found that about 0.5 M NaCl histone H1, and its fragments N-H1 (residues 1-72) and C-H1 (residues 73-C terminal), precipitate selectively a small fraction of calf thymus DNA. This selective precipitation is preserved up to very high values (less than 2.0) of the input histone H1/DNA ratio. The percentage of DNA insolubilized by histone H1 under these ionic conditions is dependent upon the molecular weight of the nucleic acid, diminishing from 18% fro a Mw equals 1.0 x 10(7) daltons to 5% for a Mw equals 8.0 x 10(4) daltons. The base composition of the precipitated DNA is similar to that of the bulk DNA. Calf thymus histone H1 also selectively precipitates a fraction of DNA from other eukaryotes (herring, trout), but not from some prokaryotes (E. coli, phage gamma. On the other hand, at 0.5 M NaCl, the whole calf thymus DNA (but not E. coli DNA) presents a limited number of binding sites for histone H1, the saturation ratio histone H1 bound/total DNA being similar to that found in chromatin. A similar behavior is observed from the histone H1 fragments, N-H1 and C-H1, which bind to DNA in complementary saturation ratios. It is suggested that in eukaryotic organisms histone H1 molecules maintain specific interactions with certain DNA sequences. A fraction of such specific complexes could act as nucleation points for the high-order levels of chromatin organization.  相似文献   

2.
3.
The very lysine rich histone, H1, isolated from a variety of sources interacts preferentially with superhelical DNA compared to relaxed DNA duplexes. The nature of this specific interaction has been investigated by studying the ability of various purified fragments of H1 histone from calf thymus to recognize and bind superhelical DNA. The data suggest that the globular region of the H1 histone molecule (amino acid residues 72-106) is involved in the recognition of superhelical DNA. Thus, the H1 histone carboxy-terminal fragment, 72-212, resembles native H1 histone both quantitatively and qualitatively in its ability to discriminate between and bind to superhelical and relaxed DNA while the H1 histone carboxy-terminal fragment, residues 106-212, has lost this specificity, binding superhelical and relaxed DNA equally well. Furthermore, under conditions in which the globular region of the intact H1 histone has been unfolded, the molecule loses its ability to discriminate between superhelical and relaxed DNA, and binds both forms of DNA equally.  相似文献   

4.
从人基因库中分离得到的两个含有不同变种组蛋白H_1基因的λ克隆(λHh8和λHh9),分别把它们含有该基因的片段(8c和9a)插入载体puc8质粒中,得到了亚克隆pHh8c和pHh9a。对这两个人组蛋白H_1基因的启动子(Promoter)和部份编码蛋白质的区域作了核苷酸顺序的分析和比较,确定了它们的启动要素和同系顺序。  相似文献   

5.
The effective delivery of exogenous genes into eukaryotic cells is important for fundamental and biotechnological research. Protein-based gene delivery including histone proteins has recently emerged as a powerful technique for non-viral DNA transfer. Histones are DNA-binding proteins that function in DNA packaging and protection. In particular, histone H1 is largely responsible for the stabilization of higher-order chromatin structures. Several studies have examined the use of full-length histone H1-mediated gene transfer, and a few studies have investigated the use of C-terminal histone H1 fragments as gene-transfer materials. Previously, we cloned a novel histone H1 cDNA from the goldfish Carassius auratus and found that a recombinant histone H1 C-terminal short peptide (H1C) of 61 amino acids has comparable DNA binding and protection functions as full-length histone H1. In the present work, we successfully expressed and purified soluble recombinant H1C in an Escherichia coli expression system using a hexahistidine tag fusion strategy and providing tRNAs for rare codons. We confirmed its DNA-binding ability and found that this H1C peptide had similar or higher transfection efficiency in mammalian cells (human 293T and mouse NIH/3T3) than the widely used agent lipofectamine. Therefore, we suggest that this novel goldfish-derived recombinant histone H1 C-terminal short peptide could be used as a peptide-based gene-transfer mediator.  相似文献   

6.
7.
We have analyzed the histone genes from the sea urchin Lytechinus pictus. Examination of native DNA from individuals reveals four major Eco RI restriction endonuclease histone gene DNA fragments which have been labeled A (6.0 kb), B (4.1 kb), C (3.1 kb) and D (1.2 kb). The fragments A, B and C have been cloned into E. coli plasmids (pLpA, pLpB and pLpC). These histone gene fragments display length and sequence heterogeneity in different individuals. The plasmid pLpA contains the coding regions for H1, H4, H2B and H3 histones, and we determined that the DNA fragment D is tandem to A in native DNA and that it contains the H2A gene. The plasmids pLpB and pLpC contain the histone genes H2A-H1-H4 and H2B-H3, respectively, and together contain the sequences for the five major histones. Restriction analysis of native L. pictus DNA reveals that B and C are tandem to each other but not intermingled with the A-D-type repeat units, and are thus in separate clusters with a repeat length of 7.2 kb. Since the two cluster types do not segregate, they are not alleles. Hybridization of histone mRNA to exonuclease III-digested linear DNA demonstrated an identical polarity of the histone genes in the A-D- and B-C-type repeat units. This result revealed that the L. pictus histone genes have a polarity which is the same as other sea urchin histone genes examined to date—that is, 3′ H1-H4-H2B-H3-H2A 5′. Restriction endonuclease cleavage patterns of the cloned segments indicate that considerable sequence heterogeneity exists between the two types of histone gene repeat units.  相似文献   

8.
The relative amount of H1 histone associated with isolated nucleosomes from calf thymus was determined as a function of the extent of DNA digestion by micrococcal nuclease. Generally the amount of H1 histone associated with mononucleosomes decreases with increasing digestion until 60% of the original H1 remains associated with DNA 150 base pirs or less in size. Coincidentally, H1 histone increases relative to the other histones in aggregated material that sediments through sucrose gradients to form a pellet. However, the level of H1 histone remains at control values for oligonucleosomes (dimer to hexamer) over the 30% digestion range studied. An increase in ionic strength to 0.3 M NaCl in the density gradient reveals a different pattern of H1 binding, whereby the amount of H1 reflects the average size of the DNA fragments with which it is associated. Although there is significant binding to nucleosomes per se, it appears that the major ionic involvement of H1 is with internucleosomal spacer DNA.  相似文献   

9.
A Richter  M Kapitza 《FEBS letters》1991,294(1-2):125-128
Histone H1 inhibits the catalytic activity of topoisomerase I in vitro. The relaxation activity of the enzyme is partially inhibited at a molar ratio of one histone H1 molecule per 40 base pairs (bp) of DNA and completely inhibited at a molar ratio of one histone H1 molecule per 10 base pairs of DNA. Increasing the amount of enzyme at a constant histone H1 to DNA ratio antagonizes the inhibition. This indicates that topoisomerase I and histone H1 compete for binding sites on the substrate DNA molecules. Consistent with this we show on the sequence level that histone H1 inhibits the cleavage reaction of topoisomerase I on linear DNA fragments.  相似文献   

10.
Histone H2A ubiquitination is a bulky posttranslational modification that occurs at the vicinity of the binding site for linker histones in the nucleosome. Therefore, we took several experimental approaches to investigate the role of ubiquitinated H2A (uH2A) in the binding of linker histones. Our results showed that uH2A was present in situ in histone H1-containing nucleosomes. Notably in vitro experiments using nucleosomes reconstituted onto 167-bp random sequence and 208-bp (5 S rRNA gene) DNA fragments showed that ubiquitination of H2A did not prevent binding of histone H1 but it rather enhanced the binding of this histone to the nucleosome. We also showed that ubiquitination of H2A did not affect the positioning of the histone octamer in the nucleosome in either the absence or the presence of linker histones.  相似文献   

11.
Protein/DNA interactions of the H3-ST519 histone gene promoter were analyzed in vitro. Using several assays for sequence specificity, we established binding sites for ATF/AP1-, CCAAT-, and HiNF-D related DNA binding proteins. These binding sites correlate with two genomic protein/DNA interaction domains previously established for this gene. We show that each of these protein/DNA interactions has a counterpart in other histone genes: H3-ST519 and H4-F0108 histone genes interact with ATF- and HiNF-D related binding activities, whereas H3-ST519 and H1-FNC16 histone genes interact with the same CCAAT-box binding activity. These factors may function in regulatory coupling of the expression of different histone gene classes. We discuss these results within the context of established and putative protein/DNA interaction sites in mammalian histone genes. This model suggests that heterogeneous permutations of protein/DNA interaction elements, which involve both general and cell cycle regulated DNA binding proteins, may govern the cellular competency to express and coordinately control multiple distinct histone genes.  相似文献   

12.
The belief that histone H1 interacts primarily with DNA in chromatin and much less with the protein component has led to numerous studies of artificial H1-DNA complexes. This review summarizes and discusses the data on different aspects of the interaction between the linker histone and naked DNA, including cooperativity of binding, preference for supercoiled DNA, selectivity with respect to base composition and nucleotide sequence, and effect of H1 binding on the conformation of the underlying DNA. The nature of the interaction, the structure of the complexes, and the role histone H1 exerts in chromatin are also discussed.  相似文献   

13.
Isolation of a genomal clone containing chicken histone genes.   总被引:4,自引:4,他引:0       下载免费PDF全文
We have used enriched chicken histone cDNA to select genomal clones from a chicken library. Because the cDNA probe also contained other sequences, a further screening of positive plagues with negative probes eliminated most non-histone gene clones. One 'positively-selected' genomal clone, lambda CH-01, hybridised with cloned sea-urchin histone genes and also detected histone genes in EcoRI-digested genomal sea-urchin DNA. Limited DNA sequencing of HaeIII fragments identified two sequences within the coding region of chicken histone H2A. A third fragment predicted an amino acid sequence with strong homology to an H1 histone sequence.  相似文献   

14.
15.
The nucleotide sequence selectivity of histone binding has been measured by thermal denaturation of reconstituted nucleoproteins. When DNAs of different average base compositions competed for the binding of purified histone fractions during in vitro reconstitutions in the presence of salt and urea, a decreasing (A + T)-binding preference was observed following the order H1 greater than H2B greater than H5 greater than H2A greater than [H2A + H2B] greater than [H2A + H2B + H3 + H4], [H1 + (H2A + H2B + H3 + H4)2]. Nucleoprotein complexes formed under conditions shown to yield more physiologically comparable nucleosome structures revealed a minimal (A + T)-binding preference. These results suggest that homotypic and heterotypic histone interactions decreased the nucleotide sequence selectivity of nucleosome binding.  相似文献   

16.
Tóth K  Brun N  Langowski J 《Biochemistry》2006,45(6):1591-1598
Using a previously described FRET technique, we measured the distance between the ends of DNA fragments on which nucleosomes were reconstituted from recombinant and native histones. This distance was analyzed in its dependence on the DNA fragment length, concentration of mono- and divalent counterions, presence of linker histone H1, and histone modifications. We found that the linker DNA arms do not cross under all conditions studied but diverge slightly as they leave the histone core surface. Histone H1 leads to a global approach of the linker DNA arms, confirming the notion of a "stem structure". Increasing salt concentration also leads to an approach of the linker DNAs. To study the effect of acetylation, we compared chemically acetylated recombinant histones with histones prepared from HeLa cells, characterizing the sites of acetylation by mass spectroscopy. Nucleosomes from chemically acetylated histones have few modifications in the core domain and form nucleosomes normally. Acetylating all histones or selectively only H3 causes an opening of the nucleosome structure, indicated by the larger distances between the linker DNA ends. Selective acetylation of H4 distances the linker ends for short fragments but causes them to approach each other for fragments longer than 180 bp.  相似文献   

17.
W H Houser  R N Hines  E Bresnick 《Biochemistry》1985,24(26):7839-7845
A protein which specifically binds [3H]benzo[a]pyrene and other polycyclic aromatic hydrocarbons has been purified over 6000-fold from rat hepatic cytosol by using ion-exchange, gel permeation, and hydrophobic interaction chromatography. The binding protein differs from the 9S binding protein characterized in other laboratories. A Stokes radius of 2.75 nm was determined by gel filtration on Sephadex G-100. A sedimentation coefficient of 3.3 S was determined by using sucrose gradient analysis. The ability of this protein to bind total rat liver DNA as well as subclones containing portions of the rat cytochrome P-450c gene was investigated. Under high stringency conditions, this binding protein was found to interact in a specific and saturable manner with several subclones of the rat cytochrome P-450c gene containing 5'-upstream sequences, as well as portions of intron 1. Binding was not observed to the coding portions of the gene. These data implicate the "4S" binding protein in the transregulation of rat cytochrome P-450c expression.  相似文献   

18.
Chromosomal proteins selectively interact with 5'-bromodeoxyuridine (BrdUrd) substituted DNA relative to unsubstituted DNA. The relative affinities of chromosomal proteins for BrdUrd-DNA and unsubstituted DNA were measured by both thermal chromatography on hydroxylapatite and selective retention on nitrocellulose filters. Certain chromosomal proteins have a high affinity for hydroxylapatite; thus, during thermal chromatography of chromatin, the single-stranded DNA component percolates across a bed of adsorbed proteins as it elutes. We have measured the relative affinities of Brd-Urd-DNA and normal DNA for chromosomal proteins by chromatographing appropriate mixtures on hydroxylapatite. The results show that, under these conditions, the histone components, rather than the nonhistone chromatin proteins, retard the BrdUrd-substituted DNA. In addition, the individual histones vary in the degree of their affinity for BrdUrd-DNA in the order H3 greater than H4 greater than H2A greater than H2B greater than H1. We have used the property that protein-DNA complexes have a preferential affinity for nitrocellulose filters over naked DNA to measure the selective binding of BrdUrd-DNA and unsubstituted DNA's to both histone and nonhistone chromosomal proteins at low temperatures. The histones selectively retained BrdUrd-DNA on filters in the order H4 greater than H2A greater than H3 greater than H2B greater than H1. Using this assay, the nonhistones displayed greater selectivity toward BrdUrd-DNA than the histone fraction. We interpret these results to mean BrdUrd-containing DNA has a specific affinity for certain chromosomal proteins with BrdUrd-DNA may be the basis for selective inhibition of cytodifferentiation by the thymidine analogue, BrdUrd.  相似文献   

19.
20.
Ellen TP  van Holde KE 《Biochemistry》2004,43(24):7867-7872
The interaction of linker histone H1 with both linear and superhelical double-stranded DNA has been investigated at low ionic strengths. Gel mobility retardation experiments demonstrate strikingly different behavior for the two forms of DNA. First, the experiments strongly suggest that linker histone binds to superhelical DNA in a negatively cooperative mode. In contrast, binding of linker histone to linear DNA under the conditions employed here shows no cooperativity. Second, binding of linker histone to linear DNA results in aggregation of histone-DNA complexes, even at very low levels of input histone H1. Because H1 has been shown to interact as a monomer, this aggregation is evidence of the divalent character of the linker histone, for without H1's ability to bind to two duplex strands of DNA, aggregation could not occur. Although aggregation can be made to occur with superhelical DNA, it can do so only at near-saturation levels of input histone H1. Finally, in direct competition, linker histone binds to superhelical DNA to the complete exclusion of linear DNA, indicating that the linker histone's function is related to the crossover structures that differentiate superhelical DNA from linear DNA. We develop a model that explains the observed behavior of binding of linker histone to superhelical DNA that is consistent with both the divalent character of the linker histone and the negative cooperativity by which linker histone and superhelical DNA interact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号